
MPI – Message Passing Interface

● MPI is used for distributed memory parallelism

(communication between nodes of a cluster)

● Interface specification with many implementations

● Portability was a major goal

● Widespread use in parallel scientific computing

● Six basic MPI functions

– MPI_Init, MPI_Finalize,

– MPI_Comm_size, MPI_Comm_rank,

– MPI_Send, MPI_Recv

● Many other functions...

MPI on jinx

• Add to your .bash_profile
• export PATH=$PATH:/usr/lib64/openmpi/bin

• export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib64:/usr/lib64/openmpi/lib

• Compile using mpicc

• Run using (use full path explicitly if you get “orted” error)
• /usr/lib64/openmpi/bin/mpirun -np 2 progname

• /usr/lib64/openmpi/bin/mpirun -np 2 -hostfile hostfile progname

• For now, best to do the above in an interactive session, but
the “right” way is to create a “batch” job and submit the job
(using qsub) from the login node.

• https://support.cc.gatech.edu/facilities/instructional-
labs/how-to-run-jobs-on-the-jinx-cluster

https://support.cc.gatech.edu/facilities/instructional-labs/how-to-run-jobs-on-the-jinx-cluster

Essential MPI Topics

● Point-to-point communication

– Blocking and nonblocking communication

● Collective communication

Blocking Send and Recv

● MPI_Send

– Function does not return until send buffer can be reused

– Does not imply the message has been sent

– Must be assured that the receiver posts a receive call

● MPI_Recv

– Function does not return until recv buffer contains received

message

● Deadlock example (will deadlock if no buffering)

Send(dest=1) Send(dest=0)

Recv(dest=1) Recv(dest=0)

Non-blocking Send and Recv

● MPI_Isend

– Function returns immediately; the data may be buffered, and the

message may not be sent yet

● MPI_Irecv

– Function returns immediately; the message has not necessarily arrived

● MPI_Wait

– Block until Isend/Irecv completes (buffer can only be used at this point)

● Allows overlap of communication with computation

● Easier to avoid deadlocks than using blocking calls

● Can combine blocking and non-blocking calls

Irecv/Send Communication Time

Between two different nodes

Eager and Rendezvous Protocols

• Eager protocol: if the message is short, it is sent
immediately and buffered on the receiver’s side. On
the receiver, the message is copied to the receive
buffer when the receive is posted.

• Rendezvous protocol: if the message is long, a short
message is first sent to the receiver to indicate that a
send has been posted. The receiver sends the
address of the receive buffer. The sender then sends
the actual message.

• “kink” in previous graph is due to the switchover
from eager to rendezvous protocols

Collective Communication

● MPI_Barrier

● MPI_Bcast

● MPI_Scatter

● MPI_Gather

● MPI_Allgather

● MPI_Alltoall

● MPI_Reduce

● MPI_Allreduce

Implementation of collective operations

• All-gather

• Broadcast

• Reduce-scatter

• Reduce

• All-reduce (sum on all nodes)

• Reference: Thakur, Rabenseifner, and Gropp, “Optimization of
Collective Communication Operations in MPICH,” 2005

Binomial trees. Log2(p) messages

Model of execution time

• For one message of length n,
Time =  

• Assume a node cannot send multiple messages
or receive multiple messages at once

• But a node can send a message and receive a
message at the same time

• We will see that different algorithms are best,
depending on whether messages are short
(latency term dominates) or long (bandwidth
term dominates)

Allgather

• Data contributed by each process is gathered onto all
processes.

• Each process contributes words

• Recursive doubling tree algorithm (for short messages).
P0&P1 exch so both have AB; P2&P3 exch so both have CD.
P0&P2 exch so both have ABCD; P1&P3 exch both have ABCD.
Time =

• Ring algorithm (for long messages).
Time =

• It seems that recursive doubling should always be faster, but
the ring algorithm can effectively have lower and on a
torus network

Broadcast

• Broadcast   words among   processes

• Two algorithms, depending on message length:

• 1. Binomial tree algorithm (short messages)
time =

• 2. Scatter then allgather (long messages)
time =
(See next slide)

• For large   , scatter then allgather can be faster

Broadcast: scatter then allgather

• Scatter time:
(recursive halving algorithm)

• Allgather time:
(ring algorithm)

• Total time:

Reduce-Scatter (variant of reduce)

• Reduction of n items. Then each n/p part is
scattered to the p processes.

• Basic algorithm: binomial reduce and then
linear scatter

• What is the communication time?

Reduce

• Binomial tree (short messages)
time =  

• Reduce-scatter then gather (long messages)
time =  

Allreduce

• Recursive doubling (short messages)
time =  

• Reduce-scatter then allgather (long messages)
time =  

