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PRECONDITIONED KRYLOV SUBSPACE METHODS FOR
SAMPLING MULTIVARIATE GAUSSIAN DISTRIBUTIONS*

EDMOND CHOWT AND YOUSEF SAAD?

Abstract. A common problem in statistics is to compute sample vectors from a multivariate
Gaussian distribution with zero mean and a given covariance matrix A. A canonical approach to the
problem is to compute vectors of the form y = Sz, where S is the Cholesky factor or square root of
A, and z is a standard normal vector. When A is large, such an approach becomes computationally
expensive. This paper considers preconditioned Krylov subspace methods to perform this task. The
Lanczos process provides a means to approximate A2 for any vector z from an m-dimensional
Krylov subspace. The main contribution of this paper is to show how to enhance the convergence of
the process via preconditioning. Both incomplete Cholesky preconditioners and approximate inverse
preconditioners are discussed. It is argued that the latter class of preconditioners has an advantage
in the context of sampling. Numerical tests, performed with stationary covariance matrices used to
model Gaussian processes, illustrate the dramatic improvement in computation time that can result
from preconditioning.

Key words. preconditioning, sampling, Gaussian processes, covariance matrix, matrix square
root, sparse approximate inverse, Krylov subspace methods, Lanczos process

AMS subject classifications. 60G15, 62E17, 65C20, 65F08, 65F10, 65F60

DOI. 10.1137/130920587

1. Introduction. In a wide variety of probabilistic simulations, it is necessary
to compute sample vectors from a multivariate Gaussian distribution with zero mean
and a given (and possibly changing) covariance matrix. For large-scale problems, this
task is computationally expensive, and despite the availability of several approaches,
fast methods are still highly desired since such sampling remains a computational
bottleneck in these simulations.

In geostatistical simulations, for example, data points are associated with spatial
locations, and the covariance between two data points may be expressed as a function
of their spatial locations. Upward of 10° locations may be used, leading to a very large
covariance matrix. These locations are often the grid points of a regularly spaced two-
dimensional (2-D) grid, or may be distributed irregularly over a geographic region. In
the common case where the covariance function only depends on the vector joining
the two spatial locations, the covariance function is called stationary.

Most methods for sampling a Gaussian distribution with a given covariance matrix
may be classified into three categories: factorization methods, polynomial methods,
and spectral methods. Factorization methods are the best-known. In this paper, we
assume that the covariance matrix, which we denote by A, is positive definite. A
Gaussian sample y ~ N (0, A) can be computed by a factorization method as y = Sz,
where A = SS7 and z is a standard normal vector. With this definition of S, it is
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clear that the covariance of y will be the matrix A. As a result, any S that satisfies
A = SST can be used, for example, the lower triangular Cholesky factor or principal
square root of A. Use of the Cholesky factor is most common.

As is well known, however, the Cholesky factorization is computationally expen-
sive for large problems, scaling as O(n?) for dense n xn covariance matrices. When the
covariance matrix is sparse, a sparse Cholesky factorization could be used [30]. Even
sparse matrix Cholesky factorizations can be exceedingly expensive, for example, in
situations when the underlying graph of the matrix is based on a three-dimensional
(3-D) grid [18].

The second category of methods is based on matrix polynomials. Here, sample
vectors of the form p(A)z are computed, where z is again a normal vector of mean
zero, and p is a polynomial usually chosen such that p(A) approximates the principal
square root of A, i.e., p(t) approximates v/t over the spectrum of A. One need
not form the matrix p(A) explicitly. Instead, for each z, p(A)z is computed from a
sequence of products with the matrix A. Two main types of polynomial methods have
been used: those that choose p(A) as an expansion of Chebyshev or other orthogonal
polynomials [15, 8], and those that construct the sample from a Krylov subspace; see
[13, 16, 31, 12, 21] and the references therein. The latter are called Krylov subspace
sampling methods and will be described in detail in section 2.1.

