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Abstract—Conventional Brownian dynamics (BD) simulations
with hydrodynamic interactions utilize 3n× 3n dense mobility
matrices, where n is the number of simulated particles. This
limits the size of BD simulations, particularly on accelerators
with low memory capacities. In this paper, we formulate a
matrix-free algorithm for BD simulations, allowing us to scale
to very large numbers of particles while also being efficient for
small numbers of particles. We discuss the implementation of
this method for multicore and manycore architectures, as well as
a hybrid implementation that splits the workload between CPUs
and Intel Xeon Phi coprocessors. For 10,000 particles, the limit
of the conventional algorithm on a 32 GB system, the matrix-
free algorithm is 35 times faster than the conventional matrix-
based algorithm. We show numerical tests for the matrix-free
algorithm up to 500,000 particles. For large systems, our hybrid
implementation using two Intel Xeon Phi coprocessors achieves
a speedup of over 3.5x compared to the CPU-only case. Our
optimizations also make the matrix-free algorithm faster than
the conventional dense matrix algorithm on as few as 1000
particles.

Index Terms—Brownian dynamics; particle-mesh Ewald
(PME); hybrid parallelization; Intel Xeon Phi

I. INTRODUCTION

Brownian dynamics (BD) is a computational method for
simulating the motion of particles, such as macromolecules
and nanoparticles, in a fluid environment. It has a myriad
of applications in multiple areas including biology, biochem-
istry, chemical engineering and materials science [1], [2]. In
BD simulations, only solute molecules are treated explicitly;
fluid molecules are modeled implicitly as random forces on
the solute molecules.

Hydrodynamic interactions (HI) are long-range interac-
tions between particles where the motion of a particle through
the fluid induces a force, mediated by the fluid, on all
other particles. The modeling of HI is essential for correctly
capturing the dynamics of particles, particularly collective
motions [3], [4]. Although the modeling of HI makes BD
simulations more realistic and more comparable to experi-
ments, these interactions are completely neglected in many
simulations because they are costly to compute. Efficient
ways of modeling HI are arguably one of the biggest hurdles
facing computational biologists striving for higher fidelity
macromolecular simulations [5].

The high computational cost of modeling HI is mainly
due to the explicit construction of dense hydrodynamic mo-
bility matrices and the calculation of Brownian displacement
vectors. Explicit construction of the mobility matrix requires

O(n2) operations with a large constant, as well as O(n2)
space, where n is the number of simulated particles. The
simplest and most common technique for calculating Brow-
nian displacements is to compute a Cholesky factorization,
which scales as O(n3). Due to the expensive cost of modeling
HI, conventional BD algorithms with HI are only applied to
small systems with a few thousand particles.

In order to address the problems of large-scale BD simu-
lations with HI, we use a matrix-free approach. The main
idea is to avoid constructing the hydrodynamic mobility
matrix, and to utilize methods for computing Brownian
displacements that do not require this matrix to be available
explicitly. Specifically, we replace the mobility matrix by a
particle-mesh Ewald (PME) summation. The PME algorithm
is well-known for computing electrostatic interactions in
molecular dynamics (MD) simulations [6], [7]. It scales
as O(n logn) and only requires O(n) storage. To compute
Brownian displacements without a matrix in this context, we
use a Krylov subspace method [8].

The matrix-free approach also allows large-scale BD sim-
ulations to be accelerated on hardware that have relatively
low memory capacities, such as GPUs and Intel Xeon Phi.
In this paper we describe an efficient implementation of the
matrix-free BD algorithm on multicore CPUs as well as a
hybrid implementation using the Intel Xeon Phi coprocessor.
The new implementations are capable of simulating systems
with as many as 500,000 particles. The experimental results
show that the matrix-free algorithm implemented on CPUs
is more than 35x faster than the conventional BD algorithm
in simulating large systems. The hybrid BD implementation
using two Intel Xeon Phi coprocessors achieves additional
speedups of over 3.5x for large simulated systems.

Related work. Existing BD codes that model HI, including
BD BOX [9] and Brownmove [10], use the conventional BD
algorithm, in which the mobility matrix is explicitly con-
structed. There also exist BD codes optimized for GPUs [9],
[11], but they are limited to approximately 3,000 particles,
again due to the explicit construction of the dense mobility
matrix. HI can also be modeled using a sparse matrix
approximation [12], [13] when the interactions are primarily
short-range; this is the approach used in LAMMPS [14].

Matrix-free approaches for particle-fluid simulations is not
completely new. PME has been used to accelerate simulations
in Stokesian conditions [15], [16], [17]. However, these codes
use the PME summation of the Stokeslet or Oseen tensor,



rather than the Rotne-Prager-Yamakawa [18], [19] tensor
widely used in BD. In our work, we use this latter tensor
with PME and also specifically handle the computation of
Brownian forces with PME.

PME algorithms are implemented widely in molecular
dynamics codes for electrostatic interactions. Harvey and
Fabritiis [20], describe an implementation of smooth PME
on GPU hardware for MD. However, there are many differ-
ences between PME for MD and PME for BD that affect
implementation and use.

In our previous work, we presented the use of Krylov
subspace methods for computing Brownian displacements in
the BD algorithm [8]. We did not use PME in that work,
but the use of PME necessitates matrix-free approaches for
computing Brownian displacements such as Krylov subspace
methods.

II. BACKGROUND: CONVENTIONAL EWALD BD
ALGORITHM

A. Brownian Dynamics with Hydrodynamic Interactions

In BD simulations, the solvent molecules are modeled as
spherical particles of possibly varying radii. Like in other
particle simulation methods, particle positions are propagated
step by step. The BD propagation formula with HI can be
expressed as [21]

r⃗(t +∆t) = r⃗(t)+M f⃗ ∆t + kBT (∇ ·M)∆t + g⃗ (1)

⟨⃗g⟩= 0, ⟨⃗g g⃗T ⟩= 2kBT M∆t.

