Intel Xeon Phi Coprocessors

Yeon Pt COPIOLRSSN

Reference: Parallel Programming and Optimization with Intel Xeon Phi
Coprocessors, by A. Vladimirov and V. Karpusenko, 2013

Ring Bus on Intel Xeon Phi

.——”——o

-—ﬁ—-.

Example with 8 cores

Xeon Phi Card

* Coprocessor connected via PCle Gen 2 (6 GB/s)
* 6-8 GB memory on card

Intel Xeon Phi Coprocessors

“Many Integrated Core” (MIC) architecture, with
57-61 cores on a chip

— Processors connected via a ring bus

— Peak approx 1 Tflop/s double precision

Simple x86 cores at approx 1 GHz clock speed
— Enhances code portability
— In-order processor

— Each core supports 4-way hyperthreading; each
hyperthread issues instructions every other cycle

Cores have 512-bit SIMD units

Double Precision GFLOP/s

1000

800

600

400¢

2007

0

Theoretical Pcak Arithmetic Pcrfﬂrmancc

=

$%%% lmel Xeon E5-2670 v2 dual-socket CPU
[T Intel Xeon Phi 5110P coprocessor

5.0 2.1

20.0 16.9

| oo o [e s s s |

100.0 126.U

R

1010.9

&

)0.0

4
4

*"’
%
):
:

*
.

""
‘i
2
!

&
%
e’
Yl

*

X

7
(L

W

%

(P

¥
*.
$

TSRS
SRR
IS
XL
ata%s%

S
X

-

e,

o

Scalar,
One Core

Vectorized,

One Core

Scalar,
All Cores

Vectorized,
All Cores

Memory characteristics

e L1D: 32 KB, L1l: 32 KB (per core)
e L2: 512 KB (per core) unified

* Memory BW:
350 GB/s peak; 200 GB/s attainable

Measured Memory Performance

180 !
L60L 159.0 BEX& Intel Xeon E5-2630 v2 dual-socket CPU | |
40 [T Intel Xeon Phi 7120P coprocessor
I x
__E'j
7 1200
o
< 100}
=
= B0f
-
g 6[]_
M ::*
or e
P33 23.3 :
20 :5: 17.6
D
0 % E n_lél;lF_ﬂ
TRIAD on TRIAD on

Random 4 kB Blocks Random | kB Blocks

Programming Modes

e Offload

— Program executes on host and “offloads” work to
coprocessors

* Native (coprocessor runs Linux uQOS)

— Could run several MPI processes

* Symmetric
(MPI between hosts and coprocessors)

Where’s the disk?

* File system is stored on a virtual file system
(stored in DRAM on the card)

* When the coprocessors are rebooted, home
directories are reset and necessary libraries
must be copied to the file system

— Or, an actual disk file system can be mounted on
the coprocessor, but access would be slow (across

PCle)

Offloading vs. Native/Symmetric Mode

e Offloading is good when

— Application is not highly parallel throughout and
not all cores of the coprocessor can always be
used (few fast cores vs. many slow cores)

— Application has high memory requirements where
offloaded portions can use less memory
(coprocessor limited to 8 GB in native mode)

e Offloading is bad when

— Overhead of data transfer is high compared to
offload computation

Offloading

e Common offload procedure:
#pragma offload target(mic) inout(data: length(size))

This is performed automatically:
— allocate memory on coprocessor
— transfer data to coprocessor
— perform offload calculation
— transfer data to host

— deallocate memory on coprocessor

* Fall back to host if no coprocessor available
e Code still works if directives are disabled

Persistent data in offloads

* Data allocation and transfer are expensive

* Can reuse memory space allocated on the
coprocessor (alloc_if, free_if)

e Can control when data transfer occurs
between host and coprocessor
— in, out, inout

— nocopy to avoid transfering statically allocated
variables

— length(0) to avoid transfering data referenced by
pointers

What does this code do?