When expanding the square root function, v/#, in orthogonal polynomials, we first
note that in some cases, explicit formulae for the expansion coefficients are available.
For example, one can exploit the fact that the function \/(1 — &)/2, defined for |£] < 1,
admits a known expansion in terms of Legendre polynomials [26]. From this we can
obtain an explicit expansion for v/# in the interval (0,a) with a > 0 via the change of
variable (1 —¢)/2 = t/a and by writing \/# = \/a+/t/a. This results in the expansion

ﬁ_gmﬂ<l—2a>,

where P; is the Legendre polynomial of degree j. Note that the coefficient corre-
sponding to j = 0 is positive (24/a/3) and all others are < 0. However, because such
explicit formulae for the expansion coefficients use an interval (0, a) that includes the
origin, the expansion converges slowly and is not appealing in practice. Thus orthog-
onal polynomial methods usually compute the expansion coefficients by some other
means. The approach taken by Fixman [15] is to compute the expansion coefficients
by interpolation, that is, Chebyshev interpolation points are chosen, and the coeffi-
cients are computed by solving the equations that set the value of the interpolant at
each point. Due to the discrete orthogonality property of Chebyshev polynomials, the
equations are easy to solve. A more elaborate expansion, using a two-step approach
in which the function is first approximated by a spline and the resulting function
expanded in a basis of orthogonal polynomials, has also been presented [8].

We mentioned above that polynomial approximation methods compute a sample
p(A)z without computing p(A). Computing p(A)z for an arbitrary z only requires
matrix-vector products with the matrix A and thus has better scaling compared to
Cholesky factorization. In addition, the matrix A is not required explicitly, making
polynomial methods appropriate in “matrix-free” scenarios, including when A is dense
but a fast, sub-O(n?) algorithm for operating with A is available. Another potential
advantage of polynomial methods is that they are approximative rather than exact.
This may further reduce the cost of the method since, in many applications, computing
a sample with the exact covariance may be unnecessary.
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The third category of methods is spectral methods, which exploit the structure
of stationary covariance functions to approximate Gaussian samples via fast Fourier
transforms [35]. Note also that a stationary covariance function over samples on a
regular grid leads to a covariance matrix with block Toeplitz structure. Such matrices
may often be embedded in a circulant matrix, allowing FFT methods to be used [11].
Spectral methods are the methods of choice when covariance matrices are highly
structured in these ways.

In this paper, we address polynomial methods, which are asymptotically faster
than factorization methods and more general than spectral methods. Polynomial ap-
proximation methods may be regarded as iterative, with one iteration per polynomial
order, and we are motivated to reduce the number of iterations required to achieve
a given accuracy. The approach that we take is akin to the concept of “precondi-
tioning” for linear systems. Although the term preconditioning has been used with
sampling methods before, the goals of these previous works have been very different;
see section 2.3.

This paper presents a method of accelerating polynomial methods for Gaussian
sampling. The method uses an approximate factorization of the covariance matrix,
which can be called a preconditioner. To motivate the choice of preconditioner, con-
sider that the inverse of a covariance matrix, known as a precision matriz, measures
the conditional independence between data points. For Gaussian Markov distribu-
tions, this precision matrix is sparse. For many other types of Gaussian distributions,
the precision matrix shows a strong decay in the size of its elements. These matrices
may be well approximated by a sparse matrix, and thus we propose using a sparse
approximate inverse preconditioner.

2. Preconditioned polynomial sampling methods.

2.1. Polynomial sampling methods. The basic idea of the Krylov subspace
method for approximating f(A)z, where f is a certain function, is to find an approx-
imation of f(A)z from the Krylov subspace

(2.1) Km(A,2) =span{z, Az, ..., A" 12},

where z is a standard normal vector. This means that f(A)z is approximated by a
vector of the form p,,—1(A)z, where p,,,—1 is a polynomial of degree < m — 1. Hence
Krylov subspace sampling methods and methods based on polynomial expansions are
related.

An orthogonal basis vy, vs, ..., v, of the Krylov subspace K,, can be built by
essentially a Gram—Schmidt process. For a general matrix A (not necessarily Hermi-
tian), this is the Arnoldi process. In the Hermitian case, the Arnoldi process simplifies
to the Lanczos process which is described in Algorithm 1.

The result of the algorithm, in exact arithmetic, is the system of vectors V,,, =
[v1,v2, ..., Uy] which forms an orthonormal basis of the subspace K,,. In addition we
use the coefficients o, ; generated by the algorithm to form the tridiagonal matrix

(2.2) T, = Tridiag[B;, aj, Bjt1] -y -

This is a tridiagonal matrix whose nonzero entries of row j are 3;, a;, 841, respec-
tively. Note that for row 1 the term S; is omitted and for row m the term S, 11 is
omitted. Letting eI be the mth row of the m x m identity matrix, we will also denote
by T, the (m-+1) xm matrix obtained by appending the row 8,,41eL to T},,. With this
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ALGORITHM 1. LANCZOS PROCESS.
Data: Matrix A, initial vector vy with ||v1|| = 1, integer m
Result: Lanczos basis and Lanczos factorization

1 Initialization: 81 =0 and vy =0

2 for j =1 to m do

3 v = AUj - ﬂj’l}j,1

4 aj = v]Tv

5 V=0V — Oéjl)j

6 Bjt1= |l

7 if /BjJr]_ =0 then

8 Set m = j and Return
9 end

10 v =v/Bj1

11 end

the following relations are satisfied:

(23) Avm = Vme + ﬁerlUerlegL
(24) = m+1Tm~

In particular, the orthogonality of the v;’s implies that
(2.5) VIAV,, =T,,.

