Limitations to ideal parallelization

. Communication

. Load imbalance

. Serial portions of code

. Extra computations not in sequential code
. Memory bandwidth limitations

. OpenMP thread creation/scheduling

. Conflicts in shared caches



Execution Time

t =1teomp * Lcomm (NON-0OVeriapped)
Plot against p

Execution rate (flop rate)

- What is reasonable? How does it compare to peak flop rate?
How does it compare to peak memory rate for DRAM or cache?

Be aware of timer skew and granularity

Can also measure time breakdown (t and t

and components of them)

comp comm

Other measurements

- Hardware performance counters (PAPI)

- MPI performance measurement and visualization (VAMPIR)



Speedup

S=t, /t,
Plot against p

t, is time for “best” sequential solution

- What is good speedup depends on what the code is doing (i.e.,
the problem being solved); an embarrassingly parallel code should
have perfect speedup

- Beware of speedup reported using bad sequential codes

Relative speedup, e.g. S=1t, /t,

Superlinear speedup is possible

— Due to caches (smaller local problem sizes)

— Due to parallel problem having less work than sequential problem



Savage Chickens

by Doug Savage

v

WE'RE GIVING You A
BoNuS. YouRE DoING
A CRAPPY JoB, BuT
YoU'RE DOING IT
INCREDIBLY FAST'

Wy

@390 8 BY Youl SAVAGE.

i

Was save

gechickens.ca

m



Speedup often depends on problem size

18] J
— 54 rOWS

— 128 rOWS
50k r— 256 FOWS
r— 512 rOWS
r— 1024 rows

40 2048 rows
O
=0
o
Q
2 30k
)
20F
10
O » » » » » »
0 10 20 30 40 50 &0

Number of cores



Efficiency

E=[t,/p]l/t,=5,/p

Plot against p; efficiency generally
decreases as p increases

Can also define relative efficiency

How do you maximize throughput?

— Consider how to minimize the time to run n
parallel jobs

- Maximizing throughput is at odds with minimizing
runtime of a particular job



Load Balance

. b = perfectly balanced time / actual time

. b = average t;/ maxt
. b Is an upper bound on the efficiency



Speedup

Amdahl's Law (1967)

20.00
| "]
/’/
18.00 va | _
/ Parallel Portion
16.00 7 — 50%
/ — 75%
14.00 90%
/ —— 95%
12.00 /"
10.00 .
Y ——
/ |
8.00 //
6.00 Z
/|
4.00 /4 ——
f”’f
2.00 i
0.00
- v o & 4 F 4D a T T
— ™ [Ty] o (o] (@] — ] = L

Number of Processors




Amdahl's Law

. f=sequential fraction of sequential program
. Speedup Is bounded by 1/f

N~ S

1 =f+g=1
p f+a/p

S =

~
'—l

1
f+=4

p

o~
i)



Scaled Speedup

. Speedup when the problem size Is
Increased proportionally with the number
of processors

— for p processors, the problem size is proportional
to p (amount of work is proportional to p)

. Plot against p

. Also called weak speedup (regular
scalability Is called strong speedup)

. We can also define scaled efficiency



Gustafson's Law

. Analogue of Amdahl's Law for scaled
problem sizes

. F = sequential fraction of parallel program

. What Is the speedup as a function of p ?
tl :F——(lm—F)p
tp =F+ (1 —F)p/p

. _ F4+(1-F)p
S=4 = F+((1—F))p = F+{-F)p




Scalability

. Scalability Is the ability of a program to
continue speeding up when p Is increased
(defined for strong scalability and weak
scalabllity)

- e.g., a program has strong scalability up to 64
pProcessors

. Scalability also applies to algorithms

- Scalable algorithm = amount of work increases
proportionally with problem size (or almost
proportionally)



log-log plots

o t =2n3
Take log of both slides:
logt = 3logn + log 2
which has the form y = max + b which is a
straight line with slope m and intercept b

o t = 2n?

logt = 2logn + log 2



log plots

How would you plott = 2" ?
What does it look like on a log-log plot?

On what kind of plot is this function a straight
line?

Log and log-log plots can be useful when plotting functions
that change rapidly or functions over a very large domain

Log and log-log plots can be used to estimate function
parameters (when the functional form is known)



