
Partitioning: Motivational Problem:
Computing the temperature distribution

• Use the “diffusion rule” that the average
temperature at a grid point is the average
temperature of its neighboring grid points

• Solve the equations by iteratively updating the
temperatures at each grid point

• The equations can be expressed as  
where   is a sparse matrix.

Pattern of the sparse matrix

How would you partition this matrix for performing a sparse matrix-vector multiplication?

Partitioning for 3 processes

The vector is partitioned into 3 parts the same way.

Partitioning for 4 processes

Partitioning for 9 processes

How to partition this matrix to
reduce communication?

Partitioning sparse matrices

• The sparse matrix corresponds to a graph. Partition
the graph in a way such that communication is
reduced.

• In many scientific problems, the sparse matrix is not
arbitrary: it corresponds to the discretization mesh.

• For a mesh partitioning, number of neighbors is
bounded independent of the mesh size.

Partitioning Unstructured Problems

Many applications of graph partitioning

J.
Shi

“Normalized Cut” for
image segmentation

http://bio.informatik.uni-
jena.de/peace/

Data clustering

Graph Formulation

Graph Formulation (Symmetric)

Sum of weights of cut edges = number of off-block-diagonal nonzeros

Traditional Graph Partitioning: Minimize “edge-cut” while keeping partitions balanced

However, communication volume is proportional to the number of boundary vertices

Also should try to minimize the total number of messages (minimize num neighbors)

Minimize the maximum communication cost for among all processors

Partitioning is a symmetric “reordering” of the rows and columns of the matrix

Graph Formulation (Nonsymmetric)

Graphs and Hypergraphs

• Graph = vertices and edges
(edges join two vertices)

• Hypergraph = vertices and hyperedges
(hyperedges join two or more vertices)

Graph vs. Hypergraph Partitioning

● For finite element meshes, graph

partitioning is “good enough”

● For very unstructured meshes,

hypergraph partitioning may be useful

(e.g., PaToH library)

Hypergraph Formulation
Attempt to directly minimize the actual communication volume.
K-way hypergraph partitioning is common in circuit partitioning.

vertex=row
net=column

Hypergraph Formulation
Attempt to directly minimize the actual communication volume.
K-way hypergraph partitioning is common in circuit partitioning.

vertex=row
net=column

cut size =

𝑛𝑗∈Ext

λ𝑗 − 1

Partitioning

● Geometric techniques

● Combinatorial techniques

● Spectral graph partitioning

● Multilevel techniques

Geometric Techniques

Need to avoid
disconnected regions

Attempt to minimize
the size of the boundary

Geometric techniques
are generally fast
but low quality

Use only coordinate information

Geometric Techniques

Coordinate nested dissection:

Project centers of mass onto
the longest coordinate axis;
then bisect these centers

Geometric/Combinatorial

Space-filling curves:

Curve fills space in a locality-preserving fashion;
The resulting ordering is partitioned into k parts.

Combinatorial Techniques

Levelized Nested Dissection

Use multiple starting nodes;
Choose best result.

Use only adjacency information

Spectral Partitioning
Use second largest eigenvalue eigenvector
of the graph Laplacian (Fieldler vector) for
partitioning

+.46
-.46
+.26
-.26
+.46
-.46

Partition Refinement

Kernighan-Lin Algorithm

Ideas:
Swap best pair of vertices;
Allow the cut size to get worse
to move out of local minima

Partition Refinement

Fiduccia-Mattheyses Algorithm

Like KL, but move single vertex (faster)

Partition Refinement

Fiduccia-Mattheyses Algorithm

Like KL, but move single vertex (faster)

Multilevel Techniques

Graph Coarsening via Matching

Reduce the exposed
edge weight

Partition refinement
is faster on
coarsened graphs

Load Rebalancing/Repartitioning

● Additional objective:

minimize the total amount of

data that needs to be moved

● (But really want to minimize

the maximum amount moved

to/from any processor)

Repartitioning Methods

● Repartition from scratch

● Cut-and-paste (bad method)

– Does not consider edge cut

– may give disconnected subdomains

● Scratch-remap

– Repartition from scratch; then somehow map to processors to

minimize resulting data movement

● Diffusive schemes

– Recursive bisection diffusion

– Adaptive space-filling-curves

– Formulate and solve an optimization problem

Graph partitioners

• Input is a graph, output is a partitioning

• Many codes: METIS, Chaco, SCOTCH, etc.

• Input graph data structure: edge list for each
vertex

What if…

• Work per task cannot be estimated accurately

• Tasks are generated by other tasks

Dynamic scheduling

• Partition problem into large number of tasks,
which are put into a queue

• Each node takes a task from the queue when
it is idle

• Load is balanced if tasks are small enough

• Does not consider communication

• If the queue is centralized, then it may
become a bottleneck (queue can only be
accessed by one node at a time)

Work stealing

• Try to reduce the synchronization cost of dynamic
scheduling (decentralized dynamic scheduling)

• Each process has its own task queue

• When process runs out of work, it “steals” work from
other processes

• Possible to have a “work donating” paradigm, which
may be better if one node is overloaded compared to
the others; estimate of work can be done on earlier
iterations