The Krylov subspace method for approximating the matrix function f(A4)z starts
with the observation that the optimal approximation in K,, (that minimizes the 2-
norm of the error) from this subspace is

yr, = Vi VI f(A)z.

This is the orthogonal projection of the exact solution onto the Krylov subspace. Let
us now choose the basis V,,, such that the first vector of this basis is vy = z/||z]|2.
Then we can write the optimal approximation as

yjn = ﬁvmv;z: (A)Vmela

where 8 = ||z||2 and e; is the first column of the m x m identity matrix. If we now
take VI f(A)V,, ~ f(V,.L AV,,), then from (2.5) we obtain the approximation
(26) Ym = ﬂvmf(Tm)el ~ y*'

The quantity f(7},) is computed using any method, and its computation is inexpensive
because m is assumed to be small.

Various upper bounds for the error || f(A)z — ¢ || have been developed to analyze
convergence; see, for example [13, 12, 37, 22]. Although these bounds often tackled
the case when f(t) = e?, extensions to other functions are usually straightforward [21].
Most of these bounds rely on some estimate of the error made in the best uniform
approximation of the function f by polynomials of degree m. An interesting result
[22] links the error for the case of interest to us, i.e., when f(t) = v/, to that of linear
systems, i.e., the case when f(t) = 1/t, by proving that || f(A)z — G|l < VAminll7mlls
where A, is the smallest eigenvalue of A and 7, is the residual vector at the mth



A592 EDMOND CHOW AND YOUSEF SAAD

step of the conjugate gradient method for solving Ay = z. The norm of this residual
is in turn bounded by exploiting known results.

A well-known weakness of these bounds is that they are not sharp enough to
explain the improved convergence that preconditioning can bring. For the case when
f(t) = 1/t, which, as was just mentioned, can serve to study the case f(t) = V/t,
preconditioning generally results in a good clustering of the eigenvalues around one,
which in turn will lead to much faster convergence. This improved convergence is not
captured by existing error bounds, such as the ones mentioned above, since these rely
solely on the largest and smallest eigenvalues, or the condition number, of the matrix.
In effect the bounds imply a linear convergence whereas a superlinear convergence is
observed in practice, and this was studied early on by, among others, Axelsson and
Lindskog [4] and Van der Sluis and Van der Vorst [38], and again very recently by
Axelsson and Karétson [3]. While it is well known that typical convergence bounds fall
short of taking advantage of eigenvalue clustering, a few papers have, however, studied
this carefully. Among these, the articles [32, 23, 3] analyze the superlinear convergence
behavior of Krylov-based methods in the presence of clusters in the spectrum.

For the case addressed in this paper, f(A) = A'/2, the corresponding approxima-
tion

(2.7) AV~ ﬁVme1/2el

is based on computing the matrix square root on a much smaller subspace, where it
is inexpensive to compute exactly, and then mapping the result to the original space.
Implicitly, we have § = p(A)z, where p(A4) is an approximation to the square root
of A. The method differs from the Chebyshev polynomial approximation in that the
approximation is not uniform over an interval, but is optimized over the eigenvalues
of A. Note that to compute § by (2.6), V;, needs to be stored; no such storage is
needed in the Chebyshev polynomial approximation.

In practice, the number of basis vectors m does not need to be chosen before-
hand. An approximation § can be computed after each Lanczos iteration, i.e., (2.6) is
computed after line 10 of Algorithm 1 using the basis vectors and tridiagonal matrix
computed so far. A stopping criterion is applied based on the accuracy of §. Such a
stopping criterion will be discussed in section 4.1.

We note in passing that when several sample vectors are needed for the same
covariance matrix, it is possible to use block-Krylov methods, effectively generating
several samples with one block-Krylov subspace [1].

