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A STABLE SCALING OF NEWTON-SCHULZ FOR IMPROVING THE
SIGN FUNCTION COMPUTATION OF A HERMITIAN MATRIX

JIE CHEN∗ AND EDMOND CHOW†

Abstract. The Newton-Schulz iteration is a quadratically convergent, inversion-free method for
computing the sign function of a matrix. It is advantageous over other methods for high-performance
computing because it is rich in matrix-matrix multiplications. In this paper we propose a variant for
Hermitian matrices that improves the initially slow convergence of the iteration. The main idea is
to scale the iteration to have steeper derivatives of the mapping function at the origin such that the
convergence of the eigenvalues with small magnitudes is accelerated. The scaling is stable based on
a backward stability result of Y. Nakatsukasa and N. J. Higham. Generally, the number of iterations
is reduced by half compared with standard Newton-Schulz. With proper shifts of the matrix, this
number may be further reduced. We demonstrate numerical calculations with matrices of size up to
approximately 105 on medium-sized computing clusters and also apply the algorithm to electronic
structure calculations.
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1. Introduction. We are interested in numerically computing the matrix sign
function

S = sign(A)

for a matrix A ∈ Cn×n with no eigenvalues lying on the imaginary axis. The scalar
sign function sign(z) takes value +1 when <(z) > 0 and −1 when <(z) < 0. In this
paper we focus on the Hermitian case, where a simplified definition of the matrix sign
function is

sign(A) = U · diag(sign(λ1), . . . , sign(λn)) · U∗,

with U∗AU = diag(λ1, . . . , λn) being a diagonalization of A. The Hermitian case
appears in several real-life applications, such as lattice quantum chromodynamics [23,
29, 10] and electronic structure calculations [28, 26]. For the latter application, the
density matrix ρ of a molecular system with Fermi level µ is the Heaviside function
of µI −H, where H is an approximation to the Hamiltonian. Thus, one can compute
ρ as 1

2 [sign(µI −H) + I]. To respect the notational convention in different fields, we
recycle the notation ρ, µ, and H for the discussion of matrix functions, where the
different meanings are clear in context.

Four iterative methods for computing sign(A) relevant to the present paper are
Newton [12, 11], inverse Newton [11, 21], Halley [21], and Newton-Schulz [12, 11].
Some of these methods are more frequently associated with the computation of the
polar decomposition, but since they are akin to the Padé family of approximations of
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the sign function [11, Section 5.4], we can use the methods with a slight modification
for computing the matrix sign. The iterations admit the form

Xk+1 = f(Xk), X0 = A, (1.1)

where f corresponds to different mappings. The four methods are

Newton: f(X) =
1

2
(X +X−1),

Inverse Newton: f(X) = 2X(I +X2)−1,

Halley: f(X) = X(3I +X2)(I + 3X2)−1,

Newton-Schulz: f(X) =
1

2
X(3I −X2).

It is not hard to see that the iterates produced by the second method are the inverses
of the Newton iterates, hence the name “inverse Newton.” The first three methods are
globally convergent, with the rate being quadratic for the first two and cubic for the
third. On the other hand, Newton-Schulz is known to be convergent when ‖I−A2‖ <
1, for any subordinate matrix norm. When A is Hermitian, the convergence region can
be expanded to ρ(A) <

√
3, where ρ means the spectral radius. Hence, in practical

use of Newton-Schulz, one may first scale A by ρ(A). We note that in electronic
structure calculations, the McWeeny purification method [19, 16] is equivalent to
Newton-Schulz.

The fact that spectral information is needed for Newton-Schulz does not neces-
sarily make the method inferior to the other three globally convergent methods. The
reason is that scaling becomes a practical need for enhancing the convergence of these
methods. Several scalings have been proposed for Newton and inverse Newton; they
all share the form

Xk+1 = f(µkXk).

For Newton, the determinantal scaling defines µk = |det(Xk)|−1/n, the spectral scal-

ing defines µk =
√
ρ(X−1

k )/ρ(Xk), and the norm scaling defines µk =
√
‖X−1

k ‖/‖Xk‖.
The last two scalings are equivalent when A is Hermitian and when ‖·‖ is the 2-norm;
in such a case, they are both optimal. A disadvantage is that these scalings are expen-
sive to compute, because they depend on each iterate Xk. Byers and Xu [2] proposed
a suboptimal scaling that requires the computation of the spectral information only
once. The scaling sequence reads

µ0 = 1/
√
αβ, µ1 =

√
2
√
αβ/(α+ β), µk = 1/

√
f(µk−1) for k = 2, 3, . . . ,

where α = ‖A‖2, β = ‖A−1‖−1
2 and f is the scalar Newton mapping f(µ) =

(µ + µ−1)/2. By using the Byers and Xu scaling, in exact arithmetic, at most nine
iterations are needed for Newton to converge within a tolerance of 10−16 for matrices
with condition number no greater than 1016. The counterpart scaling approach for
inverse Newton is derived by inverting α, β, and f in Byers and Xu.

For the Halley method, Nakatsukasa et al. [21] suggested an optimal scaling

Xk+1 = Xk(akI + bkX
2
k)(I + ckX

2
k)−1, X0 = A/α, (1.2)
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where α = ‖A‖2, `0 = σmin(X0), and

ak = h(`k), bk = (ak − 1)2/4, ck = ak + bk − 1,

`k = `k−1(ak−1 + bk−1`
2
k−1)/(1 + ck−1`

2
k−1),

h(`) =
√

1 + γ +
1

2

√
8− 4γ +

8(2− `2)

`2
√

1 + γ
, γ =

3

√
4(1− `2)

`4
.

Here, σmin denotes the smallest singular value. The scaling approach is coined DWH
(dynamically weighted Halley). By using such a scaling, in exact arithmetic, at most
six iterations are needed for Halley to converge within a tolerance of 10−16 for matrices
with condition number no greater than 1016.

Despite the above appealing mathematical properties, scalings lead to subtle nu-
merical stability issues. Nakatsukasa and Higham [22] performed a comprehensive
analysis on a general fixed-point iteration (1.1). They showed that the iterations are
backward stable when the matrix inverse is computed in a mixed backward-forward
stable manner and when f does not significantly decrease the size of any singular
value relative to the largest one. This result explains the observation that the Newton
method with either spectral/norm scaling or Byers-Xu scaling is stable (see also [13]
and [2]), but the inverse Newton method with a Byers-Xu-like scaling is generally
not. For the Halley method (DWH), a stable implementation is to replace (1.2) by a
mathematically equivalent iteration [21]:

Xk+1 =
bk
ck
Xk +

1
√
ck

(
ak −

bk
ck

)
Q1Q

∗
2, (1.3)

where [√
ckXk

I

]
=

[
Q1

Q2

]
R

is a thin QR factorization.
Figure 1.1 demonstrates an example of the stability behavior of various scaled

iterations. The 20× 20 matrix A is defined as

A = Q∗DQ, (1.4a)

where Q is the orthogonal factor of a Gaussian random matrix and D is a diagonal
matrix with

diag(D) = [1,−ε, ε17/17, ε16/17, . . . , ε1/17, ε0/17]. (1.4b)

Here, ε is chosen to be 10−16 so that the matrix has a condition number 1016. The
relative error on the vertical axis is defined as

‖A−Xk(H +H∗)/2‖F /‖A‖F , where H = X∗kA.