Here, r⃗ is the position vector of the n particles, t is the time,
∆t is the time step length, kB is Boltzmann’s constant, T is
the temperature, f⃗ is the forces determined by the gradient
of potential energy, and g⃗ is the Brownian displacement. The
term involving f⃗ may represent van der Waals or bonded
interactions, etc.

The matrix M is the mobility matrix. The (i, j)-th entry
in M is a 3× 3 tensor describing the interaction between
particles i and j. Thus, the size of M is 3n×3n. The Rotne-
Prager-Yamakawa (RPY) tensor is widely used for modeling
HI in BD simulations. With free boundary conditions, the
entries of M using the RPY tensor are

Mi j =
1

6πηa

[
3a

4∥⃗ri j∥
(I + r̂i j r̂T

i j)+
a3

2∥⃗ri j∥3 (I−3r̂i j r̂T
i j)

]
when i ̸= j, and Mii = (6πηa)−1I otherwise. In the above, r⃗i j
is the vector between particles i and j, r̂i j is the normalized
vector, η is the viscosity, and a is the radii of the particles.
The matrix M is symmetric positive definite for all particle
configurations. As is common, we use conditions such that
∇ ·M = 0 so that the third term in Equation (1) is zero.

B. Ewald Summation of the RPY Tensor

Periodic boundary conditions are widely used in BD
simulations. In this case, a particle i not only has long-range
interactions with a particle j in its own simulation box, but
also with all the images of j in the infinite number of replicas
of the simulation box tiling all of space. In matrix terms, this
means that the tensor Mi j describing the interaction between
particles i and j is an infinite sum of terms.

Ewald summation is the standard procedure for computing
infinite sums, by reformulating the sum into two rapidly
converging sums, one in real space and one in reciprocal
(Fourier) space. The Ewald sum has the form

M = Mreal +Mrecip +Mself

where the first term is the real-space sum, the second-term
is the reciprocal-space sum, and the third term is a constant.
For the RPY tensor, Beenakker [22] derived the formulas

Mreal
i j = ∑⃗

l

M(1)
α (⃗ri j + l⃗L)

Mrecip
i j =

1
L3 ∑

k⃗ ̸=0

exp(−i⃗k · r⃗i j)M
(2)
α (⃗k) (2)

Mself
i j = M(0)

α δi j

where L is the width of the simulation box and δi j is the
Kronecker delta. The real-space sum is over all replicas l⃗
of the simulation box (⃗l is a vector from the simulation
box to one of its replicas). The reciprocal-space sum is over
all Fourier lattice vectors k⃗ ̸= 0. The functions M(1)

α (⃗r) and
M(2)

α (⃗k) derived by Beenakker [22] are designed to decay
quickly with ∥⃗r∥ and ∥⃗k∥, respectively.

These functions are parameterized by α; if α is large,
then the real-space sum converges faster than the reciprocal-
space sum, and vice-versa. Thus α tunes the amount of work
between the real-space and reciprocal-space sums and can be
chosen to reduce computation time depending on the relative
cost of performing the two summations.

C. Computing Brownian Displacements

From Equation (1), the Brownian displacement g⃗ is a
random vector from a multivariate Gaussian distribution
with mean zero and covariance 2kBT M∆t. This covariance
is required by the fluctuation-dissipation theorem, relating
stochastic forces with friction. The standard way to calculate
g⃗ is by

g⃗ =
√

2kBT ∆t S z⃗

where S is the lower-triangular Cholesky factor of M.

D. Ewald BD Algorithm

The BD algorithm with HI using Ewald summation and
Cholesky factorization is presented in Algorithm 1. An ob-
servation used in BD simulations is that the mobility matrix
changes slowly over time steps, meaning it is possible to use
the same matrix for many time steps. Let λRPY be the update
interval for the mobility matrix, whose value usually ranges
from 10 to 100. In Algorithm 1, the mobility matrix and the
Cholesky factorization are constructed only every λRPY time
steps, and λRPY Brownian displacement vectors are generated
together. Algorithm 1, called the Ewald BD algorithm is the
baseline algorithm we use for comparisons.

III. MATRIX-FREE BD ALGORITHM

A. Particle-Mesh Ewald for the RPY Tensor

In this section, we derive the PME algorithm for the RPY
tensor. To the best of our knowledge, the use of PME for the
RPY tensor is new.



Algorithm 1: Ewald BD algorithm for m time steps. r⃗k
denotes the position vector at time step k.

1 k← 0
2 n← m/λRPY
3 for i← 1 to n do
4 Construct dense matrix M0 = M(⃗rk) using Ewald sums
5 Compute Cholesky factorization M0 = SST

6 Generate λRPY random vectors Z = [⃗z1, · · · ,⃗zλRPY
]

7 Compute D = [d⃗1, · · · , d⃗λRPY
] =
√

2kBT ∆t SZ
8 for j← 1 to λPRY do
9 Compute f⃗ (⃗rk)

10 Update r⃗k+1 = r⃗k +M0 f⃗ (⃗rk)∆t + d⃗ j
11 k← k+1
12 end
13 end

The PME method is a fast method for computing Ewald
summations. The main idea is to use FFTs, rather than
standard discrete transforms, to sum the reciprocal-space part
of the Ewald summation. Since the particles are not regularly
spaced, particle forces are first interpolated onto a regular
mesh. The computed velocities on the regular mesh are then
interpolated back onto the original particle locations.

