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Abstract—Asynchronous iterative methods for solving linear
systems have been gaining attention due to the high cost of
synchronization points in massively parallel codes. Since future
parallel computers will likely achieve exascale performance, syn-
chronization may become the primary bottleneck. Historically,
theory on asynchronous iterative methods has focused on proving
that an asynchronous version of a fixed point method will
converge. Additionally, some theory has shown that asynchronous
methods can be faster, which has been supported by shared
memory experiments. However, it is still not well understood
how much faster asynchronous methods can be than their
synchronous counterparts, and distributed memory experiments
have shown mixed results. In this paper, we introduce a new way
to model asynchronous Jacobi using propagation matrices, which
are similar in concept to iteration matrices. With this model,
we show how asynchronous Jacobi can converge faster than
synchronous Jacobi. We also show that asynchronous Jacobi can
converge when synchronous Jacobi does not. We compare model
results to shared and distributed memory implementation results,
and show that in practice, asynchronous Jacobi’s convergence
rate improves as we increase the number of processes.

Index Terms—Jacobi, Gauss-Seidel, Asynchronous, Remote
memory access

I. INTRODUCTION

Modern supercomputers are continually increasing in core
count and will soon achieve exascale performance. The U.S.
Department of Energy has released several reports underlining
the primary problems that will arise for exascale-capable
machines, one of which is the negative impact synchronization
will have on program execution time [1]–[4], [18]. Implemen-
tations of current state-of-the-art iterative methods for solving
the sparse linear system Ax = b suffer from this problem.

In stationary iterative methods, the operation M−1(b −
Ax(k)) is required, where x(k) is the iterate and M is usually
far easier to invert than A. For the Jacobi method, M is a
diagonal matrix, so the primary operation is Ax(k), a sparse
matrix-vector product. Each row requires values of x(k−1), i.e.,
information from the previous iteration, so all processes need
to be up-to-date. In typical distributed memory implementa-
tions, point-to-point communication is used, so processes are
generally idle for some period of time while they wait to
receive information.

Asynchronous iterative methods remove the constraint of
waiting for information from the previous iteration. When
these methods were conceived, it was thought that continuing

computation may be faster than spending time synchronizing.
However, synchronization time was less of a problem when
asynchronous methods were first proposed because the amount
of parallelism was quite low, so asynchronous methods did
not gain popularity [17]. Since then, it has been shown both
analytically and experimentally that asynchronous methods
can be faster than synchronous methods. However, there are
still open questions about how fast asynchronous methods can
be compared to their synchronous counterparts, and if they
can be efficiently implemented in distributed memory.

In this paper, we express asynchronous Jacobi as a sequence
of propagation matrices, which are similar in concept to
iteration matrices. With this model, we show that if some
processes are delayed, which, for example, may be due to
hardware malfunctions or imbalance, iterating asynchronously
can result in considerable speedup, even if some delays are
long. We also show that asynchronous Jacobi’s convergence
rate improves as the number of processes increases, and
that it is possible for asynchronous Jacobi to converge when
synchronous Jacobi does not. We demonstrate these results
through shared and distributed memory experiments.

II. BACKGROUND

A. The Jacobi and Gauss-Seidel Methods

The synchronous Jacobi method is an example of a station-
ary iterative method, for solving the linear system Ax = b
[25]. A general stationary iterative method can be written as

x(k+1) = Bx(k) + f, (1)

where B ∈ Rn×n is the iteration matrix and the iterate x(k) is
started with an initial approximation x(0). We define the update
of the ith component from x

(k)
i to x(k+1)

i as the relaxation of
row i. An iteration is the relaxation of all rows.

If the exact solution is x∗, then we can write the error
e(k) = x∗ − x(k) at iteration k as

e(k+1) = Be(k). (2)

The matrix B is known as the iteration matrix. Let λ1, . . . , λn
be the n eigenvalues of B, and define the spectral radius
ρ(B) of B to be max1≤i≤n(|λi|). It is well known that a
stationary iterative method will converge to the exact solution



as k → ∞ if the spectral radius ρ(B) < 1. Analyzing ‖B‖
is also important since the spectral radius only tells us about
the asymptotic behavior of the error. In the case of normal
iteration matrices, the error decreases monotonically in the
norm if ρ(B) < 1 since ρ(B) ≤ ‖B‖. If B is not normal,
‖B‖ can be ≥ 1. This means that although convergence to the
exact solution will be achieved, the reduction in the norm of
the error may not be monotonic.

Stationary iterative methods are sometimes referred to as
splitting methods where a splitting A = M − N is chosen
with nonsingular M . Therefore, Equation 1 can be written as

x(k+1) = (I −M−1A)x(k) +M−1b, (3)

where B = (I−M−1A). Just like in Equation 2, we can write

r(k+1) = Cr(k), (4)

where the residual is defined as r(k) = b − Ax(k) and C =
(I −AM−1).

For the Gauss-Seidel method, M = L, where L is the lower
triangular part of A, and for the Jacobi method, D = M , where
D is the diagonal part of A. The Gauss-Seidel is an example of
a multiplicative relaxation method, and Jacobi is an example
of an additive relaxation method. For the remainder of this
paper, we will only consider symmetric A and assume A is
scaled to have unit diagonal values. In this case B = C,
and the Jacobi iteration matrix as G. In practice, Jacobi
is one of the few stationary iterative methods that can be
efficiently implemented in parallel since the inversion of a
diagonal matrix is a highly parallel operation. In particular, for
some machine with n processors, all n rows can be relaxed
completely in parallel with processes p1, . . . , pn using only
information from the previous iteration. However, Jacobi often
does not converge, even for symmetric positive definite (SPD)
matrices, a class of matrices for which Gauss-Seidel always
converges. When Jacobi does converge, it can converge slowly,
and usually converges slower than Gauss-Seidel.

