
High Performance Computing

Assignment 4

The goal of this assignment is to parallelize Conway’s Game of Life using MPI. In the Game
of Life, the world consists of a grid of rectangular cells and each cell may be alive or dead. Given
a starting configuration of cells, compute the configuration for each generation according to the
following rules:

• Any live cell with fewer than two live neighbors dies, as if caused by loneliness.

• Any live cell with two or three live neighbors lives on to the next generation.

• Any live cell with more than three live neighbors dies, as if by overcrowding.

• Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

Note that each cell has exactly 8 neighbors except for those cells on the boundary. For boundary
cells, assume that their neighbors are “dead” outside the boundary. See Wikipedia or another
source for more information.

(a) 5 marks. Write a sequential program that can be executed as:

gameoflife m n numgen infile outfile

where m× n are the dimensions of the grid of cells, numgen is the number of generations to
simulate, infile and outfile are input and output file names. The format of these files is a string
of mn zeros and ones indicating the configuration of the cells, with 0 indicating dead, and 1
indicating live. The input file gives the starting configuration (generation 0) and the output
file should contain the configuration of the last generation simulated (generation numgen). If
run with 2 generations, the output of your program should look similar to:

Reading input file: myinfile

Number of processes: 1

Starting timer...

Generation 0: number of live cells: 3

Generation 1: number of live cells: 5

Generation 2: number of live cells: 7

Total wallclock time: 0.555 seconds

Writing output file: myoutfile

Test your program on various configurations. For example, for m and n both equal to 5, a
possible input file is:

0000000000011100000000000

(b) 15 marks. Now write an MPI program that uses the same command line parameters and
creates the same output as the above. The program should be run using mpirun which

1



specifies the number of processes, p, to use. Your program should partition the grid of cells
into p sub-grids of approximately equal size. Use a 1D partitioning, which is simplest.

Note that a single output file should be created. This can be done by sending the final
configuration to process 0 and only process 0 writes the output file.

Test your parallel program on various configurations, and verify it is correct by comparing
it to your sequential program. By writing the sequential program first, the parallel program
should then be easier to write, and you also have a way of testing your parallel program.

For this assignment, you may use multiple processes on a single node (i.e., you do not have
to use multiple nodes). This is a way of using the multiple cores on a single node without
using OpenMP or any other kind of multithreading.

(c) 15 marks. Submit a short report of your results as a pdf file. In your report, give evidence
that your program works correctly. Also, perform runs with different numbers of processes
for a large configuration and show your timings on a log plot and your speedup on a linear
plot. Also perform a weak scalability study where the grid size is proportional to the number
of processes. Plot the speedup in this case. Finally, write the interprocess communication
volume for your algorithm for computing one generation in terms of m, n, and p (not including
what is necessary for reading or writing files).

Include a listing of your sequential and parallel code in your report.

2