The RPY operator acting on a vector of forces f⃗ can be
written as

M f⃗ = Mreal f⃗︸ ︷︷ ︸
u⃗real

+Mrecip f⃗︸ ︷︷ ︸
u⃗recip

+Mself f⃗︸ ︷︷ ︸
u⃗self

where the right-hand side consists of the real-space term, the
reciprocal-space term, and a self term. The Mself operator is a
constant tensor scaling, which is cheap and easy to implement
in parallel; it will not be discussed further in this paper. In
PME, the Ewald parameter α is chosen so that the real-space
term can be computed using interactions between particles
within a small cutoff distance rmax. The Mreal operator can
then be regarded as a sparse matrix with nonzeros Mreal

i j when
particles i and j are separated by not more than rmax. Since we
will need to apply Mreal multiple times to different vectors, it
is advantageous to store it as a sparse matrix and perform the
computation of the real-space term ureal as a sparse matrix-
vector product (SpMV). We still call our approach “matrix-
free” although we do construct this one sparse matrix.

Utilizing Equation (2), the reciprocal-space term Mrecip f⃗
is

u⃗recip
j =

1
L3 ∑

k⃗ ̸=0

n

∑
i=1

exp(−i⃗k · r⃗i j)M
(2)
α (⃗k) f⃗i

where f⃗i is the force on the i-th particle. By a simple
manipulation,

u⃗recip
j =

1
L3 ∑

k⃗ ̸=0

exp(i⃗k · r⃗ j)M
(2)
α (⃗k)

n

∑
i=1

exp(−i⃗k · r⃗i) f⃗i

where r⃗i and r⃗ j are the positions of the i-th and j-th particles,
respectively. Let us denote

f⃗ recip(⃗k) =
n

∑
i=1

exp(−i⃗k · r⃗i) f⃗i

which can be regarded as the Fourier transform of the forces
f⃗ . We are now able to reuse f⃗ recip(⃗k) for computing u⃗recip

j for

all particles j.
The main benefit of PME over Ewald is to sum complex

exponentials using the FFT. This cannot be achieved as
written above because the r⃗i are not equally spaced. There-
fore, the PME method first spreads the forces (the spreading
operation is the transpose of interpolation) onto a regular
mesh in order to compute f⃗ recip(⃗k) via the FFT. Then, after
multiplying f⃗ recip(⃗k) by M(2)

α (⃗k), the velocity is

u⃗recip
j =

1
L3 ∑

k⃗ ̸=0

exp(i⃗k · r⃗ j)M
(2)
α (⃗k) f⃗ recip(⃗k). (3)

The sum over lattice vectors k⃗ corresponds to an inverse
Fourier transform. Again, the result is computed on the
regular mesh. The velocities computed on the mesh are finally
interpolated onto the locations of the particles.

We now introduce the interpolation method. We use cardi-
nal B-spline interpolation, as used in smooth PME (SPME)
[7]. We found the SPME approach to be more accurate than
the original PME approach [6] with Lagrangian interpolation,
while negligibly increasing computational cost. In contrast to
SPME with a scalar kernel such as for electrostatics, SPME
with a 3× 3 tensor kernel means that spreading is applied
to 3×1 quantities. Let the force at particle i be denoted by
f⃗i = [ f x

i , f y
i , f z

i ]. These forces are spread onto a K×K×K
mesh,

Fθ(k1,k2,k3) =
N

∑
i=1

f⃗ θ
i Wp(ux

i − k1)Wp(u
y
i − k2)Wp(uz

i − k3)

(4)
where θ can be x, y or z, and ux, uy and uz are scaled
fractional coordinates of the particles, i. e., for a given particle
located at (rx,ry,rz), we have uθ = rθK/L for a cubical
L×L×L simulation box. The functions Wp are cardinal B-
splines of order p (piecewise polynomials of degree p−1).
For simplicity of notation, we assume that the Wp functions
“wrap around” the periodic boundaries. Importantly, the Wp
have compact support: they are nonzero over an interval of
length p. Thus Equation (4) shows that each f⃗ θ

i is spread
onto p3 points of the mesh around the i-th particle. Figure 1
illustrates the spreading of a force onto a 2D mesh.

Figure 1: Spreading a force onto a 2D mesh using B-splines of
order 4. The black dot represents a particle, and the black arrow
represents a force on the particle. The spread forces on the mesh
are represented by the red and green arrows.

After spreading the forces into the regular mesh, we can
apply the FFT. The approximation to the θ component of



f⃗ recip(⃗k) on the mesh is b1(k1)b2(k2)b3(k3)F [Fθ(k1,k2,k3)]
where F denotes the 3D FFT, and where the b functions
are complex scalars which can be interpreted as coefficients
of interpolating complex exponentials with B-splines (unnec-
essary when PME Lagrangian interpolation is used). The b
functions are fixed given the interpolation scheme and have
negligible computational cost. In practice, they are absorbed
into the influence function to be described next, and we will
not further discuss them in this paper.

Referring to Equation (3), the next step is to multiply the
Fourier transform of the forces by M(2)

α (⃗k). Assuming uniform
particle radii, M(2)

α (⃗k) derived in [22] is

M(2)
α (⃗k) =(I− k̂k̂T )mα(∥⃗k∥)

mα(∥⃗k∥) =(a− 1
3 a3∥⃗k∥2)(1+ 1

4 α−2∥⃗k∥2 + 1
8 α−4∥⃗k∥4)

×6π∥⃗k∥−2 exp(− 1
4 α−2∥⃗k∥2)

(5)

where k̂ is the normalization of k⃗, a is the radius of the
particles, (I− k̂k̂T ) is a 3×3 tensor, and mα(∥⃗k∥) is a scalar
function. Computationally, M(2)

α (⃗k) is a 3 × 3 symmetric
matrix defined at each of the K×K×K mesh points. We
refer to this structure as the influence function, I(k1,k2,k3).
Defining Cθ(k1,k2,k3) = F [Fθ(k1,k2,k3)], applying the in-
fluence function means computing

Dθ(k1,k2,k3) = I(k1,k2,k3) ·Cθ(k1,k2,k3). (6)

The velocities on the mesh can be computed as

Uθ(k1,k2,k3) = F −1[Dθ(k1,k2,k3)]

where F −1 denotes the 3D inverse FFT. The particle ve-
locities u⃗recip can be computed by interpolating Uθ onto the
locations of the particles, which is the reverse process of
spreading.

