
Intel Xeon Phi Coprocessors

Reference: Parallel Programming and Optimization with Intel Xeon Phi
Coprocessors, by A. Vladimirov and V. Karpusenko, 2013

Ring Bus on Intel Xeon Phi

Example with 8 cores

Xeon Phi Card

• Coprocessor connected via PCIe Gen 2 (6 GB/s)

• 6-8 GB memory on card

Intel Xeon Phi Coprocessors

• “Many Integrated Core” (MIC) architecture, with
57-61 cores on a chip

– Processors connected via a ring bus

– Peak approx 1 Tflop/s double precision

• Simple x86 cores at approx 1 GHz clock speed

– Enhances code portability

– In-order processor

– Each core supports 4-way hyperthreading; each
hyperthread issues instructions every other cycle

• Cores have 512-bit SIMD units

Memory characteristics

• L1D: 32 KB, L1I: 32 KB (per core)

• L2: 512 KB (per core) unified

• Memory BW:
350 GB/s peak; 200 GB/s attainable

Programming Modes

• Offload

– Program executes on host and “offloads” work to
coprocessors

• Native (coprocessor runs Linux uOS)

– Could run several MPI processes

• Symmetric
(MPI between hosts and coprocessors)

Where’s the disk?

• File system is stored on a virtual file system
(stored in DRAM on the card)

• When the coprocessors are rebooted, home
directories are reset and necessary libraries
must be copied to the file system

– Or, an actual disk file system can be mounted on
the coprocessor, but access would be slow (across
PCIe)

Offloading vs. Native/Symmetric Mode

• Offloading is good when

– Application is not highly parallel throughout and
not all cores of the coprocessor can always be
used (few fast cores vs. many slow cores)

– Application has high memory requirements where
offloaded portions can use less memory
(coprocessor limited to 8 GB in native mode)

• Offloading is bad when

– Overhead of data transfer is high compared to
offload computation

Offloading

• Common offload procedure:
#pragma offload target(mic) inout(data: length(size))

This is performed automatically:
– allocate memory on coprocessor

– transfer data to coprocessor

– perform offload calculation

– transfer data to host

– deallocate memory on coprocessor

• Fall back to host if no coprocessor available

• Code still works if directives are disabled

Persistent data in offloads

• Data allocation and transfer are expensive

• Can reuse memory space allocated on the
coprocessor (alloc_if, free_if)

• Can control when data transfer occurs
between host and coprocessor

– in, out, inout

– nocopy to avoid transfering statically allocated
variables

– length(0) to avoid transfering data referenced by
pointers

What does this code do?

Asynchronous Offloading

• Host program blocks until the offload
completes (default)

• For non-blocking offload, use signal clause

• Works for asynchronous data transfer as well

Offloading on Intel Xeon Phi

• Two methods
– pragma offload (fast, managed data allocation and transfer)

– shared virtual memory model (convenient but slower due to software
managing coherency)

• Compare to GPU offloading
– CUDA approach: launch kernels from the host; explicit function calls to

allocate data on GPU and to transfer data between host and GPU

– OpenACC: pragmas

• Other options
– OpenMP (pragmas for offloading)

– OpenCL (explicit function calls), more suitable for GPUs

Virtual Shared Memory for Offloading

• Logically shared memory between host and coprocessor

• Programmer marks variables that are shared

• Runtime maintains coherence at the beginning and end
of offload statements (only modified data is copied)

• _Cilk_shared keyword to mark shared variables/data

– shared variables have the same addresses on host and
coprocessor, to simply offloading of complex data structures

– shared variables are allocated dynamically (not on the stack)

• _Cilk_offload keyword to mark offloaded functions

• Dynamically allocated memory can also be shared:
_Offload_shared_malloc, _Offload_shared_free

Multiple coprocessors

Use OpenMP threads; one thread offloads to one coprocessor.
On coprocessor, use OpenMP to parallelize across cores.

Native/Symmetric MPI vs. MPI+Offload