B. The Asynchronous Jacobi Method

We now consider a general model of asynchronous Jacobi
as presented in Chapter 5 of [6]. For simplicity, let us consider
n processes, i.e., one process per row of A. Jacobi defined by
Equation 3 can be thought of as synchronous. In particular, all
elements of x(k) must be relaxed before iteration k+ 1 starts.
Removing this requirement results in asynchronous Jacobi,
where each process relaxes its row using what ever information
is available. Asynchronous Jacobi can be written element-wise
as

x
(tk+1)
i =


n∑

j=0

Gijx
(sij(k))
j + bi, if i ∈ Ψ(k),

x
(k)
i , otherwise.

(5)

The set Ψ(k) is the set of rows that have written to x(k) at
k. The mapping sij(k) denotes the components of other rows
that i has read from memory.

We make the following assumptions about asynchronous
Jacobi:

1) As k → +∞, sij(k)→ +∞. In other words, rows will
eventually read new information from other rows.

2) As k → +∞, the number of times i appears in Ψ(k)→
+∞. This means that all rows eventualy relax in a finite
amount of time.

3) All rows are relaxed at least as fast as in the synchronous
case.

III. RELATED WORK

An overview of asynchronous iterative methods can be
found in Chapter 5 of [6]. Reviews of the convergence theory
for asynchronous iterative methods can be found in [6], [11],
[12], [17]. Asynchronous iterative methods were first intro-
duced as chaotic relaxation methods by Chazan and Miranker
[14]. This pioneering paper provided a definition for a general
asynchronous iterative method with various conditions, and
the main result of the paper is that for a given stationary
iterative method with iteration matrix B, if ρ(|B|) < 1, then
the asynchronous version of the method will converge. Other
researchers have expanded on suitable conditions for asyn-
chronous methods to converge using different asynchronous
models [7]–[9], [23], [24]. Additionally, there are papers that
show that asynchronous methods can converge faster than
their synchronous counterparts [10], [19]. In [19], it is shown
that for monotone maps, asynchronous methods are at least
as fast as their synchronous counterparts, assuming that all
components eventually update. This was also shown in [10],
and was extended to contraction maps. The speedup of asyn-
chronous Jacobi was studied in [22] for random 2×2 matrices.
Several models are used to model asynchronous iterations
in different situations. The main result is that most of the
time, asynchronous iterations do not improve the convergence
compared with synchronous, which we do not find surprising.
This result is specific for 2× 2 matrices, and we will discuss
in Section IV-C why speedup is not often suspected in this
case.

Experiments using asynchronous methods have given mixed
results, and it is not clear whether this is implementation or
algorithm specific. It has been shown that in shared memory,
asynchronous Jacobi can be significantly faster [7], [13].
Jager and Bradley reported results for several distributed
implementations of asynchronous inexact block Jacobi (where
blocks are solved using a single iteration of Gauss-Seidel)
implemented using “the MPI-2 asynchronous communication
framework” [16], which may refer to one-sided MPI. They
showed that asynchronous “eager” Jacobi can converge in
fewer relaxations and wall-clock time. Their eager scheme can
be thought of as semi-synchronous, where a process updates
its rows only if it has received new information. Bethune
et al. reported mixed results for distributed implementations
of their “racy” scheme, where a process uses what ever
information is available, regardless of whether it has already
been used [13]. This is the scheme we consider in our paper,
which was the original method defined by Baudet. The results



in [13] show that asynchronous Jacobi implemented with
MPI was faster in terms of wall-clock time except for the
experiments with the largest core counts. A limitation of
Bethune et al.’s implementations was that it used point-to-point
communication, which means that processes have to dedicate
time to receiving messages and completing sent messages.
The authors found this to be a bottleneck. Additionally, the
authors imposed a requirement that all information must be
communicated atomically, which has additional overhead. We
also note that some research has been dedicated to supporting
portable asynchronous communication for MPI, including the
JACK API [21], and Casper, which allows asynchronous
progress control [26]. We are not using either of these tools
in our implementations.

IV. A NEW MODEL FOR ASYNCHRONOUS JACOBI

A. Mathematical Formulation

For simplicity, assume s1j(k) = s2j(k) = · · · =
s(n−1)j(k) = snj(k) for j = 1, . . . , n in Equation 5, i.e.,
all rows always have the same information. Also, assume that
sij(k) always maps to the iteration number corresponding to
the most up-to-date information, i.e., processes always have
exact information. Our model takes Equation 5 and writes it
in matrix form as,

x(tk+1) = (I − D̂(k)A)x(k) + D̂(k)b (6)

where

D̂(k) =

{
1, if i ∈ Ψ(k),

0, otherwise.
(7)

Similar to the iteration matrix, we define the error and
residual propagation matrices as

Ĝ(k) = I − D̂(k)A, Ĥ(k) = I −AD̂(k), (8)

since a fixed iteration matrix cannot be defined for asyn-
chronous methods.

It is important to notice the structure of these matrices. For
a row i that is not relaxed at time k, row i of Ĝ(k) is zero
except for a 1 in the diagonal position of that row. Similarly,
column i of Ĥ(k) is zero except for a 1 in the diagonal position
of that column. We can construct the error propagation matrix
by starting with G and “replacing” rows of G with unit basis
vectors if a row is not in Ψ(k) (similarly, we replace columns
of G to get the residual propagation matrix).