In summary, each PME operation effectively multiplies the
mobility matrix by a given vector of forces f⃗ for the particles
located at r⃗. In the following, we will use u⃗ = PME( f⃗ )
to denote this operation, given some particle configuration
r⃗. The creation of a PME operator in software includes
the construction of the sparse matrix Mreal and other pre-
processing steps needed for applying Mrecip.

B. Computing Brownian Displacements with PME

The canonical method of computing Brownian displace-
ments, which uses Cholesky factorization, requires M to be
available as a matrix. With PME, such an explicit form
for M is not available. We recently introduced the use of
Krylov subspace methods for computing Brownian displace-
ments [8], [23]. These methods only require the ability to
perform matrix-vector products with M. Thus this method is
suitable for computing Brownian displacements in the PME
context.

Since in BD we can use the same mobility matrix for
several time steps, we use a block Krylov subspace method
to compute Brownian displacement vectors for multiple time
steps simultaneously. This has the benefit of (a) fewer total
number of iterations are required for convergence than the
single vector Krylov method, leading to lower computational
cost per vector [8], and (b) the SpMV operation for com-
puting the real-space term is applied to a block of vectors,

which is more efficient than single vector SpMV [24].
Other methods for computing Brownian displacements in

matrix-free form are available, but they require eigenvalue
estimates of M, e.g., [25]. Although not our emphasis, Krylov
subspace methods are combined with PME for the first time
in this paper. See [8] for technical details on Krylov subspace
methods for computing Brownian displacements.

C. Matrix-Free BD Algorithm

The matrix-free BD algorithm is shown in Algorithm 2.
Krylov(PME,Z) denotes an application of the Krylov sub-
space method, in which the products of the mobility matrix
with a given vector f⃗ are evaluated by PME( f⃗ ). Since the
mobility matrix changes slowly over time steps, we can use
the particle configuration at the current time step to compute
the Brownian displacement vectors for the following λRPY
time steps. The sparse matrix Mreal is only updated (at line
4) every λRPY time steps.

Algorithm 2: Matrix-free BD algorithm for m time steps.
r⃗k denotes the position vector at time step k.

1 k← 0
2 n← m/λRPY
3 for i← 1 to n do
4 Construct PME operator using rk
5 Generate λRPY random vectors Z = [⃗z1, · · · ,⃗zλRPY ]

6 Compute D = [d⃗1, · · · , d⃗λRPY ] = Krylov(PME,Z)
7 for j← 1 to λPRY do
8 Compute f⃗ (⃗rk)

9 Update r⃗k+1 = r⃗k +PME( f⃗ (⃗rk))∆t + d⃗ j
10 k← k+1
11 end
12 end

IV. EFFICIENT IMPLEMENTATION OF PME ON
MULTICORE AND MANYCORE ARCHITECTURES

A. Reformulating the Reciprocal-Space Calculation

In molecular dynamics simulations, PME is not applied
more than once for a given particle configuration. In our
work, we apply PME iteratively in Krylov subspace methods
to compute Brownian displacements. Thus our optimization
of PME involves a setup phase where precomputation is used
to speed up the actual PME computations.

In this section, we reformulate the interpolation and
spreading operations in the reciprocal-space calculation of
PME as sparse matrix-vector products. Also, for our tensor
kernel, applying the influence function can be regarded as a
matrix-vector product for a block diagonal matrix with 3×3
blocks. The breakdown of the reciprocal-space calculation
into these kernels also allows us to implement an efficient
PME code in a relatively portable way.

Define the n×K3 interpolation matrix P as

P(i, k1K2 + k2K + k3) =Wp(ux
i − k1)Wp(u

y
i − k2)Wp(uz

i − k3)
(7)

which is a sparse matrix with p3 nonzeros per row (we have
assumed 1-based indexing for i and 0-based indexing for k1,



k2, k3). The spreading of forces can then be expressed as

[Fx,Fy,Fz] = PT × [ f⃗ x, f⃗ y, f⃗ z] (8)

and, similarly, the interpolation of velocities is

[(⃗urecip)x, (⃗urecip)y, (⃗urecip)z] = P× [Ux,Uy,U z]. (9)

After the reformulation, the reciprocal-space calculation of
PME can be performed in six steps:

(1) Constructing P: Precomputation of the interpolation
matrix P (Equation (7)).

(2) Spreading: Spreading of the forces onto the mesh array
Fθ (Equation (8)). This has been reformulated as a sparse
matrix-vector product.

(3) Forward FFT: Applying 3D fast Fourier transform to
compute Cθ = F [Fθ].

(4) Influence function: Multiplying Cθ by the influence
function I (Equation (6)).

(5) Inverse FFT: Applying 3D inverse fast Fourier trans-
form Uθ = F −1[Dθ].

(6) Interpolation: Interpolating the velocities on the loca-
tions of the particles (Equation (9)).

