
Machine Balance

• Units: words/flop

• Ideally,   , but usually   , and the 
trend is that   is further decreasing

• Typical value:



Code Balance

= computational intensity (flops/word)

= fraction of peak flops

If   , then the machine cannot satisfy 
the data traffic requirements (performance is 
limited by memory bandwidth)

What is   for:  a[i]=b[i]+c[i] ?



STREAM Benchmark

• Stream benchmark bandwidth bstream reflects the 
true capabilities of the hardware

• Use bstream rather than theoretical bmax in 
performance models

Bracketed numbers assume two 
memory accesses for a write (for 
write-allocate caches)



Stream benchmark output

Writes are somewhat more expensive than reads (possibly due to lower write bandwidth
compared to read bandwidth,and/or write-allocate caches).



Cache lines

• Cache is organized into chunks (of typically 64 bytes) 
called cache lines

• This is because it is inefficient to tag single bytes or 
words in cache (i.e., the address of the word in cache), 
and inefficient to read bytes or words from memory 
one at a time (cost of reading 64 bytes is about the 
same as reading 1 byte)

• Think of memory as being organized into 64 byte 
chunks.  When a word is read from memory into cache, 
the entire chunk that contains the chunk is read into a 
cache line

• Many optimizations are based on trying to efficiently 
use all the elements of a cache line when it is read 
from memory



Matrix transposition and cache lines

• Pseudocode (doesn’t show how data is laid 
out, but let’s specify row-major ordering)
loop i = 1 to n

loop j = 1 to n

b(i,j) = a(j,i)

endloop

endloop

• Access is consecutive in one matrix and 
strided in other matrix; this is a problem when 
both matrices do not fit into cache

• For large n, code can be rewritten to more 
efficiently use all the elements of a cache line



Prefetching
• Main memory latency is hundreds of cycles.  If we knew 

what data in memory we needed beforehand, this data can 
be prefetched.  Prefetching is needed to achieve the full 
memory bandwidth capable on a machine.

• Hardware prefetching
– Prefetching is triggered by two or more consecutive cache 

misses in succeeding or preceding cache lines (not necessarily 
unit stride)

– Prefetching can be triggered when you don’t want it, causing 
“good” data to be evicted from cache.  In this case, prefetching 
can often be turned off by setting hardware registers

• Software prefetching
– Programmer can insert __mm_prefetch(addr, hint) intrinsic to 

manually prefetch data, where addr is a pointer, and hint 
specifies, e.g., which levels of cache to load into



Matrix-vector product and prefetching

c = A b

• How should the matrix A be stored in order to 
access memory consecutively?

• For large matrices, how should the matrix A 
be stored to reduce number of times vector b 
is read?



Matrix multiplication

• Naïve algorithm (both matrices in column-
major ordering)

• Optimization 1:  transpose first matrix

– Advantage: streaming access of both matrices

– Disadvantage: need additional copy of matrix

• Optimization 2:  blocking (tiling)

– Efficient use of cache lines for large matrices

– More complicated than naïve algorithm



Question

• What is the “computational intensity” (inverse 
of “code balance”) for matrix-matrix 
multiplication?  For C=AB, assume A and B are 
n-by-n matrices.



Linear algebra operations

• Vector addition

• Matrix-vector multiplication

• Matrix multiplication

• These are common kernels in scientific 
computing.  They are not easy to optimize, but 
optimized codes are available.



BLAS: Basic Linear Algebra Subroutines
Floating point operations per memory access

Demmel

Strive to build algorithms with higher-level BLAS,
e.g., BLAS3, which was motivated by cache-based 
computers



BLAS: Basic Linear Algebra Subroutines

– Level 1 BLAS:  scale, saxpy, dot product, norms

– Level 2 BLAS:  sgemv (matrix-vector), rank 1 updates, 
rank 2 updates, triangular matvecs, triangular solves

– Level 3 BLAS:  matrix-matrix product, rank-k updates, 
triangular solves with multiple rhs

• Optimized implementations for each platform
– various vendors (ACML, ESSL, Intel MKL)

– GotoBLAS (up to Nehalem), OpenBLAS

– ATLAS (autotuning)

– Reference BLAS from netlib (not optimized)



BLAS is everywhere

• Matrix multiplication kernel is called DGEMM

• DGEMM can achieve > 90% of peak flop rate

• http://vergil.chemistry.gatech.edu/news/hexagon.html

http://vergil.chemistry.gatech.edu/news/hexagon.html


FMA: Fused multiply-add instruction

• multiply-adds are common, e.g., in DGEMM
z1 = x1*y1 + x2*y2 + ... 

• doubles the peak flop rate

• also important:  the multiply-add is “fused”:

– result of multiply is effectively not rounded before 
addition is performed

• FMA instructions have been available for a 
long time on IBM POWER and other chips.  
Only recently they are widely available on 
Intel chips in the Haswell architecture.



Processor-level SIMD

• SIMD instruction can perform an operation on 
multiple words simultaneously

• This is a form of data parallelism.  One version 
is called “Streaming SIMD Extensions” (SSE)



Flynn’s Taxonomy

• SIMD: single-instruction, multiple data

• Many earlier computers fall under the SIMD 
model or have SIMD capabilities, e.g., CRAY 
vector supercomputers



Processor-level SIMD

• If your code is memory bandwidth bound, 
then SIMD generally will not help improve 
performance

• Using SIMD instructions can shorten your 
code (fewer instructions to do the same thing) 
which might reduce memory bandwidth for 
instructions



Recent SIMD versions

• Nehalem: SSE 4.2 (128 bit)

• Sandy Bridge:  AVX (256 bit)

• Haswell: AVX2 (256 bit with FMA)

• MIC: AVX-512 (512 bit)

Versions are not backward compatible, i.e., 
cannot use AVX instructions on Nehalem.



How to exploit SIMD

• Compiler automatically generates SIMD 
instructions (auto vectorization) if compiling 
with –O3.  This is usually the best option.

• Programmer inserts assembly code.

• Programmer inserts “intrinsics” (which map to 
assembly instructions, but you can use 
pointers rather than registers).  Also need to 
tell the compiler how to map the instrinics, 
e.g., –msse4.2 with gcc on Nehalem



Using SIMD intrinsics (SSE)

• 128-bit registers have type __m128 (single 
precision), __m128d (double precision)

• Many instructions, including: 
_mm_load_ps, _mm_add_ps

• Data needs to be aligned to use most 
load/store instructions, use posix_memalign

• For AVX, we have __m256, _mm256_add_ps, 
etc.



sse1.c example  

• sse1.c example computes vector sum a = a + b 
using SSE (code is in repo)

• Things to try:

– Unalign the arrays so compiler cannot generate 
SIMD code, and SIMD code cannot load aligned

– Change length of loop so that we no longer 
operate in L1 cache

– Unroll loops?

– Compile with different optimization levels?

– Compile with –S to look at the assembly code



Intel compiler optimization reports

• icc … -qopt-report=[0-5]
icc … -qopt-report-phase=vec

compiler will output an optimization report in 
the file xx.optrpt