2.2. Preconditioning. When solving linear systems of equations by Krylov sub-
space methods, one can substantially improve convergence of the iterative process by
preconditioning the linear system; see, e.g., [33]. This entails a modification of the
original system so that the resulting coefficient matrix has a more favorable eigenvalue
distribution which leads to much faster convergence. It is natural to ask whether or
not a similar enhancement can be achieved for the problem of approximating A'/2z
via Krylov subspaces. This question is addressed in this section. We will see that
unlike the linear system case, preconditioning here changes the problem being solved.
However, a sample with the desired covariance can still be recovered.

Let GTG =~ A~! be a preconditioner and thus GAGT ~ I. We assume that G
is invertible. Consider using the preconditioned matrix GAG”, rather than A, in a
polynomial sampling method to produce a sample

(2.8) W = p(GAGT)z
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which is approximately distributed as N (0, GAGT). Since GAGT is well conditioned,
we expect that only a small number of terms is required in the polynomial approxima-
tion to the square root of GAG?. To construct a sample with the desired covariance,
apply G~! to each sample 0,

§=G"'w=G"1p(GAGT)z,

which is approximately distributed as N (0, A) and approximates G~ (GAGT)Y/?z.
The matrix S = G~ (GAGT)/? satisfies

ST = GHGAGT) 2(GAGT)/?G T = A

as desired, but it is not a Cholesky factor or square root of A. The idea leading to
the method described here is that S can be any of an infinite number of quantities
that satisfies SST = A. How well the covariance of § approximates A depends on
the accuracy of p and not on G. The convergence rate depends on the quality of
the approximation GTG ~ A~!. For example, in the extreme case when we have
an exact Cholesky factorization at our disposal, GTG = A~!, and we only need to
take p(A) = I, i.e., § becomes § = G~ 'p(GAGT)z = G~'z. This corresponds to the
standard method based on Cholesky (G~ is the lower triangular Cholesky factor of
A). However, we now have the option of using an approzimate factorization instead
of an exact one.

As usual, the preconditioned matrix GAG” is not formed explicitly. Instead, G
and GT are applied to vectors in these methods. To construct the desired sample,
however, we must be able to easily solve with G. (The roles of matrix-vector multi-
plications and solves are reversed if we define the preconditioner GG” as an approxi-
mation to A.) These requirements are more demanding than the usual requirements
for preconditioners.

In general, the preconditioner must be designed such that the additional cost
of applying the preconditioner in the Lanczos process is more than offset by the
reduction in the number of iterations required for convergence. In addition, the cost
of constructing the preconditioner must also be low, but this cost can be amortized
over several sample vectors that are computed with the same or nearly the same
covariance matrix.

We note that if we modify the Krylov subspace sampling algorithm to sample
from N (0, A~1), then the preconditioning task is somewhat simplified. If the precon-
ditioned matrix used in the iterations is GAGT, then

w ~ N(0,(GAGT)™),
Gw ~ N(0,A71),

that is, it is only necessary to be able to multiply by the factor G, and it is not
necessary to be able to solve with G.

2.3. Other preconditioned sampling methods. Schneider and Willsky [34]
appear to be the first to propose a preconditioned Krylov subspace sampling method.
Their paper addresses the dual problem of simulation, i.e., obtaining sample zero-
mean vectors y whose covariance matrix is A, and covariance matrix estimation, i.e.,
the problem of finding a low-rank approximation to A. Their method also relies
on Krylov subspaces but it is very different from what we have presented. Their
algorithm starts from a single vector v (unrelated to z) and proceeds to build the
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Krylov subspace K,,(A,v). Let V,, be the Lanczos basis for this subspace and T,
the related matrix in (2.2). The paper [34] then builds the columns of P, = V,,, LT
as a new basis for K,,(A4,v), where L,, L% is the Cholesky factorization of T},,. As is
well known [33, section 6.7], these basis vectors are conjugate directions for A, i.e., we
have PTAP = I, and they represent the conjugate gradient vectors of the conjugate
gradient method, up to scaling factors. Given an m-dimensional white sampling vector
w, with unit variance, the sampling vector to simulate A is taken to be

(2.9) y = APpw.

There is a well known and simple 2-vector recurrence relation [33] to obtain the
sequence of the p;’s, and this constitutes the main ingredient that links the conjugate
gradient algorithm to the Lanczos process. The paper [34] focuses on this relation and
the computational advantages resulting from it. Parker and Fox [27] showed how the
sampler presented in [34] could be implemented by a simple addition to the conjugate
gradient algorithm.

The rationale behind (2.9) is that in the ideal case when W = [wy, wa, . .., wy] is
a set of random vectors such that the covariance matrix WW7 is the identity, clearly

(2.10) APWWTPTA = APPTA = AV, T,,'VT A.