There are two main benefits of this reformulation. First,
our matrix-free BD algorithm uses the Krylov subspace
method to compute Brownian displacements, which requires
computing PME multiple times at each simulation step. Since
P only depends on the positions of the particles, with this
reformulation we only need to precompute P once at the
beginning of each simulation step when the PME operator
is constructed (line 4 in Algorithm 2), and reuse it for all
the PME computations within the step. This significantly re-
duces the computational cost. In addition, this reformulation
transforms spreading and interpolation into SpMV operations
for which high-performance implementations are available,
including on accelerators.

B. Optimizing the Reciprocal-Space Calculation

1) Constructing P: The precomputation of the interpola-
tion matrix P is performed in parallel, with P partitioned into
row blocks, one for each thread. SIMD instructions are used
by each thread to compute multiple rows concurrently in a
row block. It is natural to store P in Compressed Sparse Row
(CSR) format. However, the row pointers are not necessary
since all rows of P have the same number of nonzeros (each
force is spread onto the same number of FFT mesh points).

2) Spreading: The spreading step multiplies the transpose
of P by the vector of forces. Since P is stored in CSR
format, different threads will try to update the same memory
locations in the result. To alleviate this contention, one
might explicitly transpose P and store it in Compressed
Sparse Column (CSC) format. However, CSC format can be
inefficient for storing P since P is typically “short-and-fat”
and contains many empty columns (corresponding to mesh
points that receive no spreading contributions from particles).

In order to efficiently parallelize the PT operation, we
partition the mesh points into square blocks with dimensions
no less than p × p, where p is the interpolation order.
Those blocks are then partitioned into groups such that there
are no two blocks in one group that are adjacent to each
other. We call such a group an independent set. There are

eight independent sets in a 3D mesh. By observing that the
particles from different blocks in the same independent set
own distinct columns of P, the forces for those particles
can be spread in parallel without write contention. Figure 2
illustrates independent sets in a 2D mesh, in which different
independent sets are shown in different colors. In our parallel
spreading implementation, the particles are first mapped into
the blocks. The parallel SpMV is then performed in eight
stages, and each stage only multiplies the rows of P that are
associated with the particles from one independent set.

Figure 2: Independent sets for p = 2 in a 2D mesh. The 4
independent sets (8 in 3D) are marked in different colors. Two
particles (dots) from different blocks in the same independent set
cannot spread to the same mesh points (crosses).

Note that for a given set of particle positions at a time step,
some mesh points may have no contribution from particles.
Thus we explicitly set the result Fθ to zero before beginning
the spreading operation.

3) 3D FFTs: We use the Intel MKL to perform 3D FFTs.
The library contains in-place real-to-complex forward FFT
and complex-to-real inverse FFT routines. This halves the
memory and bandwidth requirements compared to the case if
only complex-to-complex routines were available. Similarly,
only half of the influence function is needed, which can be
stored in an array of size K ×K × (K/2+ 1), where each
array entry itself is a symmetric 3×3 matrix.

4) Applying the Influence Function: The influence func-
tion I only depends on the simulation box size L, the mesh
size K, and the interpolation order p; it can thus be pre-
computed and used for any particle configuration. However,
the memory required for explicitly storing I is approximately
6×8×K3/2 bytes, which is 3 times larger than the storage
requirement for Fθ, making this approach impractical for
Intel Xeon Phi and other accelerators that have limited
memory. On the other hand, constructing I on-the-fly, every
time it is needed, requires evaluating exponential functions,
which are costly to compute.

We observe from Equation (5), however, that the influence
function is the product of a 3× 3 tensor and a relatively
expensive scalar function, mα. We precompute and store this
scalar function rather than the 3×3 tensor, giving a savings
of a factor of 6. When applying the influence function, the
quantity (I− k̂k̂T ), which only depends on the lattice vector,
can be constructed without memory accesses. Applying the
influence function is memory bandwidth bound, due to the



small number of flops executed compared to data transferred
for reading Cθ and writing Dθ.

5) Interpolation: In our reformulation, interpolating the
velocities from the mesh points is performed by a sparse
matrix-vector product. For this, we have implemented a par-
allel SpMV kernel for multicore processors. The optimized
SpMV kernel in the CSR format on Intel Xeon Phi can be
found in our previous work [26].

C. Computation of Real-Space Terms

The real-space sum of the PME method is performed by
interacting pairs of particles within a short cutoff radius,
depending on the Ewald parameter α. Since this operation
must be repeated in the BD algorithm, we store the real-space
sum operator, Mreal, as a sparse matrix. To construct this
sparse matrix, only the RPY tensors between particles within
a short distance need to be evaluated, which we compute
efficiently in linear time using Verlet cell lists [27].

This sparse matrix has 3× 3 blocks, owing to the tensor
nature of the RPY tensor. We thus store the sparse matrix in
Block Compressed Sparse Row (BCSR) format. Previously,
we optimized SpMV for this matrix format, using thread
and cache blocking, as well as code generation to produce
fully-unrolled SIMD kernels for SpMV with a block of
vectors [24]. The latter is required in Algorithm 2 as multiple
time steps are taken with the same mobility matrix, and thus
it is possible and efficient to operate on multiple vectors
simultaneously.

D. Performance Modelling and Analysis

The performance of each step of PME is modeled sepa-
rately. We focus on the reciprocal-space part, since the real-
space part is a straightforward sparse matrix-vector product.
We also exclude the construction of P from our analysis,
since it is a preprocessing step when PME is applied to
multiple force vectors with the same particle configuration.

(a) Spreading: The total memory traffic, in bytes, incurred
by spreading is

Mspreading = (3×8×K3)+(12× p3n)+(3×8× p3n)

where the first term is the memory traffic due to the initial-
ization of Fθ, the second term is the memory footprint of
P which includes non-zeros and CSR column indices, and
the last term represents the memory traffic due to writing
the product of PT f⃗ θ to Fθ. Since the spreading step is
performed by SpMV, the performance is bounded by memory
bandwidth. The execution time is estimated as

Tspreading =
Mspreading

B
where B is the hardware memory bandwidth.