If we remove the simplification mentioned in the first
paragraph of this section, i.e., assume s1j(k) 6= s2j(k) 6=
· · · 6= s(n−1)j(k) 6= snj(k), it is still possible to write
Equation 5 in matrix form. This can be done by ordering the
relaxations of rows in the following way:
• Define a new set of rows Φ(`) that denotes the set of

rows to be relaxed in parallel at parallel step `.
• Let κi be the number number of relaxations that row i

has carried out at parallel step `, where κi = 0 when
` = 0. If i is added to Φ(`) at any point, κi is increased
by one.

• At parallel step `, row i is added to Φ(`) if
1) all j rows have relaxed sij(κi) times, i.e., all

necessary information is available.
2) κi ≥ sji(κj), i.e., the relaxation of row i would not

result in any row j reading an old version of row i.
If these two conditions cannot be satisfied at a given paral-
lel step, some relaxations cannot be expressed as sequence
propagation matrices.

Two examples of sequences of asynchronous relaxations
are shown in Figure 1 (a) and (b). In these examples, four
processes, p1, . . . , p4, are responsible for a single row and
relax once in parallel. The red dots denote the time at which
process pi writes xi to memory. The blue arrows denote the
information used by other processes, e.g., in (a), p2 uses
relaxation zero (initial value) from p1 and relaxation one from
p4. Time, or relaxation count, moves from left to right. In (a),
κi = 1, we know the following information:
• For p1, s12(1) = 0 and s13(1) = 0.
• For p2, s21(1) = 0 and s24(1) = 1.
• For p3, s31(1) = 1 and s34(1) = 1.
• For p4, s42(1) = 0 and s43(1) = 0.

We can see that even though s21(1) 6= s31(1), we can set
Φ(1) = {4}, Φ(2) = {1, 2}, and Φ(3) = {3} to get
three propagation matrices that create a correct sequence of

𝑝1

𝑝2

𝑝3

𝑝4

𝑡𝑖𝑚𝑒 →

(𝑎)
𝑝1

𝑝2

𝑝3

𝑝4
(𝑏)

Fig. 1: Two examples of four processes carrying out one
relaxation asynchronously. Relaxations are denoted by red
dots, and information for a relaxation is denoted by blue
arrows. In (a), it is possible to express the relaxation as a
sequence of propagation matrices. In (b), this is not possible.



relaxations. Example (b) is a modification of (a), where now
s12(1) = 1 and s34 = 0. In this example, Φ(1) = {4} since
this is the only row in which all necessary information is
available (this is from the first condition above). However,
this violates the second condition since κ3 > s43(κ4) after p4
relaxes row four.

Example (b) only shows that all four relaxations cannot be
expressed as a sequence of propagation matrices. However,
we can ignore the second condition when we form Φ(1). We
then have Φ(1) = 4, Φ(2) = 2, Φ(3) = 1, and treat the
relaxation by p3 separately. This shows that we can express
the majority of the relaxations in terms of sequences of
propagation matrices. In Section VII, we will show that this
is true in practice as well.

B. Connection to Inexact Multiplicative Block Relaxation

Equation 6 can be viewed as an inexact multiplicative block
relaxation method, where the number of blocks and block sizes
change at every iteration. A block corresponds to a contiguous
set of equations that are relaxed. By “inexact” we mean that
Jacobi relaxations are applied to the blocks of equations (rather
than an exact solve, for example). By “multiplicative,” we
mean that not all blocks are relaxed at the same time, i.e.,
the updates build on each other multiplicatively like in the
Gauss-Seidel method.

If a single row j is relaxed at time k, then

D̂(k) =

{
1, if i = j,

0, otherwise.
(9)

Relaxing all rows in ascending order of index is precisely
Gauss-Seidel with natural ordering. For multicolor Gauss-
Seidel, where rows belonging to an independent set (no rows
in the set are coupled) are relaxed in parallel, D̂(k) can be
expressed as

D̂(k) =

{
1, if i ∈ Γ,

0, otherwise.
(10)

where Γ is the set of indices belonging to the independent set.
Similarly, Γ can represent a set of independent blocks, which
gives the block multicolor Gauss-Seidel method.

C. Asynchronous Jacobi Can Reduce The Error When Pro-
cesses are Delayed

Let A be weakly diagonally dominant (W.D.D.), i.e., |aii| ≥∑
|aij | for all 1 ≤ i ≤ n and thus ρ(G) ≤ 1. Then the error

and residual for asynchronous Jacobi monotonically decreases
in the infinity and L1 norms, respectively.

In general, the error and residual do not converge mono-
tonically for asynchronous methods (assuming the error and
residual at snapshots in time are available, as we do in our
model discrete time points k). However, monotonic conver-
gence is possible in the L1/infinity norms if the propagation
matrices are bounded by 1 in these norms. A norm of 1 means
that the error or residual does not grow but may still decrease.
Such a result may be useful to help detect convergence of the
asynchronous method in a distributed memory setting.

The following theorem supplies the norm of the propagation
matrices.

Theorem 1. Let A be W.D.D. and at least one process is
delayed (not active) at time k. Then ρ(Ĝ(k)) = ‖Ĝ(k)‖∞ = 1
and ρ(Ĥ(k)) = ‖Ĥ(k)‖1 = 1.