This is not exactly equal to the original covariance matrix A, but at this point one is
tempted to say that V,,,T,,'V.I" approximates the inverse of A and so AV,, T,V A
is close to A as desired. However, the approzimation A~! ~ V,,T-*V.T is a poor one
in general, unless m is large enough, close to the rank of A, so approximating A by
(2.10) will work only under restricted circumstances in practice. This is explained
next.

The gist of the method presented in [34] is based on (2.10), and indeed the sec-
ond part of their algorithm provides the following low rank approximation to the
covariance matrix:

(2.11) B, = AV, T, ' VT A.

A similar but simpler approximation to the covariance matrix is given by A,, =
Vi T V.Y and it was shown in [34] that A, differs from B,, by a rank-3 matrix. A
slightly better result can be obtained by comparing B,,, with A,,11. Indeed, it follows
from the relation (2.4) that B, = V1T T ' THV,I . . As can be easily shown,
the (m + 1) x (m + 1) matrix T,,,7,,,'T'Y differs from T, 1 only in its diagonal entry
(m+1,m+1). Specifically, 82, el T\ 'e,, replaces the diagonal entry ., 11, and as
a result we have

T . _ 2 T -1
By = Apg1 — MmVUms1Vmyr With 0 = g — Brp18m Lo €m -

In the end the two approximations are close to each other, differing only by a rank-one
matrix.

However, for either of B,, or A,, 1 to be a good approximation to A, their range,
which is the Kryolv subspace K, +1(A, v), must capture all the eigenvectors of A4, i.e.,
it must contain good approximations to these eigenvectors. As is well known, the
Lanczos process typically takes many more steps to obtain good approximations for
interior eigenvalues of A than for those located at both ends of the spectrum. These
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approaches will therefore work only if m is large enough (close to the rank of A). In
typical situations when A is not well approximated by a small rank matrix, the process
may require many steps to converge. This can easily be verified by an experiment
with a diagonal matrix with uniformly distributed eigenvalues in the interval (0, 1].
Another proof of this for the simpler case of A,, is that

A= An| = fmax (A = Am)v[| = [[(A = Am)oml| = B,

as can be easily shown. What this means is that A,, cannot be close to A unless
Bm+1 is small, an indication that a nearly invariant subspace of A has been captured
by K, (A, v); see [33, Proposition 6.6].

Another problem with this approach is that the vectors v;, i = 1, ..., m must be
orthogonal in order for the approximation to work, and various reorthogonalization
schemes are advocated for this purpose in [34]. In contrast, when approximating a
single sampling vector by (2.7), this is not an issue in that the method works much like
a conjugate gradient method for solving the linear system Ay = z, which approximates
A7z by BV T, e

In summary, the algorithm presented in [34] is implicitly based on first replacing A
by a low-rank approximation B,, with which sampling is done. Since B,, is naturally
factored as B, = (AV,, L T)(AV,, L T)T  sampling with B,, is easy. However, the
underlying approximation B,, ~ A is likely to be inaccurate unless m is large (close
to the rank of A). The procedure will also require the use of reorthogonalization
schemes. In contrast, our proposed algorithm computes an approximation to A'/?y
using (2.7) and exploits preconditioning to reduce the number of required steps.

The method proposed in [34] has difficulties when A has repeated eigenvalues. For
example, if A equals the identity matrix, then the method “converges” in one step, but
the sample is based on the rank-2 approximation B; to the identity matrix. To allevi-
ate this problem, Schneider and Willsky [34] propose preconditioning to spread out the
spectrum of A. Their preconditioning aims to change the eigenvalue distribution and
is therefore more akin to preconditioning eigenvalue problems. Note that the goal of
such a preconditioner is just the opposite of that of standard preconditioners for linear
systems, which aim at clustering the spectrum. Nevertheless, the preconditioned al-
gorithm itself is exactly the preconditioned conjugate gradient (PCG) algorithm with
the addition proposed by Parker and Fox [27]. The preconditioner does not need to
be in factored form, as is usual for the PCG algorithm. Schneider and Willsky [34]
proposed a preconditioner of the form UDU?, where U approximates the eigenvec-
tors of A and D is an appropriate diagonal matrix. Constructing general and efficient
preconditioners to spread out the spectrum is an open problem.

Parker and Fox [27] also proposed the related method

gPF = VmL;ITZma

which samples from N (0, A~!). One application of this is for the case when the
precision matrix A~! is available and is sparse. In this case, the Krylov subspace
sampling method iterates with the precision matrix, giving samples from the desired
distribution.

