
High Performance Computing

Edmond Chow

School of Computational Science and Engineering

Georgia Institute of Technology

Why this course?

• Almost all computers today use parallelism

• As software developers, we need to think
about parallelism from the start when we
design algorithms and programs

• High performance in many applications is
critical: we want to use our hardware as
efficiently as possible

Forms of Parallelism

• A commodity cluster computer is composed of
multiple nodes, connected via a network
– Each node is composed of a system board, 1 or more chips,

DRAM, coprocessors/accelerators, etc.

• Each chip contains multiple cores
– Each core has its own L1 cache, but may share higher level

caches with other cores

• Each core can
– Execute multiple instructions simultaneously (instruction

level parallelism)
– Some instructions can execute the same instruction on

multiple pieces of data simultaneously (SIMD parallelism)

Tianhe-2: One of the fastest
supercomputers in the world

• 16000 nodes

• Each node contains
two 12-core CPUs
and three 57-core
coprocessors

• Each node contains
64 GB DRAM + 3x8
GB DRAM on
coprocessors

Tianhe-2

Georgia Tech graduate student, Xing Liu, with Tianhe-2 in China.

Haswell: Recent Intel
microarchitecture

Intel Xeon Microarchitectures

Core (2006)
65 nm, tock

Penryn (2007)
45 nm, tick

Nehalem (2008)
45 nm, tock

Westmere (2010)
32 nm, tick

Sandy Bridge (2011)
32 nm, tock

Ivy Bridge (2012)
22 nm, tick

Haswell (2013)
22 nm, tock

Broadwell (2014)
14 nm, tick

Skylake (2015)
14 nm, tock

Kaby Lake
14 nm, optimiz

Cannonlake
10 nm, process

Icelake
10 nm, architecture

Tigerlake
10 nm, optimiz

???

Why multiple cores?

Coprocessors and Accelerators

Intel Xeon Phi NVIDIA K20 GPU

Important concept: shared memory vs
distributed memory

• Shared memory: multiple threads of a process run on a
single node
– All the data can be accessed by all the threads in the regular

way, i.e., serial or sequential program
– Need mechanisms to coordinate cooperation of the threads

(e.g. locks)
– Minor point: Data may be physically distributed (multiple

nodes), but software is used to make it look “logically shared”

• Distributed memory: multiple processes run on multiple
nodes (e.g., one node per process)
– Processes only have access to data on the node
– Use a “communication library” to access data on other nodes
– Minor point: Processes themselves can have multiple threads
– Minor point: Could run multiple processes per node

Course Topics

• Aspects of computer architecture and networks

• Parallel algorithms
– how to partition a problem for parallel computing

• Performance modeling
– computation and communication

• Parallel scientific applications
– molecular simulations, quantum chemistry

• Distributed memory (MPI) programming

• Multithreaded programming (OpenMP, etc.)

• Coprocessor/accelerator programming

Textbooks

• G. Hager and G. Wellein, Introduction to High
Performance Computing for Scientists and
Engineers, CRC Press, 2010

• A. Vladimirov and V. Karpusenko, Parallel
Programming and Optimization with Intel
Xeon Phi Coprocessors, Colfax International,
2014

What you need in order to succeed in
this course

• Desire to learn how to make programs run fast

• Curiosity to investigate performance anomalies
(required for making programs run fast)

• Engage and participate in class discussions and
activities. You also need to bring a laptop
computer for many classes.

• Expertise in C/C++ programming

• Familiarity with using the Linux command line

• Not afraid of matrix operations (the bread and
butter of high performance computing)

Some Linux concepts you will need

• In addition to ssh, scp, editing (nano),
compiling, moving files, /tmp file system……

• Understanding PATH

• Setting environment variables in general,
e.g., LD_LIBRARY_PATH

• Writing shell scripts

• Shell startup file, e.g., .bashrc

• Note differences between different shells

Intel Xeon Phi Servers

Accounts will be created for you on the
following machines:

• joker

– 8 Intel Xeon Phi cards (KNC)

– dual 10-core Haswell

• gotham

– 8 Intel Xeon Phi cards (KNC)