Proof. Let the number of processes = n, and let ξ1, . . . , ξn
be the n unit (coordinate) basis vectors. Without loss of
generality, consider a single process pi to be delayed. The
proof of ‖Ĝ(k)‖∞ = 1 is straightforward. Since pi is delayed,
row i in Ĝ(k) is ξTi , and since A is W.D.D., ‖Ĝ(k)‖∞ = 1.
Similarly, for ‖Ĥ(k)‖1, column i is ξi and so ‖Ĥ(k)‖1 = 1. To
prove ρ(Ĝ(k)) = 1, consider the splitting Ĝ(k) = I+Y , where
I is the identity matrix. The matrix Y has the same elements as
Ĝ(k) except the diagonal elements are the diagonal elements of
Ĝ(k)−1 and the ith row is all zeros. Since Y has a row of zeros,
it must have a nullity ≥ 1. Therefore, an eigenvector of Ĝ(k)

is v = null(Y ) with eigenvalue of 1 since (I + Y )v = v. To
prove ρ(Ĥ(k)) = 1, it is clear that ξi is an eigenvector of Ĥ(k)

since column i of Ĥ(k) = ξi. Therefore, Ĥ(k)ξi = ξi.

We can say that, asymptotically, asynchronous Jacobi will
be faster than synchronous Jacobi because inexact multiplica-
tive block relaxation methods are generally faster than additive
block relaxation methods. However, it is not clear if the error
will continue to reduce if some rows are delayed for a long
time. An important consequence of Theorem 1 is that the
error will not increase in the infinity norm no matter what
error propagation matrix is chosen, which is also is true for
the L1 norm of the residual. A more important consequence
is that any residual propagation matrix will decrease the L1
norm of the residual with high probability (for a large enough
matrix). This is due to the fact that the eigenvectors of Ĥ(k)

corresponding to eigenvalues of 1 are unit basis vectors. Upon
multiplying Ĥ(k) by the residual many times, the residual will
converge to a linear combination of the unit basis vectors,
where the number of unit basis vectors is equal to the number
of delayed processes. Since the eigenvalues corresponding
to these unit basis vectors are all one, components in the
direction of the unit basis vectors will not change, and all
other components of the residual will go to zero. The case in
which the residual will not change is when these components
are already zero, which is unlikely given that the residual
propagation matrix is constantly changing.

In the case of 2 × 2 random matrices which was studied
in [22], applying propagation matrices more than once will not
change the solution since the error and residual propagation
matrices have the form

Ĝ(k) =

[
1 0
α 0

]
, Ĥ(k) =

[
1 β
0 0

]
, (11)

if the first process is delayed, where α = A21/A11 and
β = A12/A11. Both these matrices have a nullspace of
dimension one, so the error will converge in one iteration to
the eigenvector with eigenvalue equal to one. In other words,
since the only information needed by row two comes from



row one, row two cannot continue to change without new
information from row one. For larger matrices, iterating while
having a small number of delayed rows will reduce the error
and residual.

For larger matrices, how quickly the residual converges
depends on the eigenvalues that do no correspond to unit basis
eigenvectors. If these eigenvalues are very small in absolute
value (i.e., close to zero), convergence will be quick, and
therefore the error/residual will not continue to reduce for
long delays. To gain some insight into the reduction of the
error/residual, we can use the fact that the delayed components
of the solution do not change with successive applications of
the same propagation matrix.

As an example, consider just the first row to be delayed
starting at time k. We can write the iteration as

x(k+1) = Ĝ(k)x(k) + D̂(k)b (12)[
x
(k)
1

y(k+1)

]
=

[
1 0

g G̃

] [
x
(k)
1

y(k)

]
+

[
0
c

]
, (13)

where g and y(k) are (n − 1) × 1 vectors, and G̃ is a (n −
1)× (n− 1) symmetric principal submatrix of G. Since only
y(k) changes, we can write the iteration as

y(k+1) = G̃y(k) + c+ x1g = G̃y(k) + f. (14)

From this expression, and because f is constant, we can reduce
our analysis to how quickly the error/residual corresponding
to y(k) reduces to 0. Since G̃ is a principal submatrix of G,
we can use the interlacing theorem to bound the eigenvalues
of G̃ with eigenvalues of G. Specifically, the ith eigenvalue µi

of G̃ can be bounded as λi ≤ µi ≤ λi+1.
For the general case in which m rows are active (not

delayed), we can consider the system PAPTPx = Pb, which
has the iteration

Px(k+1) = PĜ(k)PTPx(k) + PD̂(k)PTPb. (15)

The matrix P is a permutation matrix that is chosen such that
all delayed rows are ordered first, resulting in the propagation
matrix [

I O

g G̃

]
. (16)

where I is the (n −m) × (n −m) identity matrix, O is the
(n−m)×m zero matrix, g is m×(n−m), and G̃ is m×m. For
an eigenvalue µi of G̃, λi ≤ µi ≤ λi+n−m for i = 1, . . . ,m.
This means that convergence for the propagation matrix will
be slow if the convergence for synchronous Jacobi is slow. In
other words, if eigenvalues of G are spaced somewhat evenly
in the interval (0, 1), or if they are clustered near one, we can
expect a similar spacing between the eigenvalues of G̃.

In summary, for W.D.D. A, we can say that asynchronous
Jacobi can continually reduce the error and residual norms
even with very large delays, and will never increase the norms.
Additionally, since all rows will eventually relax at least as fast
as synchronous Jacobi, the additional relaxations that were
carried out while a process was delayed will only help reduce
the error and residual norms.

