
Fock matrix construction

● Computation is straightforward if the integrals (kl|ij) are

available, but these integrals must be computed in

irregularly-sized blocks called shell quartets

● Some integrals are small and don't need to be computed

● Don't recompute symmetric entries

● “Integral-centric” rather than “Fock matrix-centric”

● How to partition the integrals for distributed computing?

Static partitioning vs dynamic

scheduling
● Static partitioning. Each part is assigned to a node.

For load balance each part must require the same

computational effort.

● Dynamic scheduling (task-based parallelism). Tasks

are added to a queue. Nodes take tasks from the

queue when they are free. Load balance is

accomplished naturally.

● Important strategy if tasks can be created by other tasks.

● In our application, each task is 1) the computation of one (or

more) shell quartets, and 2) update six blocks of F

Dynamic scheduling

implementations

● Task queue is a contention point. For

distributed task queues, overhead can be large.

● Hierarchical dynamic scheduling. Sets of nodes

share a task queue.

● Work stealing scheduling. Each node has a

queue, and “steals” tasks from other queues

when the node is free.

New ideas

● For a node to compute a block of F, it needs

blocks of D

● Dynamic scheduler should be aware of data locality,

to schedule tasks on nodes that already have

intermediate data (blocks of D)

● If a node has a static partition, it can figure out

all the blocks of D needed. Find a static

partition with the following properties:

● Relatively balanced (use task stealing to improve

balance)

● Each partition uses/reuses small portion of D

Shared-memory programming style

for distributed memory system

● Each node knows what blocks of F to update.

Inconvenient to have to specify which nodes

owns these blocks, i.e., what data goes to

which nodes

● In shared memory programming, we just

“assign” to matrix locations.

● Global Arrays: the F matrix is physically

distributed but logically shared. Each node

updates a block of F. One-sided

communication happens under the hood.

Quantum chemistry on large clusters

● Large-scale chemistry calculations on Tianhe-2

Optimize single node and SIMD

performance

Heterogeneous CPU-MIC nodes

and scheduling

Reference: Chow et al., Scaling up Hartree-Fock calculations on Tianhe-2, Int. J. High Perf.
Comput. Appl. 2016.

Tensor Contractions

(Generalized matrix multiplication)

● Matrix multiply:

● Einstein repeated index notation:

(repeated indices on same side of equation are

summed over)

Examples

●

●

●

●

●

● Tensor contraction is associative but not
commutative

Ultimate goal, in parallel…

● In computational chemistry, we will need

● Try this first. Write pseudocode for

● Assume all dimensions are n, and use array notation

● Consider if we first form:  

Answer

for A = 0..n-1

d[A] = 0

for k = 0..n-1

for l = 0..n-1

d[A] += D[k,l]*I[k,l,A]

end

end

end

Exercise

● Write code to compute   (use random array
values and n=100 or larger)

● Use OpenMP to parallelize the computation and
experiment with loop scheduling

● Both steps of the computation can use BLAS-2
(dgemv, but what is the matrix and what is the
vector?). Implement this version using
multithreaded MKL BLAS.

● Questions

● Timings for different loop scheduling

● How did you use BLAS-2, timings for this version