(b) 3D FFTs: Each PME operation for the RPY tensor
requires three forward 3D FFTs and three inverse 3D FFTs
with dimensions K×K×K. We model the execution time as

TFFT = 3×2.5K3 log2(K
3)/PFFT (K)

TIFFT = 3×2.5K3 log2(K
3)/PIFFT (K)

where the numerators are the number of flops required for
radix-2 3D FFTs, and where the denominators PFFT (K) and

PIFFT (K) are the achievable peak flop rates of forward and
inverse 3D FFTs, respectively.

(c) Applying Influence Function: Our implementation of
applying the influence function constructs stores only one
word per 3× 3 tensor. Thus, the memory traffic due to
accessing I is only 8×K3/2. As discussed in Section IV-B,
the performance of this step is memory bandwidth bound.
Therefore, the execution time can be expressed as

Tinfluence =
(8×K3/2)+(2×3×16×K3/2)

B
where the second term in the numerator is the total memory
footprint of Cθ and Dθ.

(d) Interpolation: The memory traffic incurred by interpo-
lation is similar to that of spreading except that interpolation
does not require initializing Uθ. Its execution time can be
expressed as

Tinterpolation =
(12× p3n)+(3×8× p3n)

B
.

The overall performance model of the reciprocal-space
PME calculation is the sum of the terms above,

TPME =
7.5K3 log2(K

3)

PFFT (K)
+

7.5K3 log2(K
3)

PIFFT (K)

+
72p3n+76K3

B
.

(10)

The memory requirement in bytes for this part of PME can
be expressed as

MPME = (3×8×K3)+(12× p3n)+(8×K3/2) (11)

where the first term is the storage for Fθ and Uθ (or Cθ and
Dθ), the second term represents the memory footprint of P,
and the last term is the storage for the influence function.
Since the number of mesh points, K3, is generally chosen to
be proportional to the number of particles n (assuming fixed
volume fraction), the reciprocal-space part of PME scales as
O(n logn) and requires O(n) storage.

E. Hybrid Implementation on Intel Xeon Phi

With the advance of acceleration hardware such as GPUs
and Intel Xeon Phi, it is important to study the coupling of
general-purpose processors with accelerators to solve various
computational problems. In this section, we describe a hybrid
implementation of the matrix-free BD method using CPUs
and Intel Xeon Phi.

In the PME method, the real-space terms and the
reciprocal-space terms can be computed concurrently. It is
natural to offload one of these for computation on acceler-
ators. It is preferable to offload the reciprocal-space calcu-
lation, since it consists of regularly structured calculations,
e.g., FFTs suitable for wide-SIMD operations, which also
demand high memory bandwidth.

To balance the workload between CPUs and Intel Xeon
Phi, the Ewald parameter α is tuned so that one real-space
calculation on the CPU and one reciprocal-space calculation
on the accelerator consume approximately equal amounts of
execution time. To predict the execution time, we use the
performance models presented in Section IV-D. This works
for computing the PME operation in line 9 of Algorithm 2.



The PME operation shown in line 6, however, involves
a block of vectors. Here, the real-space part is performed
very efficiently with SpMV on a block of vectors. There
is no library function, however, for 3D FFTs for blocks of
vectors. The reciprocal-space part thus effectively has higher
workload when PME is applied on a block of vectors. (The
Ewald parameter α may be increased to balance the workload
for this case, but practically α is limited if sparsity and
scalable storage is to be maintained for the real-space part.)
The solution we adopt for the PME operation in line 6 of
Algorithm 2 is to also assign to CPUs some reciprocal-space
calculations. A static partitioning of the reciprocal-space
calculations is performed to achieve load balance between
CPUs and multiple Xeon Phi coprocessors.

V. EXPERIMENTAL RESULTS

A. Test-Bed and Simulation Setup

Our experimental test-bed is a dual socket Intel Xeon
X5680 (Westmere-EP) system with two Intel Xeon Phi copro-
cessors (KNC) mounted on PCI-e slots. The key architectural
parameters are listed in Table I.

Table I: Architectural parameters of systems used in performance
evaluation.

2X Intel X5680 Intel Xeon Phi
Microarchitecture Westmere-EP MIC
Frequency (GHz) 3.33 1.09
Sockets/Cores/Threads 2/12/24 1/61/244
L1/L2/L3 cache (KB) 64/256/12288 32/512/-
SIMD width (DP, SP) 2-way, 4-way 8-way, 16-way
GFlop/s (DP, SP) 160, 320 1074, 2148
Memory (GB) 24 8
STREAM bandwidth (GB/s) 44 150

Our BD implementations were compiled with Intel ICC
14.0. Intel MKL 11.0 was used to optimize the FFT, BLAS
and LAPACK operations in the implementations, includ-
ing DGEMM, DGEMV, Cholesky factorization, and for-
ward/inverse FFTs.

A monodisperse suspension model of n particles with var-
ious volume fractions was used to evaluate the accuracy and
the performance of the BD algorithms. For simplicity, van
der Waals or electrostatic interactions were not included in
the model. To prevent particle overlap, a repulsive harmonic
potential between particles was used. The repulsion force
between particles i and j both with radius a is given by

f⃗ repl
i j =

{
125(∥⃗ri j∥−2a)r̂i j if ∥⃗ri j∥ ≤ 2a
0 if ∥⃗ri j∥> 2a

where r⃗i j is the vector between particle i and j, and r̂i j is
the normalized vector. The repulsion forces were efficiently
evaluated using Verlet cell lists [27].

