MPI — Message Passing Interface

. MPI is used for distributed memory parallelism
(communication between nodes of a cluster)

Interface specification with many implementations
. Portablility was a major goal

. Widespread use in parallel scientific computing

. Six basic MPI functions

-~ MPI_Init, MPI_Finalize,
- MPI_Comm_size, MPI_Comm_rank,
- MPI_Send, MPI_Recv

. Many other functions...

MPI on jinx

Add to your .bash profile
export PATH=SPATH:/usr/lib64/openmpi/bin
export LD_LIBRARY _PATH=SLD_LIBRARY_PATH:/usr/lib64:/usr/lib64/openmpi/lib

Compile using mpicc

Run using (use full path explicitly if you get “orted” error)
[usr/lib64/openmpi/bin/mpirun -np 2 progname
Jusr/lib64/openmpi/bin/mpirun -np 2 -hostfile hostfile progname
For now, best to do the above in an interactive session, but

the “right” way is to create a “batch” job and submit the job
(using qsub) from the login node.

https://support.cc.gatech.edu/facilities/instructional-
labs/how-to-run-jobs-on-the-jinx-cluster

https://support.cc.gatech.edu/facilities/instructional-labs/how-to-run-jobs-on-the-jinx-cluster

Essential MPI Topics

. Point-to-point communication
- Blocking and nonblocking communication

. Collective communication

Blocking Send and Recv

. MPI_Send

— Function does not return until send buffer can be reused
— Does not imply the message has been sent

-~ Must be assured that the receiver posts a receive call
. MPIl _Recv

- Function does not return until recv buffer contains received
message

. Deadlock example (will deadlock if no buffering)

Send(dest=1) Send(dest=0)
Recv(dest=1) Recv(dest=0)

Non-blocking Send and Recv

MPI Isend

- Function returns immediately; the data may be buffered, and the
message may nhot be sent yet

MPI_Irecv
— Function returns immediately; the message has not necessarily arrived

MPI_Wait

— Block until Isend/lIrecv completes (buffer can only be used at this point)

Allows overlap of communication with computation
Easier to avoid deadlocks than using blocking calls

Can combine blocking and non-blocking calls

Irecv/Send Communication Time

-1

10" ——

Between two different nodes |

Eager and Rendezvous Protocols

e Eager protocol: if the message is short, it is sent
immediately and buffered on the receiver’s side. On
the receiver, the message is copied to the receive
buffer when the receive is posted.

 Rendezvous protocol: if the message is long, a short
message is first sent to the receiver to indicate that a
send has been posted. The receiver sends the
address of the receive buffer. The sender then sends
the actual message.

e “kink” in previous graph is due to the switchover
from eager to rendezvous protocols

Collective Communication

. MPI_Barrier

. MPI| Bcast

. MPI_Scatter
. MPI_Gather
. MPI_Allgather
. MPI_Alltoall

. MPI_Reduce
. MPI_Allreduce

PO
Pl

P2
P3

PO
Pl

P2
P3

Broadcast

P

Scatter

Gather

PO
Pl

P2
P3

PO
Pl

P2
P3

Al | [
Bl | [

Cl ||
Dl || |

AGAIAJAY
5051 52153
o1l
DUD1D2D3

Allgather

Alltoall

{personalized)

AIB/CID)
A|B/C|D]
A|B/CID]
A|B/CID]

AdBOCOD
51D
FEEE
B3 CD3

Reduce
Scan

Implementation of collective operations

All-gather
Broadcast
Reduce-scatter
Reduce

All-reduce (sum on all nodes)

Reference: Thakur, Rabenseifner, and Gropp, “Optimization of
Collective Communication Operations in MPICH,” 2005

Binomial trees. Log2(p) messages

By B, Ba By
O
{) YRR
By

Model of execution time

For one message of length n,

Time=«a + On

Assume a node cannot send multiple messages
or receive multiple messages at once

But a node can send a message and receive a
message at the same time

We will see that different algorithms are best,
depending on whether messages are short
(latency term dominates) or long (bandwidth
term dominates)

o ENEIINI ABICID

BB | | | Allgather — INE}[@B)
Allgather - EEEE NEGED

Dl | AIBICID)

Data contributed by each process is gathered onto all
processes.

lad

P

Each process contributes n/p words

Recursive doubling tree algorithm (for short messages).
PO&P1 exch so both have AB; P2&P3 exch so both have CD.
PO&P2 exch so both have ABCD; P1&P3 exch both have ABCD.
Time=alogp+ B(p—1)n/p

Ring algorithm (for long messages).

Time=a(p—1)+ B(p—1)n/p

It seems that recursive doubling should always be faster, but
the ring algorithm can effectively have lower o and 5 on a
torus network

Broadcast

Broadcast n words among p processes
Two algorithms, depending on message length:

1. Binomial tree algorithm (short messages)
time = (logp)(a + np)
2. Scatter then allgather (long messages)

time=a(logp+p—1) +28(p — 1)n/p
(See next slide)

For large n, scatter then allgather can be faster

Broadcast: scatter then allgather

PO m Scatter .-.

. | | Bl | [|
e | | | | cl | | |
o | | | | Dl | | |
ro INIIHE NEIED
JENB | | Allgather _ FNEJ(E)
SENC | | | NEIEn)

<3lD | | | INEIED)

* Scattertime: «alogp+ B(p—1)n/p
(recursive halving algorithm)

* Allgather time: (p — 1)a+ B(p —1)n/p
(ring algorithm)

* Total time: a(logp+p—1)+28(p—1)n/p

Reduce-Scatter (variant of reduce)

* Reduction of nitems. Then each n/p part is
scattered to the p processes.

e Basic algorithm: binomial reduce and then
linear scatter

e What is the communication time?

Reduce

* Binomial tree (short messages)
time = (logp)(a + np)

* Reduce-scatter then gather (long messages)
time = 2alogp + 28(p — 1)n/p

Allreduce

* Recursive doubling (short messages)
time = (logp)(a + np)

* Reduce-scatter then allgather (long messages)
time = 2alogp + 28(p — 1)n/p