D. Asynchronous Jacobi Can Converge When Synchronous
Jacobi Does Not

A well known result, known as early as Chazan and
Miranker [14], is that if G is the iteration matrix of a
synchronous method then ρ(|G|) < 1 implies that the corre-
sponding asynchronous method converges. From the fact that
ρ(G) < ρ(|G|) for all matrices G, it appears that convergence
of the asynchronous method is harder than convergence of the
synchronous method. However, this is an asymptotic result
only. The transient convergence behavior depends on the norm
of the propagation matrices. Suppose ‖G‖ ≥ ρ(G) > 1. In this
case, synchronous Jacobi may reduce the error initially, but the
error will eventually increase unbounded as k →∞.

On the other hand, the changing propagation matrices can
result in asynchronous Jacobi converging when synchronous
Jacobi does not. Since ‖G‖∞ ≥ ‖Ĝ(k)‖∞ ≥ 1 for any Ψ(k),
and since the ‖Ĝ(k)‖∞ can only get smaller (or stay the same)
as more rows are delayed, the error/residual can continually
be reduced if enough rows are delayed at each iteration. If
many rows have the W.D.D. property, then it may be that
‖G(k)‖∞ = ‖H(k)‖1 = 1 happens quite often when enough
rows are delayed, which means that the error and residual are
reduced with high probability.

This is also apparent by looking at principal submatrices
of G (Equation 16), as we did previously. Since we know
that ρ(G̃) ≤ ρ(G) by the interlacing theorem, we can say
that ‖G̃‖2 ≤ ‖G‖2 since G̃ is symmetric, and ‖G̃‖1 ≤ ‖G‖1
since we are removing rows and columns from G (equiva-
lently, ‖G̃‖∞ ≤ ‖G‖∞). If enough rows are delayed, these
submatrices can be very small, resulting in a significantly
smaller ρ(G̃). Returning to the discussion from Section IV-B,
it is important to note that if our matrix is sparse, G̃ can be
block diagonal since removing rows can create blocks that are
decoupled. The interlacing theorem can be further applied to
these blocks, resulting in ρ(D̃) ≤ ρ(G̃), where D̃ is a diagonal
block of G̃. If many processes are used, it may happen that
G̃ will have many blocks, resulting in ρ(D̃) << ρ(G̃).
This can explain why increasing the concurrency can result
in asynchronous Jacobi converging faster than synchronous
Jacobi, and converging when synchronous Jacobi does not.
This is a result we will show experimentally.

In summary, asynchronous Jacobi can converge when syn-
chronous Jacobi does not, given appropriate sequences of error
and residual propagation matrices are chosen. Additionally,
increasing the concurrency can improve the convergence rate
of asynchronous Jacobi.

V. IMPLEMENTING ASYNCHRONOUS JACOBI IN SHARED
MEMORY

Our implementations use a sparse matrix-vector multiplica-
tion (SpMV) kernel to compute the residual, which is then
used to correct the solution. In particular, a single step of both
synchronous and asynchronous Jacobi can be written as

1) compute the residual r = b−Ax.
2) correct the solution x = x+D−1r.



3) check for convergence (detailed below and in Section VI
for distributed memory).

Each thread or process is responsible for some number of rows
of r and x, so it only computes Ax, r and x for said rows.
The contiguous rows that a process or thread is responsible
for is defined as its subdomain.

OpenMP was used for our shared memory implementation.
The vectors x and r are stored in shared arrays. The only
difference between the asynchronous and synchronous imple-
mentations is that synchronous requires a barrier after steps
1) and 3). Since each element in either x or r is updated by
writing to memory (not incrementing), atomic operations can
be avoided. Writing or reading a double precision word is
atomic on modern Intel processors if the array containing the
word is aligned to a 64-bit boundary.

Convergence is achieved if the relative norm of the global
residual falls below a specified tolerance, or if all threads
have carried out a specified number of iterations. Each thread
computes a local norm of the shared residual array. A thread
terminates only if all other threads have also converged. To
ensure this, a shared array of flags is used, which has a length
equal to the number of threads and is initialized to all zeros.
When a thread converges, it writes a one to its place in the
array. All threads take the sum of the array after relaxing their
rows to determine if all threads have converged. To test for
convergence in asynchronous Jacobi, each thread computes the
norm of r. For synchronous Jacobi, all threads always have
the same iteration count, and can compute a global residual
norm with a parallel reduction.

VI. IMPLEMENTING ASYNCHRONOUS JACOBI IN
DISTRIBUTED MEMORY

The program structure is the same as that of the shared
memory implementation as described in the first paragraph of
Section V. However, there are no shared arrays. Instead, each
process sends messages containing values of x to its neighbors.
A neighbor of process pi is determined by inspecting the non-
zero values of the matrix rows of pi. If the index of a value
is in the subdomain of a different process pj , then pj is a
neighbor of pi. During a SpMV, pi requires these points in x
from pj , so pj sends these points to pi, i.e., pi always locally
stores a ghost layer of points that pj sent to pi previously.

We used MPI for communication in our distributed im-
plementations. The communication of ghost layer points was
done with point-to-point communication for the synchronous
implementation. In point-to-point, both the sending process,
or origin, and the receiving process, or target, take part in the
exchange of data. We implemented this using MPI_Isend(),
which carries out a non-blocking send, and MPI_Recv(),
which carries out a blocking receive.