In BD simulations, the translational diffusion coefficients
of particles can be estimated by

D(τ) =
1
6τ

⟨
((⃗r(t + τ)− r⃗(t))2⟩ (12)

where the angle brackets indicate an average over configura-
tions separated by a time interval τ and r⃗ is the position vector
of the particles. For a given BD algorithm, its accuracy can
be evaluated by comparing the diffusion coefficients obtained
from simulation with theoretical values, values obtained from

experiments, or simply values from a known, separately
validated simulation.

B. Accuracy of the Matrix-Free BD Algorithm

For a given α, the accuracy of the PME calculation is
controlled by the cutoff distance rmax, the mesh dimension K,
and the B-spline order p. Using larger rmax, K and/or p gives
a more accurate result with a more expensive calculation. We
measure the relative error of PME as

ep =
∥⃗upme− u⃗exact∥2

∥⃗uexact∥2

where u⃗pme is the result of PME, and u⃗exact is a result
computed with very high accuracy, possibly by a different
method.

The accuracy of the simulation also depends on the ac-
curacy of the Krylov subspace iterations for computing the
Brownian displacements. We denote by ek the relative error
tolerance used to stop the iterations.

Parameters for PME and the Krylov subspace method
must be chosen to balance computational cost and accuracy.
In order to choose these parameters, we performed simu-
lations with different sets of parameters and evaluated the
resulting accuracy of the diffusion coefficients obtained from
these simulations. Table II shows the results. We see that
the matrix-free algorithm with ek = 10−6 and ep ∼ 10−6

(ep ∼ 10−k means we used parameters giving measured PME
relative error between 10−(k+1) and 10−k) has a relative error
less than 0.25%. The simulations with larger ek and ep also
achieve good accuracy. Even with ek = 10−2 and ep ∼ 10−3,
the average relative error is still lower than 3%. Using larger
ek and ep significantly reduces running time. The simulations
with ek = 10−2 and ep ∼ 10−3 are more than 8x faster than
those with ek = 10−6 and ep ∼ 10−6.

Table II: Errors (%) in diffusion coefficients obtained from sim-
ulations using the matrix-free BD algorithm with various Krylov
tolerances (ek) and various PME parameters (giving PME relative
error ep). Also shown is the execution time (seconds) per simu-
lation step using 2 Xeon CPUs. Simulated systems were particle
suspensions of 1,000 particles for various volume fractions Φ.

ek = 10−6 ek = 10−2 ek = 10−6 ek = 10−2

ep ∼ 10−6 ep ∼ 10−6 ep ∼ 10−3 ep ∼ 10−3

Φ Error Time Error Time Error Time Error Time
0.1 0.06 0.089 0.28 0.029 0.42 0.036 0.65 0.010
0.2 -0.09 0.102 -0.22 0.032 0.56 0.047 1.48 0.011
0.3 -0.21 0.116 -0.37 0.032 2.05 0.054 2.38 0.012
0.4 0.25 0.130 0.46 0.036 1.28 0.061 3.72 0.013
0.5 0.16 0.130 0.62 0.038 -3.69 0.062 4.27 0.013

As an example of a BD calculation, Figure 3 shows the
diffusion coefficients obtained from matrix-free BD simula-
tions of 5000 particles and various volume fractions. Simu-
lations were performed on our test-bed (using hybrid CPU-
accelerator computations) for 500,000 steps with λRPY = 16,
ek = 10−2 and ep ∼ 10−3, taking a total of 10 hours. The
diffusion coefficients obtained from the simulations are in
good agreement with theoretical values. Qualitatively, the
diffusion coefficients are smaller for systems with higher
volume fractions (more crowded conditions). Such long sim-
ulations also illustrate the importance of reducing wallclock
time per timestep, as well as enabling larger simulations.



Figure 3: Diffusion coefficients (D) obtained from the simulations
using the matrix-free algorithm on a configuration of 5,000 particles
with various volume fractions.

C. Simulation Configurations

Table III shows the simulation configurations used in our
experiments. For each configuration, the PME parameters
were chosen such that execution time is minimized while
keeping the PME relative error ep less than 10−3. (The
procedure for choosing these parameters is beyond the scope
of this paper.) The Krylov convergence tolerance ek = 10−2

was used in all the experiments. In a separate study, we found
that if the mesh spacing L/K is fixed, then the reciprocal-
space error is independent of the volume fraction. Also, the
real-space error only weakly depends on the volume fraction.
Therefore, for studying performance, we use a single volume
fraction, which we have chosen to be 0.2.

Table III: Simulation configurations, where n is the number of
particles, K is the PME FFT mesh dimension, p is the B-spline
order, rmax is the cutoff distance used for Mreal, α is the Ewald
parameter, and ep is the PME relative error.

Configurations n K p rmax α ep

N100 100 32 4 6.0 0.58 7.05×10−4

N500 500 32 6 6.0 0.58 9.88×10−4

N1000 1,000 32 6 7.5 0.46 6.70×10−4

N2000 2,000 64 6 6.0 0.58 5.88×10−4

N3000 3,000 64 6 6.0 0.58 4.88×10−4

N4000 4,000 64 6 6.0 0.58 8.31×10−4

N5000 5,000 64 6 6.5 0.52 6.82×10−4

N6000 6,000 64 6 6.5 0.52 7.92×10−4

N7000 7,000 64 6 6.5 0.52 8.84×10−4

N8000 8,000 64 6 7.0 0.50 8.81×10−4

N10000 10,000 64 6 7.5 0.46 5.44×10−4

N20000 20,000 128 6 6.0 0.58 3.24×10−4

N30000 30,000 128 6 6.0 0.58 4.15×10−4

N50000 50,000 128 6 6.0 0.58 9.90×10−4

N80000 80,000 128 6 7.0 0.50 9.47×10−4

N200000 200,000 256 4 6.0 0.58 9.86×10−4

N300000 300,000 256 6 6.0 0.58 5.82×10−4

N500000 500,000 256 6 7.0 0.50 3.39×10−4

D. Performance of PME

In matrix-free BD, the same PME operator is applied
to different vectors. This is a significant difference from
molecular dynamics (or non-Brownian simulations) where a
given PME operator is only applied once. Thus an important
optimization in our BD case is the precomputation and reuse
of the interpolation matrix P. To study the effect of this
optimization, we compare the performance of simulations