Such an error metric originates from the polar decomposition, where H is the Her-
mitian polar factor of A. The error metric accurately measures the preservation of
the eigenspace of A in Xk. One sees that Newton with Byers-Xu scaling and Halley
(DWH) with the QR implementation (1.3) can reach the level of 10−15, but inverse
Newton with Byers-Xu-like scaling and Halley (DWH) with the LU implementation of
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Fig. 1.1. Convergence history for different scaled iterations. The matrix A is defined in (1.4).

matrix inverse (1.2) cannot. The figure also shows the results of two scaled Newton-
Schulz iterations, the subject of this paper.

Generally, Newton-Schulz requires a few times more iterations to converge than
do the other three methods. However, the appeal of Newton-Schulz is that it is
inversion-free. The matrix-matrix multiplications therein may be expected to have
better parallel scalability than the factorizations used for matrix inversion (e.g., LU
and QR), even if the factorizations employ no pivoting. The best communication
cost of matrix-matrix multiplications is log p times smaller than that of LU and QR,
where p is the number of processors [1, 5]. Moreover, the arithmetic cost of Newton-
Schulz is comparable with that of the other iteration methods, counting the total
flops (see Section 4.1). Hence, Newton-Schulz has a greater potential for efficiency in
a massively parallel computing setting.

In this paper, we focus on improving the initial convergence of Newton-Schulz, by
noting that a drawback of the method is that it requires a large number of iterations
before the quadratic convergence is seen. The derivation of the improvement is logi-
cally separated in two steps. In the first step, we seek an optimal scaling by analyzing
the fixed-point mapping f of Newton-Schulz (Section 2). The key observation is that
the initial convergence is governed by the derivative of the mapping at the origin.
Thus, the optimal scaling appears in the form

Xk+1 =
1

2
αkXk(3I − α2

kX
2
k),

where αk is the smallest magnitude eigenvalue of Xk (Section 3). A recurrence for-
mula can be derived for αk such that eigenvalue computations are not needed in
every iteration. Analysis suggests that the number of iterations for the optimal scal-
ing is reduced by half compared with nonscaling. The same scaling approach was
independently proposed by Rubensson [24] in the context of electronic structure cal-
culations. Unfortunately, this scaling is not stable, as demonstrated by the curve
annotated as “scaled Newton-Schulz, unstable” in Figure 1.1. The instability stems
from the fact that the scaled mapping significantly decreases the largest magnitude
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eigenvalue. Hence, we undertake the second step. In Section 4, we modify αk to
stabilize the mapping by sacrificing the optimal derivative at the origin only slightly.
The modified iteration is demonstrated by the curve annotated as “scaled Newton-
Schulz, stable” in Figure 1.1. We show that in exact arithmetic, at most 44 iterations
are needed for the stable, scaled Newton-Schulz to converge within a tolerance of
10−16 for matrices with condition number no greater than 1016. We also compare the
arithmetic and communication costs with those of the other stable scaling methods
and demonstrate the appeal of ours. Practical implementation, including shifting, is
discussed in Section 5. Then, we demonstrate large-scale calculations, including in
parallel (Section 6), and the application of computing the density matrix in electronic
structures (Section 7).

Terminology and notation. In most of this paper, the eigenvalues of A are
ordered according to their magnitudes. We use the term “smallest/largest magnitude
eigenvalue” of a matrix A to indicate the smallest/largest element of the set {|λ(A)|},
where λ(A) denotes the eigenvalues of A. These two elements are denoted as λ|min |(A)
and λ|max |(A), respectively. They are not necessarily eigenvalues. Because A is
Hermitian, the two elements coincide with the smallest and largest singular values of
A, respectively. We note that in some parts of this paper (especially when shifting is
concerned), the eigenvalues of A are sorted in their natural order.

Relation to polar decomposition. Much of the theory and analysis of the
present paper generalizes to the computation of the polar decomposition of A, where
S is the unitary polar factor. In such a case, A does not need to be Hermitian,
and the role of eigenvalues (in magnitude) is replaced by that of the singular values.
Algorithmically, one needs to change the X2

k terms to X∗kXk; for example, the scaled
Newton-Schulz iteration is modified to

Xk+1 =
1

2
αkXk(3I − α2

kX
∗
kXk).

The mathematical and numerical properties can be established analogously. However,
one technically hard (but not critical) aspect to generalize is shifting, which appears
to apply only to the sign function but not the polar decomposition.

2. Newton-Schulz. Since A is Hermitian, the convergence of Newton-Schulz is
completely characterized by the properties of the scalar mapping

f(x) =
1

2
x(3− x2) (2.1)

on the real line. Without loss of generality, we assume that ρ(A) = 1 and consider
only the interval x ∈ [−1, 1]. Figure 2.1 plots f .

Because f is odd, we further restrict our attention to the interval [0, 1]. The
mapping f on [0, 1] is monotonically increasing and admits x < f(x), except when
x = 0 or 1. Hence, one intuitive explanation of why the iteration Xk+1 = f(Xk)
converges to the sign of A is that f pushes all the positive eigenvalues of A toward 1 in a
monotonic manner (and similarly pushes the negative eigenvalues toward −1). Among
all these eigenvalues, the one that converges the most slowly is the eigenvalue closest
to the origin. Let this eigenvalue be x0, and without loss of generality assume that
x0 > 0. Then, the initial iteration reduces the condition number from 1/x0 to 1/f(x0).
When A is ill-conditioned (i.e., x0 ≈ 0), the rate of reduction is f(x0)/x0 ≈ f ′(0).
Because of the significance of f ′(0), one naturally asks what is the optimal mapping
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Fig. 2.1. Mapping f .

in the sense that the derivative at the origin is maximal. The optimal mapping turns
out to be Newton-Schulz, as the following result states.

Theorem 2.1. Let P be the set of cubic and odd polynomials that are monoton-
ically increasing on the interval [0, 1] and that map this interval to itself. Then,

f = arg max
g∈P

g′(0) with f ′(0) =
3

2
,

where f is defined in (2.1).
Proof. The polynomial must pass the origin because it is odd. It also must

pass the point (1, 1) because it is monotonically increasing. Then, all such cubic
polynomials must have the form g = ax+ (1− a)x3. The monotonic increase implies
that a ≤ 3

2 . Thus, g′(0) = a is maximized when a = 3
2 .

The reduction in the condition number informs only the behavior of the first
iteration. Also of interest are the first few iterations. Clearly, the sequence xk+1 =
f(xk) generated through the mapping is monotonically increasing and approaching
1. When x0 is sufficiently small, however, the following result indicates that the first
few xk’s are also small. In particular, they depart from 0 at only a linear rate.