SetupPersistentData (N, persistent);

— =

il - —_r- = g R | - + - - P L JB

#pragma offload transfer target{mic:0)
< -'Lﬁa'l-"_:; cfant =T -rl'—ll-. TN ;TT - 1‘+_r'7 | F'r ey 1‘F i |
LI el of SLEAIL __J.":|_..I.'|.| = N T S My [R 4 L EE 24 [LFF ¥,

. : A . _ . .
for (int iter = 0; iter < nIterations; iter++) |
SetupbDataset (iter, dataset);

#pragma offload target (mic:0)
in (dataset length { allog iff{iter==0) free if({iter==nIt
out (results length(N) alleoc if{iter==0) free if{iter==nI
nocop {persistent length(N) alloc if{0) free if(iter==nIt

= . ; ' (

Compute (N, dataset, results, persistent);

}

ProcessResults (N, results);

Latency, ms

1000

100

10

0.1

Offload latencies

Default offioad: standard TLB pages - -0 - |

.ﬂ*‘*

ZMEB buffers il L

With memory retention: standard TLB pages ===

2ME buffers

Amray Size

i With data persistence: standard TLB pages i T ™ L
2MB buffers i aha -"-.l' -
i __T
Lwcl o gl Sl
l.ﬂ'l". o .
=0
¥ T - ~
7 L B
;i" i.i.-'-.'- -.n. -
_— With data persi ce {ng memory allocation or|data transfer
— = I I i i 1 i ﬁ
| 1 | | | | | | 1 1 | | | | |
® & @ 9 @ @
a4 4y &£ - -~ & o a o
¥ & ¢ 49 5 & & & T F TS §F ¥ € g & & 9
oy w @ S . S D oy @ L " B w

Asynchronous Offloading

* Host program blocks until the offload
completes (default)

* For non-blocking offload, use signal clause
* Works for asynchronous data transfer as well

char* offloadO;

{ X; ...v@dll not 5lack code emécutiahubecause of clause ”s%gnal” */ }
DoSomethingElse() ;

/* Now block until offload signalled by pointer "offload0" completes #*/

= o M Wil i} I 7 T I T . LN
T agmd OfF oWl Wikt L LOTJEL (M. UVy)S Wik

Offloading on Intel Xeon Phi

e Two methods

— pragma offload (fast, managed data allocation and transfer)

— shared virtual memory model (convenient but slower due to software
managing coherency)

 Compare to GPU offloading

— CUDA approach: launch kernels from the host; explicit function calls to
allocate data on GPU and to transfer data between host and GPU

— OpenACC: pragmas
* Other options

— OpenMP (pragmas for offloading)
— OpenCL (explicit function calls), more suitable for GPUs

Virtual Shared Memory for Offloading

* Logically shared memory between host and coprocessor
* Programmer marks variables that are shared

* Runtime maintains coherence at the beginning and end
of offload statements (only modified data is copied)

* Cilk_shared keyword to mark shared variables/data

— shared variables have the same addresses on host and
coprocessor, to simply offloading of complex data structures

— shared variables are allocated dynamically (not on the stack)

_Cilk_offload keyword to mark offloaded functions

* Dynamically allocated memory can also be shared:
_Offload_shared _malloc, Offload shared free

Multiple coprocessors

const int nDevices = _0ffload_number_of_devices();
const int particlesPerDevice=(nDevices==0 7 myParticles : myParticles/nDevices);
#pragma omp parallel num_threads(nDevices) t1f(nDevices>0)
{

const int iDevice = omp_get_thread_num();

const int startParticle = rankStartParticle + (iDevice)x*particlesPerDevice;
#pragma offload target(mic:iDevice) tif(nDevices>0) \

in (z : length(nParticles) alloc_if(alloc==1) free_if(0)) |\
out (z [startParticle:particlesPerDevice] : alloc_if(0) free_if(alloc==-1)) |
in (vz: length(nParticles*alloc*alloc) alloc_if(alloc==1) free_zf(0)) |\
/...

{ // Loop over particles that experience force
#pragma omp parallel for schedule(guided)
for (int ii = startParticle; ii < endParticle; ii += tileSize) {

VA

Use OpenMP threads; one thread offloads to one coprocessor.
On coprocessor, use OpenMP to parallelize across cores.

Native/Symmetric MPI vs. MPI1+Offload

W;y MPI+Oftload Helps: Fewer MPI End-Points

CLTC DT CHHHH I HH ssdisses SiSiissn dusiiasa sisuasas enssusde

Native MPI: 4 x P end-points for MPI+Offload: P end-points for
all-to-all MPI_Allgather all-to-allMPI_Allgather