using precomputed P and the application of P on-the-fly (in
the latter, P is not stored). The application of P on-the-fly
has the advantage of lower memory bandwidth requirements
since the elements of P are computed using only the particle
positions.

Figure 4 reports this comparison using a CPU-only imple-
mentation. In both cases, we used λRPY = 16. The number of
Krylov subspace iterations for the configurations shown in the
figure varies between 19 and 25, meaning a precomputation
of P will be reused more than 300 times. The results show
that precomputing P gives on average 1.5x speedup compared
to using the on-the-fly implementation. The largest speedup is
achieved by the configurations with larger values of p3n/K3

(N10000, N80000, N500000). This is because the complexity
of computing P is a function of p3n and the computational
cost of the other steps is mainly dependent on K3.

Figure 4: Performance comparison of the PME implementation
(reciprocal-space part only) that precomputes P with the implemen-
tation that computes P on-the-fly.

The overall performance of the reciprocal-space part of
PME is shown in Figure 5 as a function of the number
of particles and of the PME mesh dimension. The break
down of the time for each phase is also shown. Timings are
for the CPU-only implementation. The main observation is
that FFT operations generally dominate the execution time.
However, the execution time of spreading and interpolation
operations increases rapidly with the number of particles.
These operations are memory bandwidth limited and are
very costly for large numbers of particles, and can surpass
the cost of the FFTs. We also observe that applying the
influence function, although it is embarrassingly parallel, also
becomes costly for large mesh dimensions. This is due to
the high bandwidth requirements of applying the influence
function. Finally, the figures also show that the achieved
performance closely matches the predicted performance from
the performance model, indicating that our CPU-only PME
implementation is as efficient as possible.

In Figure 6 we compare the performance of the reciprocal-
space part of PME on two different architectures: Westmere-
EP and KNC in native mode. For small numbers of par-
ticles, KNC is only slightly faster than or even slower
than Westmere-EP. This is mainly due to inefficient FFT
implementations in MKL on KNC, particularly for the 3D
inverse FFT (this is currently being resolved by Intel). For
large numbers of particles, KNC is as much as 1.6x faster.



(a) K = 256, p = 6,rmax = 5

(b) n = 5000, p = 6,rmax = 5

Figure 5: The overall performance of the reciprocal-space part of
PME and the break down of execution time for each phase as a
function of the number of particles and the PME mesh dimension.

Figure 6: Performance comparison of PME on Westmere-EP with
PME on KNC in native mode.

E. Performance of BD Simulations

Now we present the overall performance of simulations
using the Ewald BD algorithm and the matrix-free algorithm.
Figure 7 shows the results. The methods used parameters
giving results of similar accuracy. As expected, the matrix-
free algorithm has great advantages over the Ewald algorithm
both in the terms of memory usage and execution time. For
large configurations, the speedup of the matrix-free algorithm

(a) Memory

(b) Execution time

Figure 7: Comparison of the Ewald BD algorithm with the matrix-
free BD algorithm on Westmere-EP as a function of the number of
particles.

over the Ewald algorithm is more than 35x. (For problems of
this size, the standard algorithm can be improved by using
Krylov subspace methods rather than Cholesky factorizations
for computing Brownian displacements.) However, the more
important result is that, as shown in Figure 8, our implemen-
tation of the matrix-free algorithm is capable of performing
BD simulations for as many as 500,000 particles.

Figure 8: Performance of the matrix-free BD algorithm on
Westmere-EP as a function of the number of particles.

Figure 9 compares the performance of our hybrid BD



implementation using two Intel Xeon Phi coprocessors with
the CPU-only implementation. The hybrid implementation
is always faster than the CPU-only implementation for all
the configurations, achieving on average a speedup of 2.5x.
The largest speedup is achieved by very large configurations,
which is more than 3.5x. For small configurations, the advan-
tage of the hybrid implementation over the CPU-only imple-
mentation is marginal probably because of two reasons. First,
the PME implementation on KNC for small configurations is
not efficient. Second, for the small configurations there is not
enough work to compensate for the communication overhead
of offloading.

Figure 9: Performance comparison of the hybrid BD implementation
with the CPU-only implementation.

VI. CONCLUSION

We have presented a matrix-free algorithm for Brownian
dynamics simulations with hydrodynamic interactions for
large-scale systems. The algorithm uses the PME method,
along with a block Krylov subspace method to compute
Brownian displacements in matrix-free fashion. Our software
using this algorithm enables large-scale simulations with as
many as 500,000 particles.

We have also described the implementation of the matrix-
free algorithm on multicore and manycore processors. The
PME algorithm was expressed as the application of a se-
quence of kernels (SpMV, FFT) to simplify efficient imple-
mentation. We have also developed a hybrid implementation
of BD simulations using multiple Intel Xeon Phi coproces-
sors, which can be 3.5x faster than the CPU-only implemen-
tation. In future work, we will extend the functionality of
the BD simulation code and use it to simulate large-scale
biological systems.
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