We point out that when the inverse of the covariance matrix is modeled rather
than the covariance matrix itself, a number of other sampling techniques become
available. Gibbs sampling [17], for example, computes samples from N (0, A~1) by
successively sampling from one-dimensional (1-D) Gaussian distributions where the
variances are the diagonal entries of A~!. This method converges slowly (it is similar
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in structure to Gauss—Seidel iterations) but accelerated and “multigrid” versions have
been developed [19].

The concept of preconditioning in sampling also arises when rational Krylov sub-
spaces K,,((A—£I)71, z) rather than standard Krylov subspaces K, (A, z) are used,
and when rational functions are used to approximate the matrix square root or its
inverse. The main idea here is to reuse converged eigenvector information from a
previously built Krylov subspace; see, e.g., [28, 36, 2].

3. Sparse inverse preconditioning. In the previous section, a method for
preconditioning a polynomial sampling method was described. The preconditioner
has the constraint that it must be in factored form, A~! ~ GTG, where A is the
covariance matrix, and that it must be efficient to apply G, GT, as well as G~'. This
is because (2.8) requires a product with GAG” at each step of the Lanczos, or other
polynomial method, and the final step requires a product with G~!. These constraints
go beyond the normal requirements for preconditioners for solving linear systems.

Approximate triangular factorizations of A or A~! satisfy the above constraints.
Thus a possible choice of preconditioner is the class of incomplete Cholesky (IC) fac-
torizations, where LLT ~ A. However, these preconditioners suffer from two potential
problems. First, the IC factorization may not be computable, even if A is positive
definite. Second, it is not clear how to obtain the preconditioner when A is dense. It
is possible to apply IC to a sparsified version of A, but a sparsified A has usually lost
its positive definiteness.

In this section, we propose using the factorized sparse approximate inverse (FSAI)
preconditioner [24], which overcomes the above problems. The specific choice of pre-
conditioner, however, should depend on the covariance matrix. It turns out that FSAI
preconditioners, for reasons to be shown, are particularly effective for covariance ma-
trices commonly used to model Gaussian processes [29]. We briefly describe some of
these covariance matrices next, before describing the FSAI preconditioner itself.

3.1. Covariance matrices.

3.1.1. Sparse covariance matrices. Given n sample locations, often in 2-D or
3-D, a covariance function k(r) defines a n x n stationary covariance matrix, where
the (7,7)th entry is k(r;;) and where r;; is the distance between sample locations ¢
and j. The sample locations may be chosen to be distributed regularly along a grid,
or may be distributed irregularly over a domain.

The function

(3.1) k(r) = (1 - ;)j

+

is one member of a class of piecewise polynomial covariance functions. The subscript
plus denotes the positive part, i.e., x4 = z if > 0, and z = 0 otherwise. Thus, the
function has compact support and the resulting covariance matrix is sparse. Because
of sparsity, such covariance functions are ideal to use with iterative methods. The
parameters [ and j define the characteristic length scale and differentiability of the
Gaussian process, respectively. All entries of the covariance matrix are nonnegative,
and the matrix is also positive definite by construction for certain values of j.

3.1.2. Dense covariance matrices. We now describe three covariance func-
tions that are not compact and thus lead to dense covariance matrices. The exponen-
tial covariance function is

k(r) = exp(=r/l),
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where [ is a characteristic length scale parameter. The Gaussian radial basis function

(RBF) is
k)= (~22).

This covariance function, also known as the squared exponential function, is very
widely used.
The Matérn covariance function is

21-v 2ur ’ 2ur
o= () = ()

where K, is the modified Bessel function of the second kind. The Matérn function is
parameterized by v and is very flexible. For v = 1/2, we have the exponential covari-
ance function, and for v = oo, we have the Gaussian RBF. The Matérn covariance
matrices are more ill-conditioned for larger values of v.

When using iterative methods which require multiplying a dense covariance ma-
trix by a vector, there exist fast algorithms, faster than O(n?), that do not involve
explicitly forming the matrix, e.g., [20, 25].

3.1.3. Inverses of covariance matrices. For (1-D) spatial data, the inverse of
the exponential covariance matrix is sparse (it is tridiagonal in some matrix ordering)
and corresponds to a Markov process. In higher dimensions, the inverse is no longer
sparse, but the size of its entries decay very rapidly from the diagonal. For many types
of problems, it is typical for entries in the inverse to decay rapidly from the diagonal
[10]; however, the decay is particularly rapid for the covariance matrices described
above.