For our asynchronous implementation, remote memory ac-
cess (RMA) communication was used [5]. For RMA, each
process must first allocate a region of memory that is accessi-
ble by remote processes. This is known as a memory window,
and is allocated using the function MPI_Win_allocate().
For our implementation, we used a one dimensional array for

the window, where each neighbor of a process writes to a
subarray of the window. The subarrays do not overlap so that
race conditions do not occur. To initialize an access epoch
on a remote memory window, MPI_Win_lock_all() was
used, which allows access to windows of all processes until
MPI_Win_unlock_all() is called. We found that this was
faster than locking and unlocking individual windows using
MPI_Win_lock() and MPI_Win_unlock(). Writing to
the memory of a remote window was done using MPI_Put().
It is important to note that MPI_Put() does not write an
array of data from origin to target atomically, but is atomic for
writing single elements of an array. We do not need to worry
about writing entire messages atomically. This is because we
are parallelizing the relaxation of rows, so blocks of rows do
not need to be relaxed all at once, i.e., information needed for
a row is independent of information need by other rows.

For our implementation, a process terminates once it has
carried out a specified number of iterations. For the syn-
chronous case, all processes will terminate at the same it-
eration. This is not true in general for the asynchronous
case, where some processes can terminate even when other
processes are still iterating. This naive scheme requires no
communication. If it is desired that some global criteria
is met, e.g., the global residual norm has dropped below
some specified tolerance, a more sophisticated scheme must
be employed. However, since we are only concerned with
convergence rate rather than termination detection, we leave
this latter topic for future research.

VII. RESULTS

A. Test Framework

All experiments were run on either NERSC’s Cori su-
percomputer or a single node with two 10-core Intel Xeon
E5-2650 CPUs (2 hyperthreads per core) housed at Georgia
Institute of Technology. On Cori, shared memory experiments
were run on an Intel Xeon Phi Knights Landing (KNL)
processor with 68 cores and 272 threads (4 hyperthreads per
core), and distributed experiments were run on up to 128
nodes, each node consisting of two 16-core Intel Xeon E5-
2698 “Haswell” processors. In all cases, we used all 32-cores
of Haswell node. We used a random initial approximation x(0)

and right-hand side b in the range [-1,1], and the following test
matrices:

1) Matrices arising from a five-point centered difference
discretization of the Laplace equation on a rectangular
domain with uniform spacing between points. These
matrices are irreducibly W.D.D., symmetric positive
definite, and ρ(G) < 1. We will refer to these matrices
as FD.

2) An unstructured finite element discretization of the
Laplace equation on a square domain. The matrix is
not W.D.D., but approximately half the rows have the
W.D.D. property. The matrix is symmetric positive def-
inite, and ρ(G) > 1. We will refer to this matrix as
FE.



3) Matrices taken from the SuiteSparse matrix collection
as shown in Table I [15].

Matrices were partitioned using METIS [20], and are stored
in compressed sparse row (CSR) format.

TABLE I: Test problems from the SuiteSparse Matrix Collection. All
matrices are symmetric positive definite.

Matrix Non-zeros Equations

thermal2 8,579,355 1,227,087
G3 circuit 7,660,826 1,585,478
ecology2 4,995,991 999,999
apache2 4,817,870 715,176
parabolic fem 3,674,625 525,825
thermomech dM 1,423,116 204,316
Dubcova2 1,030,225 65,025

B. Asynchronous Jacobi Model and Shared Memory

The primary goal of this section is to validate the model of
asynchronous Jacobi presented in Section IV by comparing its
behavior to actual asynchronous Jacobi computations carried
out using an OpenMP implementation. The model is a math-
ematical simplification of actual asynchronous computations,
ignoring many factors that are hopefully not salient to the con-
vergence behavior of the asynchronous method. We execute
the model using a sequential computer implementation.

For our first experiment, we look out how likely asyn-
chronous relaxations can be expressed as a sequence of propa-
gation matrices. We took a history of asynchronous relaxations
from an OpenMP experiment and looked out how many of
the relaxations could be expressed in terms of propagation
matrices. For each row i, we printed the solution components
that i read from other rows for each relaxation of i, and
used this information to construct a sequence of propagation
matrices based on the two conditions from Section IV-A.
This is done using the same process described in the two
examples in Section IV-A. We say that if a propagation matrix
can be constructed that satisfies the two conditions, then all
relaxations carried out via the application of that matrix are
defined as “propagated” relaxations. If the second condition
is not satisfied, then any subsequent relaxation that uses old
information is not counted as a propagated relaxation.

Figure 2 shows the fraction of propagated rows as the
number of threads increases for the Phi and CPU. For the
Phi, the test matrix is an FD matrix with 272 rows and 1294
non-zero values, and the number of threads used are 17, 34,
68, 136, and 272. For the CPU, the test matrix is an FD
matrix with 40 rows and 174 non-zero values, and the number
of threads used are 5, 10, 20, and 40. The figure shows
that the majority of relaxations can be correctly expressed
via the application of propagation matrices. In particular, in
the worst case (Phi with 34 threads), ≈ .8 of the relaxation
are propagated, and in the best case (CPU with 40 threads),
≈ .99 of the relaxations are propagated. We can see that as
the number of threads increases, the fraction also increases.
This indicates that analyzing real asynchronous experiments

using the idea of propagation matrices is more appropriate
when the number of rows per thread is small. Therefore,
looking towards solving large problems on exascale machines,
propagation matrix analysis may be useful since the enormous
concurrency may result in a small number of rows per process.
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Fig. 2: Fraction of propagated rows as a function of number
of threads for the CPU and Phi. For the Phi, the test matrix is
an FD matrix with 272 rows and 1294 non-zero values. For
the CPU, the test matrix is an FD matrix with 40 rows and
174 non-zero values.