Theorem 2.2. Let f be the Newton-Schulz mapping (2.1), and define a sequence
xk+1 = f(xk) with an initial value x0 ∈ (0, 1). Then,

log

(
xk
x0

)
< k log

(
3

2

)
< log

xk − f−1(xk)
1
3x0 −

[
f−1(xk)− 2

3xk
] (2.2)

whenever

1

3
x0 >

[
f−1(xk)− 2

3
xk

]
. (2.3)

Proof. We first note that

f ′(x) =
3

2
(1− x2) > 0 and f ′′(x) = −3x < 0,

when 0 < x < 1. Hence, for any k, xk < f ′(0)xk−1. Because f ′(0) = 3
2 , by induction

we have that

xk <

(
3

2

)k

x0.
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This proves the first inequality of (2.2).

Next, we have

(
3

2

)k

x0 − xk =

(
3

2

)k−1(
3

2
x0 − x1

)
+

(
3

2

)k−2(
3

2
x1 − x2

)
+ · · ·+

(
3

2

)0(
3

2
xk−1 − xk

)
.

Because f ′(0) = 3
2 and f ′ is decreasing, we have that 3

2x − f(x) is positive and is
increasing. Then,(

3

2

)k

x0 − xk <

[(
3

2

)k−1

+ · · ·+
(

3

2

)0
](

3

2
xk−1 − xk

)

=

(
3
2

)k − 1
3
2 − 1

(
3

2
f−1(xk)− xk

)
.

Rearranging terms, we obtain{(
3

2
− 1

)
x0 −

(
3

2
f−1(xk)− xk

)}(
3

2

)k

<
3

2

[
xk − f−1(xk)

]
,

which proves the second inequality of (2.2).

To explain the use of Theorem 2.2, we give an example. Consider that the
bound (2.2) is with respect to k. Table 2.1 gives the numeric values of (2.2) for
x0 = 10−3, where NA means the condition (2.3) is invalid. One sees that the bound
applies only when xk is not close to 1 (otherwise (2.3) is invalid); however, whenever
it is applicable, the bound for integer k is tight. Thus, we interpret the inequality on
the left as

log

(
xk
x0

)
≈ k log

(
3

2

)
(2.4)

for small xk. In other words, xk grows linearly for the first few k’s when the starting
value x0 is sufficiently small. Note that the factor log

(
3
2

)
is important; we will return

to this factor later.

We summarize a few facts in the following theorem, which connects the scalar
iteration with the matrix iteration. The validity is clear based on the preceding
discussions; hence, the proof is omitted.

Theorem 2.3. For a Hermitian matrix A and the Newton-Schulz mapping f
defined in (2.1), consider the matrix iteration Xk+1 = f(Xk), X0 = A, and the
scalar iteration xk+1 = f(xk). If the spectral radius of A is 1 and x0 is the smallest
magnitude eigenvalue of A, then we have the following.

1. xk is the smallest magnitude eigenvalue of Xk for all k.
2. The spectral radius of Xk is 1 for all k; hence the condition number of Xk is

1/xk.
3. ‖Xk − S‖2 = |xk − 1| for all k.
4. xk → 1 monotonically, and hence ‖Xk − S‖2 → 0 monotonically.
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Table 2.1
Numerical values of (2.2) for x0 = 10−3.

k 1 2 3

Bound (2.2) 0.99.. < k < 1.00.. 1.99.. < k < 2.00.. 2.99.. < k < 3.00..
xk 1.5000e-03 2.2500e-03 3.3750e-03

k 4 5 6

Bound (2.2) 3.99.. < k < 4.00.. 4.99.. < k < 5.00.. 5.99.. < k < 6.00..
xk 5.0625e-03 7.5936e-03 1.1390e-02

k 7 8 9

Bound (2.2) 6.99.. < k < 7.00.. 7.99.. < k < 8.01.. 8.99.. < k < 9.03..
xk 1.7085e-02 2.5624e-02 3.8428e-02

k 10 11 12

Bound (2.2) 9.99.. < k < 10.13.. 10.99.. < k < 11.51.. 11.98.. < k < 14.51..
xk 5.7614e-02 8.6325e-02 1.2917e-01

k 13 14 15

Bound (2.2) 12.97.. < k < NA 13.94.. < k < NA 14.87.. < k < NA

xk 1.9267e-01 2.8543e-01 4.1652e-01

3. Scaled Newton-Schulz (step 1). In this section, we derive a variant of
Newton-Schulz so that the iteration progresses better initially. The optimal variant
turns out to be a simple scaling of the Newton-Schulz iterates.

Theorem 2.1 states that the Newton-Schulz mapping f is optimal among all cubic
and odd polynomials that map [0, 1] to [0, 1], if in addition the polynomial is required
to be increasing. To obtain a polynomial whose derivative at the origin is even larger,
we need to sacrifice the monotonicity. Define

P ′ = {cubic and odd polynomial g : g([0, 1]) = [0, 1]}.

The polynomials in P ′ can be parameterized in several ways. Consider g̃(x) = ax+bx3,
where a > 0. We crop g̃ in the box [0, c]× [0, d] and normalize it to obtain

g(x) =
1

d
g̃(cx) =

ac

d
x+

bc3

d
x3. (3.1)

When d is the maximum of g̃ on [0, c], such polynomials g constitute the set P ′.
One can separate the values of b and c into three cases and calculate that

d =



ac+ bc3, in case 1: b ≥ 0

ac+ bc3, in case 2: b < 0 and c ≤
√
− a

3b

2a

3

√
− a

3b
, in case 3: b < 0 and c >

√
− a

3b
.

(3.2)

See Figure 3.1 for visual examples of the three cases.
In case 1, for all x ∈ [0, 1], g(x) ≤ x; in case 2,

g′(0) =
ac

d
=

ac

ac+ bc3
≤ 3

2
,

because c ≤
√
− a

3b . These two cases do not yield a better polynomial than the
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0 c0

d

(a) Case 1, a = 1, b = 0.1

0 c0

d

(b) Case 2, a = 1, b = −0.012

0 c0

d

(c) Case 3, a = 1, b = −0.03

Fig. 3.1. Function g̃ in different cases of (3.2). c = 5.

standard Newton-Schulz mapping f does. On the other hand, in case 3,

g′(0) =
ac

d
=

3

2
c

/√
− a

3b
,

which is larger than 3
2 . Hence, we further explore this case.

Let α = c
/√
− a

3b , which is greater than 1. The polynomial in case 3 is simplified
to

g(x) =
3

2
αx− 1

2
α3x3. (3.3)

Such a polynomial passes the origin, monotonically increases to the maximum 1, and
then decreases until touching x = 1. When α becomes larger, the derivative at the
origin is steeper, the x value that achieves maximum moves toward the left, and g(1)
gets closer to 0. In the extreme case, we solve g(1) = 0 and obtain that α =

√
3.