The size of the entries in the inverse matrix is illustrated in Figure 1 for an
exponential covariance matrix (I = 1/2) with 400 sample locations on a 20 x 20 grid.
This is compared to the matrix from the finite difference discretization of the Laplacian
operator on the same grid. (Although the Laplacian is often used as a model of a
precision matrix, we use the Laplacian for comparison because preconditioners for
the Laplacian are well understood.) The number of large or numerically significant

200 0.001

0.001

0.0001

0.0001

1e-05 1e-05

400 1e-06

1e-06
50 100 150 200 250 300 350 400

(a) Inverse Laplacian matrix (b) Inverse exponential covariance matrix

F1c. 1. Magnitude of entries in inverse matrices. White indicates large values; black indicates
small values.
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F1G. 2. Histogram of magnitude of entries in inverse matrices. The inverse of the exponential
covariance matriz contains much smaller entries than the inverse of the Laplacian matriz, although
the largest values are approximately of the same size.

entries in the inverse of the exponential covariance matrix is much smaller than the
number in the inverse Laplacian matrix. This is illustrated quantitatively with a
histogram in Figure 2 for the inverse and, anticipating the FSAI preconditioner to
be advocated, for the Cholesky factor of the inverse. Results for other covariance
matrices and with different parameter values are qualitatively similar to that for the
exponential covariance matrix shown here.

These observations motivate using a preconditioner that is a sparse approximation
to the inverse of the covariance matrix.

3.2. FSAI preconditioners. An FSAI preconditioner has the form GTG ~
A~1, where G is constrained to be sparse. The matrix G is lower triangular and ap-
proximates the lower triangular Cholesky factor of A~!. Sparse approximate inverses
can be very effective when A~! has a strong decay in the size of its entries as observed
for the covariance matrices in the previous subsection.

There are two major techniques for computing sparse approximate inverses in
factored form: FSAI [24] and stabilized AINV [5]. Both techniques guarantee that a
positive definite preconditioner can be computed if A is positive definite.

Let L be the exact Cholesky factor of A. This L is unknown, and it is only used
for the derivation of FSAI. The FSAI method for computing G is based on minimizing
the Frobenius norm

I - GL||% =tr (I - GL)(I — GL)T)

with the constraint that G has a given lower triangular sparsity pattern Sy, = {(¢,7) |
gij # 0}. By setting to zero the partial derivatives of the above trace with respect to
the nonzero entries in G, we are led to solve

(GA)i; = Lij, (i,j) € Si,

where G = D~'G and D is the diagonal of L, since (LT);; for (i,7) € S, is a diagonal
matrix. Since D is not known in general, it is chosen such that the diagonal of GAGT
is all ones. Thus G can be computed without knowing the Cholesky factor L.
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Each row i of G can be computed independently by solving a small linear system
subproblem involving the symmetric positive definite matrix Az, 7, where J is the
index set {j | (¢,7) € Sp} (different for each row ¢). An important point is that if A is
dense, as is the case for some covariance matrices, G can still be constructed inexpen-
sively as long as it is sparse. Indeed, in this case, not all entries of A are utilized, and
not all entries of A need to be computed for constructing the preconditioner, which
is useful if A does not need to be formed to compute matrix-vector products with the
matrix.

AINV computes a sparse approximate inverse triangular factorization using an
incomplete conjugation (A-orthogonalization) applied to the unit basis vectors. A
dropping procedure during the computation is used to restrict the inverse factor to
be sparse. Because dropping is performed on the inverse factor rather than on A, it
is possible to guarantee the existence of the factorization.

In principle, either FSAT or AINV could be used as preconditioners for the Krylov
subspace sampling method. However, we choose FSAI because the subproblems, one
for each row 4, can be solved independently and in parallel. Further, for stationary
covariance functions with sample locations on a regular grid and a natural ordering for
the matrix A, the FSATI subproblems corresponding to interior locations are identical
and only need to be solved once. This greatly reduces the computation and the storage
required for the preconditioner as well as the original matrix A. (However, we did not
exploit this in our numerical tests.)

3.3. Sparsity patterns. A sparsity pattern for the approximate inverse factor
G needs to be specified for the FSATI algorithm. Typically, increasing the number
of nonzeros in G increases the accuracy of the approximation. However, increasing
the number of nonzeros in G also increases the cost of constructing and applying the
preconditioner. The problem is to find a sparsity pattern that gives good accuracy at
low cost.

For irregular sparse matrices A, the structure of powers of A (possibly sparsified)
has been proposed and tested as sparsity patterns of sparse approximate inverses [9].
The triangular parts of such patterns may be used for sparse approximate inverse
triangular factors.

