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Ring Bus on Intel Xeon Phi
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Example with 8 cores




Xeon Phi Card

* Coprocessor connected via PCle Gen 2 (6 GB/s)
* 6-8 GB memory on card



Intel Xeon Phi Coprocessors

“Many Integrated Core” (MIC) architecture, with
57-61 cores on a chip

— Processors connected via a ring bus

— Peak approx 1 Tflop/s double precision

Simple x86 cores at approx 1 GHz clock speed
— Enhances code portability
— In-order processor

— Each core supports 4-way hyperthreading; each
hyperthread issues instructions every other cycle

Cores have 512-bit SIMD units



Double Precision GFLOP/s
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Memory characteristics

e L1D: 32 KB, L1l: 32 KB (per core)
e L2: 512 KB (per core) unified

* Memory BW:
350 GB/s peak; 200 GB/s attainable



Measured Memory Performance
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Programming Modes

e Offload

— Program executes on host and “offloads” work to
coprocessors

* Native (coprocessor runs Linux uQOS)

— Could run several MPI processes

* Symmetric
(MPI between hosts and coprocessors)



Where’s the disk?

* File system is stored on a virtual file system
(stored in DRAM on the card)

* When the coprocessors are rebooted, home
directories are reset and necessary libraries
must be copied to the file system

— Or, an actual disk file system can be mounted on
the coprocessor, but access would be slow (across

PCle)



Offloading vs. Native/Symmetric Mode

e Offloading is good when

— Application is not highly parallel throughout and
not all cores of the coprocessor can always be
used (few fast cores vs. many slow cores)

— Application has high memory requirements where
offloaded portions can use less memory
(coprocessor limited to 8 GB in native mode)

e Offloading is bad when

— Overhead of data transfer is high compared to
offload computation



Offloading

e Common offload procedure:
#pragma offload target(mic) inout(data: length(size))

This is performed automatically:
— allocate memory on coprocessor
— transfer data to coprocessor
— perform offload calculation
— transfer data to host

— deallocate memory on coprocessor

* Fall back to host if no coprocessor available
e Code still works if directives are disabled



Persistent data in offloads

* Data allocation and transfer are expensive

* Can reuse memory space allocated on the
coprocessor (alloc_if, free_if)

e Can control when data transfer occurs
between host and coprocessor
— in, out, inout

— nocopy to avoid transfering statically allocated
variables

— length(0) to avoid transfering data referenced by
pointers



What does this code do?

SetupPersistentData (N, persistent);
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for (int iter = 0; iter < nIterations; iter++) |
SetupbDataset (iter, dataset);

#pragma offload target (mic:0)
in (dataset length { allog iff{iter==0) free if({iter==nIt
out (results length(N) alleoc if{iter==0) free if{iter==nI
nocop {persistent length(N) alloc if{0) free if(iter==nIt

= . ; ' (

Compute (N, dataset, results, persistent);

}

ProcessResults (N, results);
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Asynchronous Offloading

* Host program blocks until the offload
completes (default)

* For non-blocking offload, use signal clause
* Works for asynchronous data transfer as well

char* offloadO;

{ X; ...v@dll not 5lack code emécutiahubecause of clause ”s%gnal” */ }
DoSomethingElse() ;

/* Now block until offload signalled by pointer "offload0" completes #*/
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Offloading on Intel Xeon Phi

e Two methods

— pragma offload (fast, managed data allocation and transfer)

— shared virtual memory model (convenient but slower due to software
managing coherency)

 Compare to GPU offloading

— CUDA approach: launch kernels from the host; explicit function calls to
allocate data on GPU and to transfer data between host and GPU

— OpenACC: pragmas
* Other options

— OpenMP (pragmas for offloading)
— OpenCL (explicit function calls), more suitable for GPUs



Virtual Shared Memory for Offloading

* Logically shared memory between host and coprocessor
* Programmer marks variables that are shared

* Runtime maintains coherence at the beginning and end
of offload statements (only modified data is copied)

* Cilk_shared keyword to mark shared variables/data

— shared variables have the same addresses on host and
coprocessor, to simply offloading of complex data structures

— shared variables are allocated dynamically (not on the stack)

_Cilk_offload keyword to mark offloaded functions

* Dynamically allocated memory can also be shared:
_Offload_shared _malloc, Offload shared free



Multiple coprocessors

const int nDevices = _0ffload_number_of_devices();
const int particlesPerDevice=(nDevices==0 7 myParticles : myParticles/nDevices);
#pragma omp parallel num_threads(nDevices) t1f(nDevices>0)
{

const int iDevice = omp_get_thread_num();

const int startParticle = rankStartParticle + (iDevice )x*particlesPerDevice;
#pragma offload target(mic:iDevice) tif(nDevices>0) \

in (z : length(nParticles) alloc_if(alloc==1) free_if(0)) |\
out (z [startParticle:particlesPerDevice] : alloc_if(0) free_if(alloc==-1)) |
in (vz: length(nParticles*alloc*alloc) alloc_if(alloc==1) free_zf(0)) |\
/...

{ // Loop over particles that experience force
#pragma omp parallel for schedule(guided)
for (int ii = startParticle; ii < endParticle; ii += tileSize) {

VA

Use OpenMP threads; one thread offloads to one coprocessor.
On coprocessor, use OpenMP to parallelize across cores.



Native/Symmetric MPI vs. MPI1+Offload

W;y MPI+Oftload Helps: Fewer MPI End-Points
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Native MPI: 4 x P end-points for MPI+Offload: P end-points for
all-to-all MPI_Allgather all-to-allMPI_Allgather