Hence, the valid range of α is between 1 and
√

3.
As before, we let x0 > 0 be the smallest magnitude eigenvalue, whereas the

largest is 1. We want α to be optimal in the sense that after the mapping g, the
condition number of the matrix is maximally reduced. Such an α is obtained by
solving g(x0) = g(1); see Figure 3.2. The solution gives

α =

√
3

1 + x0 + x2
0

. (3.4)

Because such an α yields a mapping g that maps the interval [x0, 1] to [g(x0), 1], the
smallest magnitude eigenvalue of the matrix is g(x0) after mapping.

Thus, we apply the optimal mapping g iteratively on the matrix. Note that g
keeps changing because the smallest magnitude eigenvalue does so, too. We start with
an initial matrix X0 = A/λ|max | such that the spectral radius of X0 is 1. Then, its
smallest magnitude eigenvalue x0 = λ|min |/λ|max |. The iteration maintains a loop
invariant such that the smallest magnitude eigenvalue of Xk is xk. Specifically, the
iteration reads

Xk+1 =
1

2
αkXk(3I − α2

kX
2
k), (3.5a)

where

αk =

√
3

1 + xk + x2
k

and xk+1 =
1

2
αkxk(3− α2

kx
2
k). (3.5b)
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0 x0 10

1

Fig. 3.2. Optimal mapping g given x0.

We call (3.5) the optimally scaled Newton-Schulz iteration.

3.1. Analysis. The optimal mapping g in the preceding discussion depends on
the smallest magnitude eigenvalue. We may write an eigenvalue-independent mapping
to characterize the scaled iteration instead:

h(x) =
3

2
αx− 1

2
α3x3, where α(x) =

√
3

1 + |x|+ x2
. (3.6)

Figure 3.3 plots h on [−1, 1], together with the standard Newton-Schulz mapping f
for comparison.

−1 0 1−1

0

1

 

 

h: scaled NS
f: standard NS

Fig. 3.3. Mapping h (scaled Newton-Schulz) and f (Newton-Schulz).

We note that different from the case of f , we shall not treat h as a matrix
function and write Xk+1 = h(Xk), because α takes only a scalar value x as input.
By construction, the smallest magnitude eigenvalue maintains its “smallest” property
after one iteration. Hence, we define the matrix counterpart of h as

h(X) =
3

2
αX − 1

2
α3X3, where α(X) =

√
3

1 + λ|min |(X) + λ|min |(X)2
. (3.7)

Then, the iteration Xk+1 = h(Xk) is consistent with that of (3.5).
Clearly, the mapping h is monotonically increasing on [0, 1], and it maps this

interval to itself. Because α ≥ 1, we always have h(x) ≥ f(x) for x ∈ (0, 1). Hence,
for the same initial value x0 = x̃0 ∈ (0, 1), the sequence xk+1 = h(xk) is always larger
than the sequence x̃k+1 = f(x̃k), elementwise. Because x̃k → 1 and xk is bounded
by 1, the sequence xk monotonically increases to the limit 1, the same as does the
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sequence x̃k. Furthermore, xk is always closer to the limit than is x̃k. We summarize
this result, together with other facts in the following theorem, whose proof is clear
based on the foregoing discussion. This theorem connects the matrix iteration with
the scalar iteration. One should compare this result with Theorem 2.3.

Theorem 3.1. For a Hermitian matrix A and the optimally scaled Newton-
Schulz mappings h and h defined in (3.6) and (3.7), respectively, consider the matrix
iteration Xk+1 = h(Xk), X0 = A, and the scalar iteration xk+1 = h(xk). If the
spectral radius of A is 1 and x0 is the smallest magnitude eigenvalue of A, then we
have the following.

1. xk is the smallest magnitude eigenvalue of Xk for all k.
2. ‖Xk − S‖2 = |xk − 1| for all k.
3. xk → 1 monotonically, and hence ‖Xk − S‖2 → 0 monotonically.
4. The spectral radius of Xk converges to 1.

Furthermore, for the iteration x̃k+1 = f(x̃k) where x̃0 = x0 and where f is the
standard Newton-Schulz mapping (2.1), we have x̃k < xk for all k > 0.

The significance of the first conclusion of Theorem 3.1 is that the convergence
behavior of Xk is completely characterized by that of xk. Then, we need to focus
on only the mapping h. The following theorem states the limiting and the initial
behavior of the scaled iterations.

Theorem 3.2. Let h be the mapping of the optimally scaled Newton-Schulz
iteration (3.6), and define a sequence xk+1 = h(xk) with an initial value x0 ∈ (0, 1).
Then

1. xk converges to 1 quadratically; and
2. we have

log

(
xk
x0

)
< k log

(
3

2

√
3

)
< log

xk − h−1(xk)(
1− 2

3
√

3

)
x0 −

[
h−1(xk)− 2

3
√

3
xk

] (3.8)

whenever (
1− 2

3
√

3

)
x0 >

[
h−1(xk)− 2

3
√

3
xk

]
.

Proof. We already know that xk converges to 1 in Theorem 3.1. Because h(x)−1 =
− 1

2 (αx+ 2)(αx− 1)2, we have

lim
x→1

|h(x)− 1|
|x− 1|2

=

(
lim
x→1

|αx+ 2|
2

)(
lim
x→1

αx− 1

x− 1

)2

=
3

2

(
lim
x→1

dα

dx
+ α

)2

=
3

8
, (3.9)

where the second equality follows from L’Hospital’s rule. This shows that the conver-
gence is quadratic.

The result (3.8) is proved by using the same technique as that for proving (2.2)
in Theorem 2.2. To save space, we omit the details here.

Similar to the interpretation of Theorem 2.2, we see that the bound (3.8) is tight.
For example, when x0 = 10−3, the numeric values of the bound are given in Table 3.1.
Hence, we write

log

(
xk
x0

)
≈ k log

(
3

2

√
3

)
. (3.10)
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Compare (3.10) with (2.4), which we repeat here by adding a tilde to denote the
sequence generated through the f mapping (as we previously did):

log

(
x̃k
x0

)
≈ k log

(
3

2

)
.

Because the ratio between log
(

3
2

√
3
)

and log
(

3
2

)
is 2.35.., we can loosely conclude

that

x̃2k < xk < x̃3k.

This means that initially (when k is small), the optimally scaled Newton-Schulz itera-
tion increases the iterate xk at least twice as fast as does the standard Newton-Schulz
iteration.

Table 3.1
Numerical values of (3.8) for x0 = 10−3.

k 1 2 3

Bound (3.8) 0.99.. < k < 1.00.. 1.99.. < k < 2.00.. 2.99.. < k < 3.03..
xk 2.5968e-03 6.7378e-03 1.7445e-02

k 4 5 6

Bound (3.8) 3.98.. < k < 4.28.. 4.95.. < k < NA 5.88.. < k < NA

xk 4.4914e-02 1.1383e-01 2.7539e-01

On closing this section, we remark that in the convergence guarantee of (3.5), x0

need not be the smallest magnitude eigenvalue of X0. The following theorem states
that (3.5) always converges no matter what value x0 takes. More amazing is that the
quadratic rate of convergence is also maintained. Hence, the price paid for using an
arbitrary x0 is only some more iterations.

