
High Performance Computing

Assignment 1

The goal of this assignment is to understand how memory access patterns affect performance,
using matrix multiplication as an example. We won’t worry about parallelism yet: your program
will run on a single core. In later assignments, we will add different types of parallelism to the
matrix multiplication example.

Given a matrix A of dimensions m×q and a matrix B of dimensions q×n, the product C = AB
has dimensions m× n with the entries defined as

Cij =
q∑

k=1

AikBkj

(a) 10 marks. Write a program called matmult that can be run using command line parameters
as follows:

matmult m q n filenameA filenameB filenameC

where filenameA and filenameB are the names of two matrix input files, and filenameC is
the name of a matrix output file to be created. The positive integers m, q, and n specify the
dimensions of the input matrices. The format of the matrix files is a list of all the entries
of the matrix (see the test examples below), in column-major order. Your program should
compute the product of the two input matrices and write the result to the output file. Use
double precision for all your matrices and computations.

Your code should also be able to operate by calling it with no files, i.e.,

matmult m q n

In this case, your code should generate random entries for the two input matrices, and then
perform the multiplication. This is useful when you are only interested in the performance
of matrix multiplication for large matrices and you don’t want to bother with reading and
writing files.

Check that your code is correct by testing it with the files matrixA, matrixB, and matrixC,
corresponding to AB = C. For this test data, m = 3, q = 4, n = 5. A set of larger test
matrices and a test matrix generator are also provided.

(b) 5 marks. Once you know that your code is correct, you can start investigating its per-
formance. Measure the execution time of matrix multiplication (not including reading and
writing files) for different sizes of matrices. For simplicity, choose m = k = n and n =
500, 1000, 2000, . . . to as large a problem your computer can handle. Plot the timings and the
Gflop rate as a function of n. This is your baseline performance.

(c) 10 marks. Try to improve the performance of matrix multiplication by storing matrix A in
row-major order. This involves transposing the data structure for A. Separately report the
timings for transposition and matrix multiplication. For matrix multiplication, again plot
your timings and Gflop rates like the above.

1



(d) 10 marks. Try to improve the performance of matrix multiplication by using “two-dimensional
blocking.” (Sections 3.5.2 and 3.5.3 of the text should be helpful.) Try different values of the
block size and plot your results in a meaingful way.

(e) 5 marks. Submit a short report of your results as a pdf file. Marks will be given for the
clarity of your report, labeling your graph axes, etc. Briefly explain why you think your
results are reasonable. Include a listing of your code in the pdf file. (This makes sure we are
reading your code in the way you intended.) Also specify the peak Gflop rate and the single
threaded stream bandwidth of the computer used in your performance tests. These numbers
should help in your explanation of your results (e.g., is the transposition step bandwidth
bound?).

2