For our next set of experiments, we look at how the
model and our OpenMP implementation compares with the
synchronous case. For our first experiment in this set, we
consider the scenario where all threads run at the same speed,
except one thread which runs at a slower speed. This could
simulate a hardware problem associated with one thread. We
assign a delay δ to the thread pi corresponding to row i near
the middle of a test matrix. For the OpenMP implementation,
the delay corresponds to having pi sleep for a certain number
of microseconds. Since synchronous Jacobi uses a barrier, all
threads have to wait for pi to finish sleeping and relaxing its
rows before they can continue. For the model, time is in unit
steps, and δ is the number of those steps that row i is delayed
by. In the asynchronous case, row i only relaxes at multiples
of δ, while all other rows relax at every time step. In the
synchronous case, all rows relax at multiples of δ to simulate
waiting for the slowest process.

We first look at how much faster asynchronous Jacobi can
be compared to synchronous Jacobi when we vary the delay
parameter δ. The test matrix is an FD matrix with 68 rows and
298 non-zero values, and we use 68 threads (available on the
KNL platform), giving one row per thread. A relative residual
norm tolerance of .001 is used. For OpenMP, we varied δ
from zero to 3000 microseconds, and recorded the mean wall-
clock time for 100 samples for each delay. For the model, we
varied δ from zero to 100. Figure 3 shows the speedup for the
model and for actual asynchronous OpenMP computations as
a function of the delay parameter. The speedup for OpenMP
is defined as the total wall-clock time of synchronous Jacobi
divided by the total wall-clock time of asynchronous Jacobi.



Similarly, for the model, the speedup is defined as the total
model time of synchronous Jacobi divided by the model time
of asynchronous Jacobi.

Figure 3 shows a qualitative and quantitative agreement
between the model and actual computations. Both achieve a
speedup above 40 before plateauing. In general, this speedup
depends on the problem, the number of threads, and which
threads are delayed at each iteration, which all affect conver-
gence. Note that without artificially slowing down a thread,
actual asynchronous Jacobi computations are still slightly
faster, as shown by values corresponding to 0 delay. This is due
to the fact that natural delays occur that make some threads
faster than others. For example, maintaining cache coherency
while many threads are writing to and reading from a shared
array can cause natural delays.
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Fig. 3: Speedup of asynchronous over synchronous computa-
tions for 68 threads as a function of the delay δ experienced by
one thread. The result of asynchronous OpenMP computations
is compared to the result predicted by the model. The test
problem is an FD matrix with 68 rows and 298 nonzeros.

Figure 4 shows the relative residual 1-norm as a function
of the model and wall-clock times. Results for synchronous
and asynchronous Jacobi are plotted with different delays.
The figure shows that the model approximates the behavior
of the OpenMP results quite well. A major similarity is the
convergence curves for the two largest delays. For both the
model and OpenMP, we can see that even when a single row is
delayed until convergence (this corresponds to the largest delay
shown, which is 100 for the model, and 10000 microseconds
for OpenMP), the residual norm can still be reduced by
asynchronous Jacobi. For the second largest delay, we see a
“saw tooth”-like pattern corresponding to asynchronous Jacobi
no longer reducing the residual. The existence of this pattern
for both the model and OpenMP further confirms the accuracy
of our model. Most importantly, we again see that with no
delay, asynchronous Jacobi converges faster.

Figure 5 shows how asynchronous Jacobi scales when
increasing the number of threads from one to 272, and without
adding any delay. For these results, we used an FD matrix
with 4624 rows (17 rows per thread in the case of 272

threads) and 22,848 non-zero values. This small matrix was
chosen such that most of the time was spent writing/reading
from memory rather than computing, i.e., communication time
outweighs computation time. As in the previous set of results,
we averaged the wall-clock time of 100 samples for each data
point.

Figure 5 (a) shows the wall-clock time for achieving a
relative residual norm below .001. First, asynchronous Jacobi
can be over 10 times faster when many threads are used.
More importantly, we can see that asynchronous Jacobi is the
fastest when using 272 threads, while synchronous Jacobi is
fastest when using fewer than 272 threads. Figure 5 (b) shows
the wall-clock time for carrying out 100 iterations regardless
of what relative residual norm is achieved. As explained in
Section VII-A, a thread only terminates once all threads have
completed 100 iterations. This means that asynchronous Jacobi
will carry out more iterations per thread in this case. The
figure shows that although using 272 threads does minimize
the wall-clock time for asynchronous Jacobi, it is still faster
than synchronous Jacobi. This indicates that synchronization
points have a higher cost than reading from and writing to
memory, which is more abundant in asynchronous Jacobi.

For 272 threads, both Figures 5 (a) and (b) demonstrate
an important property of asynchronous Jacobi: even if asyn-
chronous Jacobi is slower per iteration as the number of
threads increases (in this case, the combined computation and
communication time of 272 threads is higher than 136 threads,
per iteration), the convergence rate of asynchronous Jacobi can
accelerate when increasing the number of threads (achieving
a relative residual norm below .001 is faster at 272 threads
than at 136 threads). This can be explained by the fact that
multiplicative relaxation methods are often faster than Jacobi,
and increasing the number of threads results in asynchronous
Jacobi behaving more like a multiplicative relaxation scheme.