Theorem 3.3. For the optimally scaled Newton-Schulz iteration (3.5), Xk con-
verges to S quadratically for any x0 ∈ (0, 1).

Proof. We repeat (3.5) in the following for better reading:

Xk+1 =
1

2
αkXk(3I − α2

kX
2
k). (3.11)

Because the sequence xk is computed through the fixed-point mapping xk+1 = h(xk),
for any x0 ∈ (0, 1), xk converges to 1 quadratically. Hence, αk also converges to 1
quadratically. We use an auxiliary sequence

Yk+1 =
1

2
Yk(3I − Y 2

k ), Y0 = X0 (3.12)

to gauge the convergence behavior of Xk. Clearly, the sequence Yk results from the
standard Newton-Schulz iteration, and it converges to S quadratically.

Let Vk = Xk − Yk, Wk = Yk − S, and εk = |αk − 1|. We have

‖αkXk − Yk‖2 ≤ ‖αkXk − αkYk‖2 + ‖αkYk − Yk‖2
= αk‖Vk‖2 + εk‖Yk‖2 ≤ (1 + εk)‖Vk‖2 + εk(1 + ‖Wk‖2). (3.13)
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We further let Zk = αkXk − Yk. By noting that Xk and Yk commute (because both
are polynomials of X0), we subtract (3.12) from (3.11) and obtain

‖Vk+1‖2 =
1

2
‖Zk(3I − Z2

k − 3αkXkYk)‖2

≤ 1

2
‖Zk‖2

(
3‖I − Y 2

k ‖2 + ‖Zk‖22 + 3‖Zk‖2‖Yk‖2
)

≤ 1

2
‖Zk‖2

(
‖Zk‖22 + 3(1 + ‖Wk‖2)‖Zk‖2 + 3(2‖Wk‖2 + ‖Wk‖22)

)
.

With the help of (3.13) we further expand the inequality of ‖Vk+1‖2 and obtain

‖Vk+1‖2 ≤
[
3(εk + ‖Wk‖2) +O(ε2k + εk‖Wk‖2 + ‖Wk‖22)

]
· ‖Vk‖2

+O(ε2k + εk‖Wk‖2 + ‖Wk‖22 + ‖Vk‖22).

Note that both εk and ‖Wk‖2 converge to 0 quadratically. Because ‖V0‖2 = 0, by in-
duction we have that ‖Vk‖2 = O(εk+‖Wk‖2). This means that the difference between
Xk and Yk converges to 0 quadratically. Thus, Xk converges to S quadratically.

4. Scaled Newton-Schulz (step 2), stable version. Unfortunately, the op-
timal scaling (3.5) is numerically unstable at convergence. Stability is measured by
the backward error

‖A−Xk(H +H∗)/2‖
‖A‖

(4.1)

of the polar decomposition of A, where H is the Hermitian polar factor X∗kA and
‖ · ‖ is any subordinate matrix norm. The curve annotated as “scaled Newton-Schulz,
unstable” in Figure 1.1 shows that the iteration (3.5) cannot decrease the backward
error to the level of machine precision. The instability stems from the subtle fact that
repeated matrix-matrix multiplications may alter the eigenspace of a matrix. Thus,
an alternative stability measure is

‖AXk −XkA‖
‖A‖‖Xk‖

,

which measures how well Xk commutes with A. This measure leads to the same
instability conclusion for (3.5).

A simple but robust fix returns to the derivation of the optimal mapping g in (3.3)
and (3.4). Recall that x0 denotes the smallest magnitude eigenvalue. The optimal
scaling factor α is derived by equating g(x0) with g(1). When x0 is small, so is
g(x0). Then, such an α forces the largest magnitude eigenvalue 1 to drop to g(1), a
substantial decrease. In the analysis of [22], such a decrease is the origin of instability.
To circumvent the issue, we set a threshold t that limits the smallest value of g(1).
Equating g(1) = t gives

3

2
α− 1

2
α3 − t = 0. (4.2)

Clearly, α is a decreasing function of t when α > 1. Let α̂ solve (4.2), which has only
one root on the interval (1,

√
3). Then, the modified scaling factor α reads

α = min

{√
3

1 + x0 + x2
0

, α̂

}
, (4.3)
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which is upperbounded by α̂.
An appropriate value of the threshold t cannot be too small or too large. If too

small, the largest magnitude eigenvalue still undergoes a significant decrease. If too
large, g′(0) = 3

2α decreases accordingly and undermines the acceleration of Newton-
Schulz. Let us consider three candidates: 1, 0.1, and 0.01. The first candidate is
equivalent to the standard Newton-Schulz—no scaling. The third candidate yields
a backward error curve that stagnates above the level of machine precision. On the
other hand, the second candidate survives all the stability tests we have conducted.
Thus, we set t = 0.1.

One additional benefit of using t = 0.1 is that it barely changes the convergence
progress of the optimally scaled iteration (3.5). Specifically, we write the new mapping

ĥ(x) =
3

2
αx− 1

2
α3x3, where α(x) = min

{√
3

1 + |x|+ x2
, α̂

}
. (4.4)

Comparing ĥ with h in (3.6), the curve of ĥ is visually indistinguishable from that of
h (plotted in Figure 3.3). Moreover, an analogous result to (3.10) is

log

(
x̂k
x0

)
≈ k log

(
3

2
α̂

)
,

where {x̂k} denotes the sequence generated by the ĥ mapping. Here, α̂ = 1.69... when
t = 0.1, which makes log

(
3
2 α̂
)
/ log

(
3
2

)
= 2.30.... Such a ratio is sufficiently close

to the ratio log
(

3
2

√
3
)
/ log

(
3
2

)
, leading to an almost identical convergence progress

compared with the optimally scaled Newton-Schulz.
We summarize the whole computational procedure in Algorithm 1. This algorithm

is numerically stable.

Algorithm 1 A Stable, Scaled Newton-Schulz Method for Computing sign(A)

1: Compute λ|min | and λ|max | of A
2: Let X0 = A/λ|max | and x0 = λ|min |/λ|max |.

3: Solve 1
2 α̂(3− α̂2) = t for α̂, where t = 0.1.

4: for k = 0, 1, . . .maxiter do

5: Compute αk = min

{√
3

1 + xk + x2
k

, α̂

}
.

6: Update Xk+1 = 1
2αkXk(3I − α2

kX
2
k).

7: Symmetrize Xk+1 ← 1
2 (Xk+1 +X∗k+1) if required.

8: Update xk+1 = 1
2αkxk(3− α2

kx
2
k).

9: If converged, exit loop.
10: end for
11: return Xk+1

4.1. Computational costs. We list in Table 4.1 the maximum number of it-
erations needed for the backward error (4.1) to reach 10−16 for different values of
the matrix condition number. Four stable iterations are compared: the standard
Newton-Schulz; the stable, scaled Newton-Schulz (Algorithm 1); Newton with Byers-
Xu scaling; and Halley (DWH) with the QR implementation (1.3). One clearly sees
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that Algorithm 1 converges approximately twice as fast as the standard Newton-
Schulz, whereas it requires only a few more times of iterations compared with the last
two methods.