– dual 16-core Haswell

Jinx cluster
• ssh yourgtid@jinx-login.cc.gatech.edu

logs you onto the head node
– 2 Intel Xeon E5520 (4-core), 12 GB mem

• 30 nodes
– 24 nodes: 2 Intel Xeon X5650 (6-core), 24 GB mem, 2 GPU

– 6 nodes: 2 Intel Xeon X5570 (4-core), 48 GB mem

• Commands to know:
– qstat -a

– qsub –I –q class

–l nodes=1:sixcore

-l walltime=30:00

mailto:yourgtid@jinx-login.cc.gatech.edu

jinx cluster (in CCB 247)

qstat command

• qstat % see just your jobs

• qstat –a

• qstat –f <jobid>

• qstat –q % list queues and their limits

• pbsnodes % check which nodes are down

Requesting node attributes

• qsub –l nodes=1 % request 1 node

• qsub –l nodes=1:sixcore

• qsub –l nodes=jinx1 % request specific node

• jinx node attributes

– sixcore, fourcore, bigmem, gpu, m2070, m2090

Interactive jobs vs. Batch jobs

• Usual practice at supercomputer centers is to
submit a batch script

• Interactive jobs are useful for debugging

• Cluster etiquette

– Log out of interactive jobs when you are not using
them

– Use batch jobs if possible

Interactive jobs

• If you are using multithreaded parallelism, you
will usually want to request an entire node for
yourself; otherwise you can share a node with
others

• When you are allocated a node, you can also
ssh into that node

git revision control

• We are going to use Georgia Tech's github installation
to manage class materials and allow you to collaborate.
Please create an account for yourself at:

• https://github.gatech.edu/ (Use your GT credentials)

• Clone (fork) the repo called HPC-course

• For more info: https://support.cc.gatech.edu/support-
tools/faq/what-gt-github-enterprise

https://github.gatech.edu/

Why Performance Modeling?

• Use models to choose among different
implementation options

• Use models to determine if you have achieved
the best possible performance possible on
your hardware

– Otherwise, you get a timing result, but how do
you know if it is any good?

Measuring Performance

• Performance is measured by execution time to
accomplish a task

– If we use n processors, we ideally expect time to
be n times smaller

• Also now trendy to measure performance in
terms of energy used

– Which uses less energy: a computation on your
laptop, or the same computation on your cell
phone? What energy should be counted?

Fortran Example: Note loop R times
and call to a dummy function

get_walltime

Tips for measuring execution time

• Can we measure the execution time of
a = b + c;

• What is going on if we measure the time twice
and the time is not the same?
– Should we take the average?
– Should we take the lowest one?

• What is good practice when measuring execution
time?

What takes more time?

• Computing: a=b+c (b and c in registers)

• Reading memory: a=array[1234];

Answer

• Reading memory may take 100-1000 times more
time (and energy). This is memory latency.

• Overall performance may be memory-latency or
memory-bandwidth bound rather than compute-
bound.

• In the olden days (1980s), data movement was
not more expensive than computation, and
performance could be reliably measured by
counting “flops” -- floating point operations.

How fast is your computer?

• How many floating point operations can be
performed per second (flops/s) by your
laptop?

• What is the peak flops/s for Tianhe-2? (CPUs
are 2.2 GHz and accelerators are 1 GHz)

Example: How fast is your computer?

Intel Sandy Bridge i5-2520M at 2.5 GHz (2 cores)
AVX (advanced vector instructions) 256 bits (4 double precision numbers)

No FMA (fused multiply add), 2 FP ports 40 Gflops/s

Data access can be the bottleneck

• Data access across nodes and to main memory

• Data access time measured in terms of
bandwidth and latency

• How fast can the CPU read main memory?
– Stream benchmark for bandwidth

http://www.cs.virginia.edu/stream

– Based on measuring the performance of vector
operations, such as A = B + C

http://www.cs.virginia.edu/stream

Memory Latency and Bandwidth

• Latency is the “startup” time for DRAM memory
access: hundreds of cycles

• Compare to incremental time for accessing one
word in terms of bandwidth: 1/bandwidth =
1/7.5 GB/s = 1.3e-10 sec = 3 cycles

• Latency be neglected for large memory transfers,
but dominates memory access time for short
memory transfers

• time = latency + length/bandwidth

Two ways to handle high memory
latency and low memory bandwidth

• Cache memory

• Multithreading

Memory Hierarchy and Cache

● Based on idea of spatial and temporal data locality

● Cache hit: data found in cache

● Cache miss: data not found in cache and must be copied from a lower
level

● Compulsory miss: first reference miss

● Capacity miss: cache runs out of room for new data

● Conflict miss: many data items map to same location in cache

● Registers, latency 1 cycle (0.376 ns)

● L1 32 kB, latency 3 cycles

● L2 256 kB, latency 10 cycles

● L3 8 MB shared, latency 40 cycles

● DRAM, latency hundreds of cycles

● Disk, latency millions cycles

Roofline Model

Ref.: Williams,
Waterman, and
Patterson,
Comm ACM, Vol
52, No 4, 2009

Roofline Model

Ref.: Williams,
Waterman, and
Patterson,
Comm ACM, Vol
52, No 4, 2009

