
Partitioning and reducing communication
for matrix computations

• How to partition the data or work of an algorithm for
parallel computing

• One goal is to find a partitioning that reduces
communication

• May be the determinant of parallel performance of
an algorithm or code

• Communication volume: the sum (in bytes or words)
of all communication (across the network) by all
processors

Dense matrix-vector multiply

1D partitioning 2D partitioning

For n-by-n matrix and p processors (p=rs in 2D case), what is the communication volume
in each case? The data partitioning must be the same before and after the multiply.

Communicaiton Volume for
matrix-vector multiply

• 1D partitioning:  

• 2D partitioning:  

• Thus 2D partitioning has smaller
communication volume

1, 1

2, 5

3, 9

4,13

1, 2

2, 6

3,10

4,14

1, 3

2, 7

3,11

4,15

1, 4

2, 8

3,12

4,16

21

5 6

43

7 8

109

13 14

1211

15 16

21

5 6

43

7 8

109

13 14

1211

15 16

5, 1

6, 5

7, 9

8,13

5, 2

6, 6

7,10

8,14

5, 3

6, 7

7,11

8,15

5, 4

6, 8

7,12

8,16

9, 1

10, 5

11, 9

12,13

9, 2

10, 6

11,10

12,14

9, 3

10, 7

11,11

12,15

9, 4

10, 8

11,12

12,16

13, 1

14, 5

15, 9

16,13

13, 2

14, 6

15,10

16,14

13, 3

14, 7

15,11

16,15

13, 4

14, 8

15,12

16,16

Cannon’s algorithm for dense matrix
multiplication

• Example: AB=C for 16
processors: partition
each matrix into 4x4
blocks

• Main idea: processors
compute local part of
C. What parts of A and
B are needed?

• Max storage per node
is 1 block of A, 1 block
of B, and 1 block of C
(not including receive
buffers)

Initial data layout

1, 1

2, 5

3, 9

4,13

1, 2

2, 6

3,10

4,14

1, 3

2, 7

3,11

4,15

1, 4

2, 8

3,12

4,16

21

5 6

43

7 8

109

13 14

1211

15 16

21

5 6

43

7 8

109

13 14

1211

15 16

5, 1

6, 5

7, 9

8,13

5, 2

6, 6

7,10

8,14

5, 3

6, 7

7,11

8,15

5, 4

6, 8

7,12

8,16

9, 1

10, 5

11, 9

12,13

9, 2

10, 6

11,10

12,14

9, 3

10, 7

11,11

12,15

9, 4

10, 8

11,12

12,16

13, 1

14, 5

15, 9

16,13

13, 2

14, 6

15,10

16,14

13, 3

14, 7

15,11

16,15

13, 4

14, 8

15,12

16,16

Cannon’s algorithm for dense matrix
multiplication

• Example: AB=C for 16
processors: partition
each matrix into 4x4
blocks

• For i=1:4

– At each step, A and B
data are first shifted
(A by rows; B by cols)

– Then, processors
perform local
multiply and
accumulate (dgemm)

1, 1

2, 5

3, 9

4,13

1, 2

2, 6

3,10

4,14

1, 3

2, 7

3,11

4,15

1, 4

2, 8

3,12

4,16

21

6 7

43

8 5

1211

16 13

109

14 15

21

5 6

43

7 8

109

13 14

1211

15 16

5, 1

6, 5

7, 9

8,13

5, 2

6, 6

7,10

8,14

5, 3

6, 7

7,11

8,15

5, 4

6, 8

7,12

8,16

9, 1

10, 5

11, 9

12,13

9, 2

10, 6

11,10

12,14

9, 3

10, 7

11,11

12,15

9, 4

10, 8

11,12

12,16

13, 1

14, 5

15, 9

16,13

13, 2

14, 6

15,10

16,14

13, 3

14, 7

15,11

16,15

13, 4

14, 8

15,12

16,16

Initial data layout on 2D mesh
of nodes.

Numbers are data blocks.
Figure shows where the
blocks are initially stored.

This initial layout is not
suitable for computing terms
of the matrix product.

1, 1

2, 5

3, 9

4,13

1, 2

2, 6

3,10

4,14

1, 3

2, 7

3,11

4,15

1, 4

2, 8

3,12

4,16

21

6 7

43

8 5

1211

16 13

109

14 15

61

5 10

1611

15 4

149

13 2

83

7 12

5, 1

6, 5

7, 9

8,13

5, 2

6, 6

7,10

8,14

5, 3

6, 7

7,11

8,15

5, 4

6, 8

7,12

8,16

9, 1

10, 5

11, 9

12,13

9, 2

10, 6

11,10

12,14

9, 3

10, 7

11,11

12,15

9, 4

10, 8

11,12

12,16

13, 1

14, 5

15, 9

16,13

13, 2

14, 6

15,10

16,14

13, 3

14, 7

15,11

16,15

13, 4

14, 8

15,12

16,16

Layout for first multiplication
(rows in matrix A have shifted
and columns in matrix B have
been shifted).

Red products are computed.

Rows and columns are shifted
for the subsequent multiplies.

1, 1

2, 5

3, 9

4,13

1, 2

2, 6

3,10

4,14

1, 3

2, 7

3,11

4,15

1, 4

2, 8

3,12

4,16

32

7 8

14

5 6

912

13 14

1110

15 16

105

9 14

415

3 8

213

1 6

127

11 16

5, 1

6, 5

7, 9

8,13

5, 2

6, 6

7,10

8,14

5, 3

6, 7

7,11

8,15

5, 4

6, 8

7,12

8,16

9, 1

10, 5

11, 9

12,13

9, 2

10, 6

11,10

12,14

9, 3

10, 7

11,11

12,15

9, 4

10, 8

11,12

12,16

13, 1

14, 5

15, 9

16,13

13, 2

14, 6

15,10

16,14

13, 3

14, 7

15,11

16,15

13, 4

14, 8

15,12

16,16

Layout for second multiplication
(after shifting rows 1 left and
columns 1 up).

Green products are computed.

Repeat for all block rows and
columns.

Drawbacks of Cannon’s Algorithm

• How to use if number of processors is not
square?

• For m-by-n matrix and p-by-p mesh, how to
use if m or n is not divisible by p, i.e., blocks of
A (or B) are not the same size?

SUMMA algorithm for dense matrix
multiplication

• Algorithm used in
PDGEMM function in
Parallel BLAS (PBLAS)

•

SUMMA algorithm example
for 5x3 processor grid

For k = 1:nk

• Owners of col k of A
send to procs in proc row

• Owners of row k of B
send to procs in row col

• Compute outer product
and accumulate to Cij

Endfor

3D matrix multiplication algorithm

• Partition the work rather than the data

• Data is replicated in order to reduce communication

• For 8 processes, the matrix is replicated by a factor of 2 over
the entire machine

• For 27 processes, the replication factor is 3

• In general, for q x q x q processes, the replication factor is q

• Algorithm works also for non-cubic numbers of processes

• Communication time is asymptotically better than that for
SUMMA algorithm