For our final shared memory experiment, we look at a case
in which asynchronous Jacobi converges when synchronous
Jacobi does not. We use an FE matrix with 3,081 rows and
20,971 non-zero values. Figure 6 (a) shows the residual norm
as a function of the number of iterations. For asynchronous
Jacobi, the number of iterations is the average number of
local iterations carried out by all the threads. We can see that
as we increase the number of threads to 272, asynchronous
Jacobi starts to converge. This shows that the convergence
rate of asynchronous Jacobi can be dramatically improved by
increasing the amount of concurrency, even to the point where
asynchronous Jacobi will converge when synchronous Jacobi
does not. Figure 6 (b) shows that asynchronous Jacobi truly
converges, and does not diverge at some later time.

C. Asynchronous Jacobi in Distributed Memory

The purpose of this section is to see if we can produce
results in distributed memory that have a similar behavior
to that of the shared memory case. In particular, can asyn-
chronous Jacobi before faster than synchronous Jacobi, and
can it converge when synchronous Jacobi does not. We look at
how asynchronous Jacobi compares with synchronous Jacobi
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Fig. 5: Asynchronous compared with synchronous Jacobi as the number of threads increases. Plot (a) shows wall-clock time
when both methods achieve a relative residual norm below .001 upon convergence. Plot (b) shows how much time is taken to
carry out 100 iterations, regardless of the tolerance on the relative residual norm. The test problem is an FD matrix with 4624
rows (17 rows per thread in the case of 272 threads) and 22,848 non-zero values.

for the problems in Table I. These problems were selected
because they are the largest SPD matrices in the SuiteSparse
collection for which Jacobi converges, with the exception of
Dubcova2, which does not converge with Jacobi. We carried
out 200 runs per number of MPI processes per matrix, and took
the mean wall-clock time. Since our convergence termination
does not allow us to terminate based on the residual norm, we
used interpolation on the wall-clock time curves. In particular,
to measure wall-clock times for a specific residual norm, linear
interpolation on the log10 of the relative residual norm was
used.

Figure 7 shows the relative residual norm as a function of
relaxations for six problems (not including Dubcova2). The
plots are organized such that the smallest problem is shown

first (thermomech dM), and the problem size increases along
the first row and then the second row. Since the amount of
concurrency affects the convergence of asynchronous Jacobi,
several curves are shown for different numbers of nodes rang-
ing from one to 128 nodes (32 to 4096 MPI processes). This is
expressed in a green-to-blue color gradient, where green is one
node and blue is 128 nodes. We can see that in general, asyn-
chronous Jacobi tends to converge in fewer relaxations. More
importantly, as the number of nodes increases, convergence
is improved. This is more prevalent for smaller problems,
especially thermomech dM, where subdomains are smaller.
As explained earlier, using smaller subdomains increases the
likelihood that the convergence will behave similarly to a
multiplicative relaxation method. This is because if a snapshot
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Fig. 6: In plot (a), relative residual norm as a function of iterations for different numbers of threads (68, 136, and 272). The
plot shows that using more threads can improve the convergence rate of asynchronous Jacobi to the point where asynchronous
Jacobi converges when synchronous Jacobi does not. Plot (b) shows that asynchronous Jacobi using 272 threads truly converges.
The test problem is an FE matrix with 3,081 rows and 20,971 non-zero values.

is taken at some point in time, it is less likely that coupled
points are being relaxed simultaneously.

Figure 8 shows the wall-clock time in seconds for reducing
the residual norm by a factor of 10 as the number of MPI
processes increases. For asynchronous Jacobi, in the case of
thermomech dM, we can see that at 512 MPI processes, the
time starts to increase, which is likely due to communication
time outweighing computation time. However, since increasing
the number of MPI processes improves convergence, wall-
clock times for 2,048 and 4,096 MPI processes are lower than
for 1,024. We suspect that we would see the same effect in the
cases of parabolic fem and apache2 if more processes were
used. In general, we can see that asynchronous Jacobi is faster
than synchronous Jacobi.

Improving the convergence with added concurrency is most
dramatic in Figure 9, where the relative residual norm as a
function of number of relaxations is shown for Dubcova2. This
behavior is similar to that in Figure 6, where increasing the
number of threads allowed asynchronous Jacobi to converge
when synchronous Jacobi did not. In general, asynchronous
Jacobi is faster in terms of convergence rate and wall-clock
time.

VIII. CONCLUSION

The transient convergence behavior of asynchronous iter-
ative methods has been well-understood. In this paper, we
presented a new model where we expressed convergence in
terms of propagation matrices. With this model, we showed
that, under certain conditions, even when a process is severely
delayed, asynchronous Jacobi can still reduce the error and
residual, and, even if the delay is not severe, asynchronous
Jacobi is still faster than synchronous Jacobi. Additionally, we
showed that if the right sequence of propagation matrices is
chosen, asynchronous Jacobi can converge when synchronous
does not. We verified our model with shared and distributed
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Fig. 9: For Dubcova2, relative residual norm as a function of
relaxations/n for synchronous and asynchronous Jacobi. As
in Figure 6, increasing the number of processes improves the
convergence rate of asynchronous Jacobi.

memory experiments. These experiments indicate that increas-
ing the number of processes or threads can actually accelerate
the convergence of asynchronous Jacobi.

Efficiently implementing asynchronous methods in dis-
tributed memory has been a challenge because support for
high performance one-sided communication (with passive tar-
get completion) has not always been available. This paper
has also briefly described an example of how to implement
asynchronous methods efficiently using MPI on the Cori
supercomputer.
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test problems are shown.
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