Table 4.1
Iteration counts for various iterations to converge to 10−16.

Condition number 102 104 106 108 1010 1012 1014 1016

Newton-Schulz (NS) 17 28 39 51 62 74 85 96
Stable, scaled NS 10 15 19 24 29 34 39 44
Newton, Byers-Xu 6 7 7 8 8 8 9 9

Halley, DWH with QR 4 5 5 5 5 5 6 6

In terms of flop count, Newton-Schulz and scaled Newton-Schulz require 2n3 flops
per iteration in the Hermitian case (neglecting lower-order terms). Scaled Newton
also requires 2n3 flops per iteration if the inversion is computed by using a triangular
factorization, or 6n3 flops if the inversion is computed by using a backward stable
bidiagonal reduction-based algorithm [21]. The dynamically weighted Halley iteration
implemented using QR factorization requires (26/3)n3 flops per iteration, or (16/3)n3

flops per iteration if implemented carefully with Givens rotations.
In terms of communication volume in a parallel implementation, although matrix

multiplication, Cholesky, and QR factorization have asymptotically the same lower
bounds, current practical “communication-avoiding” implementations of Cholesky
and QR come only within a factor of log p, where p is the number of processors,
and may perform many more flops than the standard algorithms in order to attain
reduced communication [1, 5]. On the other hand, matrix multiplication attains its
communication lower bound with standard Cannon and SUMMA algorithms, and
many optimized implementations exist for different computer platforms.

In summary, the main computational difference between the Newton-Schulz al-
gorithms (including Algorithm 1) and Newton and Halley is matrix inversion (or
factorizations used for reformulating inversion). With inversion, much faster conver-
gence may be attained, but it comes at the cost of potentially poorer scalability. This
is a classic tradeoff. The best algorithm to use in any situation will likely depend on
the computer architecture, the number of available processors, the problem size, and
the matrix condition number.

5. Practical implementation. A few implementation issues for Algorithm 1
are addressed in this section.

5.1. Stopping criterion. We need a convergence test for line 9 of Algorithm 1.
Write Xk − S = (XkS − I)S; then,

‖Xk − S‖ = ‖(XkS − I)S‖ ≤ ‖XkS − I‖‖S‖.

Note that the inequality is an equality in the 2-norm case. When Xk ≈ S, we obtain
the relative error

‖Xk − S‖
‖S‖

/ ‖X2
k − I‖.

Hence, it is straightforward to use ‖X2
k − I‖ ≤ tol as the convergence criterion,

where tol is the relative tolerance. Any submultiplicative norm can be used, but for
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computational convenience we use the Frobenius norm. The computed squared factor
X2

k is stored and used in the next iteration for updating Xk. The best attainable
error is nu/2, where u is the machine precision [11, Section 5.1].

Note that this stopping criterion verifies only the unitarity of Xk but not the
eigenspace. At detected convergence, one may in addition compute the backward
error (4.1) to ensure that the computed Xk is stable. Computing (4.1) requires two
extra matrix-matrix multiplications.

5.2. Shifting. A useful observation is that shifts of A do not change sign(A) as
long as these shifts do not cause eigenvalues of A to cross the origin. Hence, we can
perform a shift to precondition A (that is, to start with a larger x0) and to improve
convergence. Specifically, we first compute four eigenvalues of interest:

λ−min(A) ≤ λ−max(A) < 0 < λ+ min(A) ≤ λ+ max(A),

which are the smallest negative, the largest negative, the smallest positive, and the
largest positive eigenvalue of A, respectively, and compute a shift

τ =
λ−max(A) + λ+ min(A)

2
.

Then, we input A′ = A − τ and run Algorithm 1 to obtain S = sign(A′). The two
eigenvalues in Algorithm 1 now become

λ′|max | = max{|λ+ max(A)− τ |, |λ−min(A)− τ |}
λ′|min | = min{|λ−max(A)− τ |, |λ+ min(A)− τ |}.

For the amount of reduction in iterations caused by the reduction in condition number,
see Table 4.1.

5.3. Eigenvalue estimation. The requirement of eigenvalue computation in
Algorithm 1 forms several levels of difficulty. Our discussion here is oriented to general
eigenvalue techniques and software support. Whereas small-scale eigenvalue problems
have a standard solution through orthogonal transformations to the condensed form,
large-scale eigenvalue problems are challenging, even if only a few extreme and/or
interior eigenvalues are sought. We make no effort to design new eigenvalue techniques;
rather, the issue we address here is how practical Algorithm 1 is in a large-scale setting
with off-the-shelf software packages. For a comprehensive treatment of the theory
and state-of-the-art eigenvalue methods, we refer the readers to Saad’s book [25].
Practitioners might develop specialized eigenvalue solvers for their applications.

At the easiest level, no eigenvalue computation is carried out. The largest mag-
nitude eigenvalue can be estimated by using the Gershgorin circle theorem. The
theorem ensures that the spectral radius of the scaled matrix is no greater than 1. A
drawback of this method is that in some cases the bound provided by the theorem is
too pessimistic. On the other hand, the starting value x0 can be arbitrary, as noted
earlier; what is sacrificed is the optimal convergence. If a good estimate of the con-
dition number of A is known a priori, the extra number of iterations may not be too
large. Note that if x0 is not an accurate estimate, shifting is impossible.

At the next level, Gershgorin is replaced by a computation of the largest magni-
tude eigenvalue. This eigenvalue can be computed by using the Lanczos algorithm.
Accelerated by implicit shifts and restarts [14, 27], the Lanczos algorithm converges
rapidly when the targeted eigenvalue is not clustered with others. The algorithm has
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been implemented in ARPACK [15]. The dominant cost of the calculation is forming
matrix-vector products, for which extensive research has been devoted to designing
high-performance software as well as linear-time or near-linear-time algorithms for
different types of matrices, such as sparse, Toeplitz, or kernel matrices. Because the
desired eigenvalue converges from inside the spectrum interval, if this eigenvalue can-
not be computed to high accuracy, a correction term must be added to ensure that
the spectral radius of the scaled matrix is no greater than 1.

The most difficult level comprises the calculation of all four eigenvalues mentioned
in Section 5.2. In particular, shifting is useful and produces the correct result only
when the two innermost eigenvalues are computed accurately. Computing these eigen-
values, however, is a well-known challenge in applications. The Lanczos algorithm
discussed in the preceding paragraph can be reused, by applying A−1 as the operator
instead of A. Then, the dominant cost becomes solving linear systems with A. For
sparse matrices, a direct method is the most robust; software includes CHOLMOD [4]
and SuperLU [17]. For dense matrices arising from kernels, direct solves with high-
accuracy off-diagonal compression techniques are gaining popularity [30]. Iterative
solvers are in general not as robust as direct solvers but sometimes are highly effi-
cient with a good preconditioner. To avoid being too restricted by the standard form
of Lanczos, we also mention other popular methods for computing interior eigenval-
ues: shift-and-invert [7], Davidson’s method [3] and its improvements [20, 9], and
polynomial filtering [8], the details of which are not further discussed.

