
Limitations to ideal parallelization

● Communication

● Load imbalance

● Serial portions of code

● Extra computations not in sequential code

● Memory bandwidth limitations

● OpenMP thread creation/scheduling

● Conflicts in shared caches

Execution Time

● t = tcomp + tcomm (non-overlapped)

● Plot against p

● Execution rate (flop rate)

– What is reasonable? How does it compare to peak flop rate?

How does it compare to peak memory rate for DRAM or cache?

● Be aware of timer skew and granularity

● Can also measure time breakdown (tcomp and tcomm

and components of them)

● Other measurements

– Hardware performance counters (PAPI)

– MPI performance measurement and visualization (VAMPIR)

Speedup

● S = t1 / tp

● Plot against p

● t1 is time for “best” sequential solution

– What is good speedup depends on what the code is doing (i.e.,

the problem being solved); an embarrassingly parallel code should

have perfect speedup

– Beware of speedup reported using bad sequential codes

● Relative speedup, e.g. S = t4 / tp

● Superlinear speedup is possible

– Due to caches (smaller local problem sizes)

– Due to parallel problem having less work than sequential problem

Speedup often depends on problem size

Efficiency

● E = [t1 / p] / tp = Sp / p

● Plot against p; efficiency generally

decreases as p increases

● Can also define relative efficiency

● How do you maximize throughput?

– Consider how to minimize the time to run n

parallel jobs

– Maximizing throughput is at odds with minimizing

runtime of a particular job

Load Balance

● b = perfectly balanced time / actual time

● b = average ti / max ti

● b is an upper bound on the efficiency

Amdahl's Law (1967)

Amdahl's Law

● f = sequential fraction of sequential program

● Speedup is bounded by 1/f

Scaled Speedup

● Speedup when the problem size is

increased proportionally with the number

of processors

– for p processors, the problem size is proportional

to p (amount of work is proportional to p)

● Plot against p

● Also called weak speedup (regular

scalability is called strong speedup)

● We can also define scaled efficiency

Gustafson's Law

● Analogue of Amdahl's Law for scaled

problem sizes

● F = sequential fraction of parallel program

● What is the speedup as a function of p ?

Scalability

● Scalability is the ability of a program to

continue speeding up when p is increased

(defined for strong scalability and weak

scalability)

– e.g., a program has strong scalability up to 64

processors

● Scalability also applies to algorithms

– Scalable algorithm = amount of work increases

proportionally with problem size (or almost

proportionally)

log-log plots

•

Take log of both slides:

which has the form   which is a
straight line with slope   and intercept  

•

log plots

• How would you plot   ?

• What does it look like on a log-log plot?

• On what kind of plot is this function a straight
line?

• Log and log-log plots can be useful when plotting functions
that change rapidly or functions over a very large domain

• Log and log-log plots can be used to estimate function
parameters (when the functional form is known)

