
Particle Simulations

• Examples

– Molecular dynamics (particles are atoms)

– Astrophysical simulations (particles are stars or
galaxies)

• Two main steps:

– Computing the forces on each particle
(using a model)

– Updating the position of each particle
(integration)

Computing forces between
“nearby” particles

• Naïve algorithm is O(n2) for n particles

• Asymptotically faster algorithms are possible

Cell List

Verlet neighbor list

Parallelization of short-range forces

• Atom decompositions

– Same process computes total force for given atom

• Force decompositions

– Process computes force contribution depending
on id of owner process

• Spatial decompositions

– Ownership depends on spatial decomposition

• Neutral Territory methods

– Force may be computed by process that does not
own the participating atoms

Atom Decompositions

Atom decomposition time step

Force Decompositions

Force decomposition time step

Spatial decomposition

Neutral territory method

Summary

• Atom decompositions

– Processes need to communicate with all other processes

• Force decompositions

– Processes communicate with O(sqrt(p)) other processes

• Spatial decompositions

– Processes only communicate with “neighbor” processes

• Neutral Territory methods

– Communication volume is reduced compared to spatial
decompositions

Methods for long-range forces

● Fast multipole method

● Particle-mesh Ewald (for periodic conditions)

Particle simulations: short range
forces and long range forces

Spreading force onto a mesh
(4x4 spreading)

GPU parallelization of spreading
operation

● Input is a list of positions and forces

● Output is a 2D array of forces

GPU parallelization of spreading
operation

● Input is a list of positions and forces

● Output is a 2D array of forces

● Each thread (of a thread block) gets one

position/force and sums into the 2D array of

forces (using atomic operations)

● Problem is write contention in the 2D array

● Propose a better solution!

Be grid-centric, not particle-centric

● Instead of particles scattering data to grid

points, grid points should be gathering

data from particles

● One thread per grid point

● How do grid points gather data efficiently?

(Each grid point does not examine all

particles)

Placement, accumulation, overflow

● Map particles to 3D array of grid points in global

memory (must still use atomics, but need 4x4x4

times fewer atomics)

● If more than one particle is assigned to a grid

point, then use overflow list for each grid point

● GPU kernel, one thread per grid point. Gather

4x4x4 region from 3D array of grid points.

Memory access is somewhat coalesced.

● Overflow lists are then processed separately.

Ref: Harvey and de Fabritiis, 2009

Coloring of the mesh (2x2 spreading)

●The four independent sets are shown in different colors.
●Two particles (dots) from different blocks in the same independent set
cannot spread to the same mesh points (crosses).
●One thread processes particles in one block. Threads with the same
color can compute in parallel.

Similar problem: y = Ax

● Sparse matrix-vector multiply, when the matrix

is partitioned by columns

● One thread has one column of the matrix and

one element of x

● Vector y is the sum of sparse vectors

Use FFTs to find solution on a mesh

1-D FFT data flow diagram

1-D FFT with Transpose

3-D FFT partitionings