6. Numerical experiments. In this section we conduct numerical experiments
with matrices from various sources. Many aspects of Algorithm 1 are examined, in-
cluding stability, eigenvalue estimates, shifting, and computing environments (includ-
ing a single desktop with multithreaded Matlab and a computing cluster with MPI).
The goal is to demonstrate the stability and efficiency of the proposed algorithm. The
symmetrization step (line 7 of Algorithm 1) is enforced.

6.1. Matrices from the Matlab gallery and Higham’s toolbox. We em-
pirically verify the numerical stability of Algorithm 1 with applicable matrices from
the Matlab gallery and Higham’s matrix computation toolbox.1 The size of the matri-
ces is set to 20×20. If a matrix A is not Hermitian, we modify it by A← (A+A∗)/2.
The condition number of the modified matrices ranges from 1 to 1.1e+19. When the
stopping criterion is set to ‖X2

k − I‖F ≤ nu/2, the largest backward error (4.1) is
2.3e-15 among all matrices.

6.2. An artificial matrix. We test the effect of inaccurate eigenvalue estimates
on the convergence of Algorithm 1. For this, consider a matrix built using the standard
2D Laplacian L:

A =

[
L− cλ|min |(L)

−2L+ 2cλ|min |(L)

]
, (6.1)

where c < 1 is a tunable parameter. The eigenvalues of such a matrix are known.
When c→ 1, A is increasingly ill-conditioned.

We use a 20 × 30 grid to construct L and test with two choices of c: 1 − 10−4

and 1− 10−8. Table 6.1 lists the number of iterations with different estimates of the
eigenvalues λ|max |(A) and λ|min |(A) in Algorithm 1. For the estimated eigenvalues,
we let λ|max |(A) be twice the exact value. Usually, this eigenvalue is easy to estimate,

1http://www.maths.manchester.ac.uk/~higham/mctoolbox/
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and setting it to be twice as large is sufficiently conservative. On the other hand, for
λ|min |(A), we perturb the exact value by a factor of 10 or 100 to simulate highly
inaccurate estimates. In the table, the first row always uses the exact eigenvalues.
The column “NS” stands for Newton-Schulz and “sNS” stands for the stable, scaled
variant. As expected, when the eigenvalue estimates are very crude, the number of
iterations significantly increases. Nevertheless, the scaled iteration still requires many
fewer iterations than does standard Newton-Schulz. The largest backward error (4.1)
is 1.49e-16 among all matrices.

Table 6.1
Number of iterations for matrix A in (6.1). “NS” stands for Newton-Schulz and “sNS” stands

for the proposed method (Algorithm 1). “Est. λ|max |” and “Est. λ|min |” are perturbed eigenvalues
of A, except in the first row, which uses the exact eigenvalues.

c = 1− 10−4, cond = 4.86802e+06 c = 1− 10−8, cond = 4.86802e+10

Est. λ|max | Est. λ|min | NS sNS Est. λ|max | Est. λ|min | NS sNS
1: 15.8696 3.26e-06 43 21 15.8696 3.26e-10 66 31
2: 15.8696 1.00e-06 43 22 15.8696 1.00e-10 66 32
3: 15.8696 1.00e-04 43 27 15.8696 1.00e-08 66 36
4: 15.8696 1.00e-08 43 27 15.8696 1.00e-12 66 37
5: 31.7392 3.26e-06 45 22 31.7392 3.26e-10 68 32
6: 31.7392 1.00e-06 45 23 31.7392 1.00e-10 68 33
7: 31.7392 1.00e-04 45 27 31.7392 1.00e-08 68 37
8: 31.7392 1.00e-08 45 28 31.7392 1.00e-12 68 38

6.3. PARSEC matrices. We test the use of shifting on the PARSEC collection
of matrices arising from density functional theory in quantum mechanics. The ma-
trices can be downloaded from the University of Florida Sparse Matrix Collection.2

This collection contains matrices of size ranging from several hundreds to a few hun-
dred thousands. The computations are carried out on the Blues computing cluster3

at Argonne National Laboratory. The machine comprises 310 compute nodes, each
of which has 16 Intel Sandy Bridge cores and 64 GB of memory. The compute nodes
are connected by QLogic QDR InfiniBand with a fat-tree topology.

We prepared two programs, one in Matlab and the other in C with MPI. The
Matlab program runs on one compute node with a maximum of 16 threads by de-
fault. It uses the backslash command for solving linear systems and uses the eigs

command for computing eigenvalues. The C program runs on a large number of
compute nodes. It uses SuperLU for solving linear systems and uses PARPACK for
computing eigenvalues. The matrix-matrix multiplication is implemented by using
ScaLAPACK.

Preliminary investigation of the spectra shows that the inertias of the matrices are
highly skewed. We thus center the matrices at 1/3 of the spectrum as a preprocessing
(that is, the new origin is located at 1

3λ+ max + 2
3λ−min). The cutoff 1/3 is arbitrary;

our purpose is to demonstrate calculations with an arbitrary change of the origin.

We perform calculations with the preprocessed matrices, once before shifting and
once after shifting. The computed results are listed in Table 6.2. One sees that shifting
does help reduce the condition number and the iteration count. The reduction on the
matrices benzene and Si34H36 is substantial.

2http://www.cise.ufl.edu/research/sparse/matrices/
3http://www.lcrc.anl.gov/about/blues
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Table 6.2
Computation results of the matrices in the PARSEC collection. The matrices were preprocessed

by centering. Inertia a/b means a positive eigenvalues and b negative eigenvalues. “Cond” is the
condition number. “Iter” is the number of iterations. “B-Err” is the backward error (4.1).

Before Shift After Shift
Matrix n Inertia Cond Iter B-Err Cond Iter B-Err

Si2 769 516/253 2.5e+3 13 4.2e-15 1.3e+3 12 3.8e-15

SiH4 5,041 3,467/1,574 1.4e+4 15 4.7e-15 2.3e+3 13 4.2e-15

benzene 8,219 5,459/2,760 5.4e+6 21 6.6e-15 1.5e+4 15 5.0e-15

Si10H16 17,077 11,575/5,502 3.6e+4 16 5.4e-15 2.5e+4 15 5.4e-15

SiO 33,401 22,620/10,781 3.3e+4 16 8.6e-15 2.3e+4 15 8.5e-15

Ga3As3H12 61,349 61,348/1 2.6e+0 5 6.7e-15 1.1e+0 4 4.4e-16

Si34H36 97,569 65,621/31,948 1.4e+6 20 8.6e-15 6.3e+4 16 7.3e-15

Table 6.3 lists the timings of the calculations for the matrices with optimal shift-
ing. Results on the top part of the table are obtained by running the Matlab pro-
gram, those in the bottom part by running the C program. As expected, computing
the interior eigenvalues λ−max and λ+ min is more costly than computing the exterior
eigenvalues λ−min and λ+ max. Nevertheless, compared with the iterations, the time
for computing the eigenvalues is generally smaller.

