Fock matrix construction

Fij = H7™ + Z Dy (2(kllig) — (ik|51))

. Computation is straightforward if the integrals (kl|ij) are
available, but these integrals must be computed In
irregularly-sized blocks called shell quartets

. Some integrals are small and don't need to be computed

. Don't recompute symmetric entries

“Integral-centric” rather than “Fock matrix-centric”

. How to partition the integrals for distributed computing?

Static partitioning vs dynamic
scheduling

. Static partitioning. Each part is assigned to a node.
For load balance each part must require the same
computational effort.

. Dynamic scheduling (task-based parallelism). Tasks
are added to a queue. Nodes take tasks from the
gueue when they are free. Load balance is
accomplished naturally.

. Important strategy if tasks can be created by other tasks.

. In our application, each task is 1) the computation of one (or
more) shell guartets, and 2) update six blocks of F

Dynamic scheduling
Implementations

. Task queue Is a contention point. For
distributed task queues, overhead can be large.

. Hierarchical dynamic scheduling. Sets of nodes
share a task queue.

. Work stealing scheduling. Each node has a
queue, and “steals” tasks from other queues

when the node is free.

New ideas

. For a node to compute a block of F, it needs
blocks of D

. Dynamic scheduler should be aware of data locality,
to schedule tasks on nodes that already have
iIntermediate data (blocks of D)

. If a node has a static partition, it can figure out
all the blocks of D needed. Find a static
partition with the following properties:

. Relatively balanced (use task stealing to improve
balance)

. Each partition uses/reuses small portion of D

Shared-memory programming style
for distributed memory system

. Each node knows what blocks of F to update.
Inconvenient to have to specify which nodes
owns these blocks, I.e., what data goes to
which nodes

. In shared memory programming, we just
“assign” to matrix locations.

. Global Arrays: the F matrix is physically
distributed but logically shared. Each node
updates a block of F. One-sided
communication happens under the hood.

Quantum chemistry on large clusters

. Large-scale chemistry calculations on Tianhe-2

Table VI
SCF PERFORMANCE FOR 19MER DNA PROBLEM ON TIANHE-2 {CPU
ONLY).
Time (sec) Relative Speedup
Nodes Purif Fock Total Purif Fock Total

64 3276 1197.25 1231.05 64.00 64.00 64.00
144 21.73 537.52 559.93 96.50 142.55 140.71
256 14.40 303.47 318.43 145.60 25249 24743
361 12.02 217.32 22989 17447 352.59 34272
576 9.37 132.46 142,29 22375 578.48 553.70
729 8.71 103.53 112.65 240.58 740.09 699 .40

1024 1.92 73.91 82.14 26484 1036.72 959.23
2025 6.06 37.90 44,14 346.08 2022.00 1784.78
4096 5.24 19.43 2484 39999 394427 3171.92

Optimize single node and SIMD
performance

Table I1
ERI CALCULATION PERFORMANCE IMPROVEMENT FACTOR OF THE
OPTIMIZED CODE OVER THE ORIGINAL CODE.

Dual Ivy Bridge Intel Xeon Phi
Molecule Specific Generic Total Specific Generic Total
alkane_1202 2.31 233 232 3.60 263 3.13
[9mer 2.26 232 228 3.76 2,67 3.20

graphene_936 2.11 224 217 347 2.60 298
lhsg_100 246 242 244 3.75 2,63 325

Heterogeneous CPU-MIC nodes
and scheduling

Table 111
SPEEDUP COMPARED TO SINGLE SOCKET IVY BRIDGE {IUB} PROCESSOR.

single single dual dual IVB with Offload

Molecule IVB Phi IVB dual Phi efficiency
alkane_1202 I (.84 1.98 3.44 0.933
19mer I (.98 2.00 3.75 0.945
graphene_936 l 0.96 2.00 3.71 0.944
lhsg_100 I (.98 2.01 3.76 0.950

Reference: Chow et al., Scaling up Hartree-Fock calculations on Tianhe-2, Int. J. High Perf.
Comput. Appl. 2016.

Tensor Contractions
(Generalized matrix multiplication)

. Matrix multiply:

Cij = >, AirBrj
. Einstein repeated index notation:

Cij = AirBrj .
(repeated indices on same side of equation are
summed over)

Examples

» Ajirl = B;iCy

. Ay = BiC;

. A@ — BijCj

e Aiiki = BiimCmki
. A@ — Bijkcjk

. Tensor contraction Is associative but not
commutative

Ultimate goal, in parallel...

. In computational chemistry, we will need
Jii = Dyidrialija
Ki; = Dyidligaljia

. Try this first. Write pseudocode for
da = Dyilyia
Jij = dali;a

. Assume all dimensions are n, an use array notation
zkA 9L A

. Consider if we first form:

Answer

dpo = Dygiliia

Exercise

. Write code to compute Jij (use random array
values and n=100 or larger)

. Use OpenMP to parallelize the computation and
experiment with loop scheduling

. Both steps of the computation can use BLAS-2
(dgemv, but what is the matrix and what is the
vector?). Implement this version using
multithreaded MKL BLAS.

. Questions

. Timings for different loop scheduling
. How did you use BLAS-2, timings for this version