Table 6.3
Timing results of the computation of the matrices in Table 6.2. All times are in seconds.

Matrix n Parallelism λ−min λ−max λ+min λ+max sNS

Si2 769 16 threads 8.9e-1 5.5e-1 8.6e-1 3.9e-2 6.1e-1

SiH4 5,041 16 threads 9.9e-2 2.8e+1 5.7e+1 9.0e-2 8.8e+1

benzene 8,219 16 threads 1.8e-1 8.1e+1 5.3e+1 1.6e-1 4.4e+2

Si10H16 17,077 16 threads 6.3e-1 8.1e+2 6.1e+2 5.7e-1 3.4e+3

SiO 33,401 1,024 procs 3.8e+0 8.4e+0 6.7e+0 7.4e-1 2.6e+2

Ga3As3H12 61,349 1,024 procs 5.2e+0 1.3e+2 2.3e+1 2.7e-1 4.5e+2

Si34H36 97,569 2,304 procs 1.2e+1 3.5e+1 6.8e+1 5.3e+0 2.6e+3

7. Application: electronic structure calculation. At every iteration of the
Hartree-Fock algorithm, also known as the self-consistent field (SCF) iteration, a
spectral projector called the density matrix is computed from the Fock matrix, which
is an approximation to the Hamiltonian [28]. The density matrix may be computed in
many ways, the most obvious being through an eigenvalue decomposition of the Fock
matrix. In this section we demonstrate the use of our scaled Newton-Schulz algorithm
for computing the density matrix.

Construction of the Fock matrix is the computationally intensive step in SCF
iterations, but it is highly parallel. Computation of the density matrix, however,
can be the bottleneck limiting parallel scalability: although the density matrix is not
extremely large, it must be efficiently computed by using a large number of processors
(which were used earlier to construct the Fock matrix), much like the solution of
small coarse-grid problems in parallel multigrid. Algorithms of Newton-Schulz type
(called McWeeny purification [19] in the quantum chemistry literature) that are rich
in matrix-matrix multiplications are thus attractive in the high parallelism setting.

We generated the core-Hamiltonian matrix for two hydrocarbon molecules: a
graphene-like molecule, C384H48, and a linear alkane, C418H838. The core-Hamiltonian
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Table 7.1
Hydrocarbon test problems. The dimension of the core-Hamiltonian matrix is the basis size,

and nocc is the number of occupied orbitals. The value λ|min| is the smallest magnitude eigenvalue
of A after it has been scaled to have unit spectral radius.

Basis Size nocc λ|min|
Graphene C384H48 5,616 1,176 4.1e-05

Alkane C418H838 10,042 1,673 2.4e-05

describes the kinetic energy and nuclear attraction of electrons, but not electron-
electron interactions, and is often used as the initial guess for the Fock matrix in
SCF iterations. Since the Fock matrix itself depends on the density matrix, the core-
Hamiltonian initial guess corresponds to a zero initial guess for the density matrix.
Here, we compute the density matrix corresponding to these core-Hamiltonians. The
elements of the core-Hamiltonian matrices were formed by using the Dunning cc-
pVDZ basis set [6] using a standard quantum chemistry code [18]. Table 7.1 shows
the resulting matrix dimension (equal to the number of basis functions) for the two
test problems.

The density matrix is the spectral projector associated with the nocc lowest eigen-
values and their corresponding eigenvectors, where nocc is the number of occupied
orbitals, or half the number of electrons assuming closed-shell orbitals. To compute
the density matrix via the sign function, we first compute the sign of

A = µI −H,

where H is the core-Hamiltonian in our case and µ, known as the Fermi level, separates
the occupied eigenvalues from the unoccupied eigenvalues. The Fermi level is often
known, especially for problems with a large energy band gap. For our tests, we chose
the Fermi level to lie exactly between the nocc and nocc + 1-st eigenvalue of A, sorted
in increasing order. This is optimal for the Newton-Schulz method and the scaled
variant. In practice, such an exact shift is not known. On the other hand, using the
core-Hamiltonian is a kind of worse case, since there is no gap of eigenvalues around
µ, as would be the case for more converged Fock matrices in later SCF iterations. We
note that once sign(A) is computed, the density matrix is given by (sign(A) + I)/2.
The density matrix can also be computed directly from A by using the McWeeny
mapping g(x) = 3x2 − 2x3, which can also be modified to accelerate convergence as
we have in this paper modified the Newton-Schulz mapping.

Figure 7.1 plots the residual norm ‖X2
k − I‖F and the backward error (4.1) us-

ing the Frobenius norm for Newton-Schulz and for the new scaled method for the
alkane test problem. The plots for the graphene test problem are qualitatively the
same. (Note that for Newton-Schultz, an initial scaling of the test matrix is used such
that the maximum magnitude eigenvalue has magnitude 1.) As we have seen, the
scaled method converges in approximately half the number of iterations of the origi-
nal method. For the original method, convergence in the Frobenius norm is monotone,
as every eigenvalue is improved (pushed toward the correct direction) at each itera-
tion. For the scaled method, although it is faster, the situation is different. Here, we
observe a “dip” in the first five iterations: an initial decrease, faster than the decrease
of standard Newton-Schulz, followed by an increase. In the scaled method, only the
eigenvalue closest to zero is guaranteed to improve monotonically; the nonmonotone
convergence of other eigenvalues makes the Frobenius norm of the residual converge
nonmonotonically.
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Fig. 7.1. Convergence of Newton-Schulz (NS) and scaled Newton-Schulz (sNS) for the alkane
C418H838 core-Hamiltonian.

8. Conclusion. The multiplication-rich property of Newton-Schulz makes it
preferable over other methods for computing the sign function of a Hermitian ma-
trix in the setting of high-performance computing. In this paper, we presented a
stable, scaled variant that accelerates the initially slow convergence of the iteration.
The proposed algorithm generally converges twice as fast as Newton-Schulz. In exact
arithmetic, at most 44 iterations are needed to converge within a tolerance of 10−16

for matrices with condition number no greater than 1016. Parallel implementations
are straightforward, using existing highly optimized codes for matrix multiplication.

The proposed algorithm requires estimation of the largest magnitude eigenvalue,
as does the standard Newton-Schulz method. On the other hand, most of the con-
vergence theory for the proposed algorithm is based on an accurate calculation of the
smallest magnitude eigenvalue as well. Nevertheless, we have proved a result stating
that the quadratic convergence is maintained even if the smallest magnitude eigen-
value is blindly set. In practice, this value is not arbitrary, but it may be a very
crude estimate. Finally, the best performance of the proposed algorithm is achieved
by accurately calculating all the following eigenvalues: the two extreme ones and the
two straddling the origin, in which case shifting can be applied as a form of precon-
ditioning.
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