For sample locations on a regular grid, consider the problem of choosing a sparsity
pattern for an individual row of G. Row i of G corresponds to sample location 4, and
the nonzero elements chosen for row i correspond to a subset of sample locations
numbered ¢ and lower (since G is lower triangular). The pattern selected for a row of
G is called a stencil, and the stencil size is the number of nonzeros in the stencil. For
regular grid problems, the same stencil can be used for each row or sample location.

Consider, for example, a 7 x 7 regular grid of sample locations, leading to a 49 x 49
matrix A. For several covariance functions, Figure 3 shows row 25 of the exact lower
triangular Cholesky factor of A=! as a function on the grid. (In the natural ordering,
where grid points are numbered left to right and then top to bottom, location 25 is
at the center of the 7 x 7 grid.) We can choose the stencil using the heuristic that
the nonzero pattern of G should correspond to large entries in the inverse Cholesky
factor. We choose stencils this way for the regular grid problems in section 4, i.e.,
based on a small grid where the Cholesky factor of A~! can be computed exactly.

An observation from Figure 3 is that the location of large values of the inverse
Cholesky factor on the grid is different for different types of covariance matrices. This
implies that different sparsity patterns should ideally be used for different covariance
matrices. In particular, the best approximate inverse sparsity pattern for a Laplacian
matrix is generally not the best sparsity pattern for covariance matrices.
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0.0301 0.0494 0.0645 0.0675 0.0490 0.0280 0.0109
0.0383 0.0676 0.0987 0.1140 0.0683 0.0335 0.0120
0.0419 0.0836 0.1492 0.2230 0.0789 0.0292 0.0090

0.0315 0.0762 0.1935 0.5539 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(a) Laplacian

0.0022 0.0027 0.0043 0.0057 0.0055 0.0040 0.0041
0.0036 0.0114 0.0342 0.0628 0.0555 0.0324 0.0166
0.0089 0.0438 —0.0506 —0.4890 —0.2767 —0.0706 —0.0107

0.0091 0.0238 —0.6190 1.4544 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(b) Piecewise Polynomial, [ = 6.5, j =3

0.0005 0.0006 0.0019 0.0033 0.0031 0.0018 0.0014
0.0011 0.0098 0.0353 0.0682 0.0607 0.0358 0.0197
0.0103 0.0500 —0.0623 —0.5774 —0.3355 —0.0997 —0.0428

—0.0101 0.0050 —0.7472 1.7114 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(c) Exponential, [ =1/2

0.0526  —0.1021 0.1885 —0.2774 0.0000 0.0000 0.0000
—0.1021 0.1983 —0.3661 0.5388 0.0000 0.0000 0.0000

0.1885 —0.3661 0.6758  —0.9947 0.0000 0.0000 0
—0.2774 0.5388  —0.9947 1.4640 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(d) Gaussian, [ =1/7

0.0045 —0.0149 0.0498 —0.1266 —0.0269 0.0038 —0.0006
—0.0163 0.0477 —0.1397 0.3143 0.0483 —0.0078 0.0013
0.0542 —0.1435 0.3728 —0.7424 —0.0639 0.0118 —0.0018

—0.1389 0.3390 —0.7787 1.3580 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(e) Matérn, v = 10,1 =1/7

F1G. 3. For a 7 X 7 grid of sample locations, row 25 of the lower triangular Cholesky factor of
A1 plotted as a function of the grid locations.

4. Numerical tests. In this section, test results are presented for the precon-
ditioned Krylov subspace sampling method for various covariance matrices using the
FSAI preconditioner. Each table in this section reports the number of iterations re-
quired for convergence and timings for computing a sample vector. The test platform
is composed of 2 Intel Xeon X5680 processors (6 cores each at 3.33 GHz) and 24 GB
of memory. The computation of the FSAI preconditioner was parallelized using 12
threads.

Results for sparse covariance matrices using a piecewise polynomial covariance
function are shown in section 4.2. Results for dense covariance matrices using ex-
ponential, Gaussian RBF, and Matérn covariance functions are shown in section 4.3.
However, in section 4.1 we first present the stopping criterion used for these four types
of covariance matrices.

4.1. Stopping criterion. To detect convergence of the Krylov subspace sam-
pling method so that the Lanczos iterations can be stopped, we use an estimate of a
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Fia. 4. Convergence of the Krylov subspace sampling method with and without preconditioning
for four covariance matrices of size 1600 x 1600. The graphs show that the error norm estimate

closely matches the exact error morm, especially in the preconditioned cases when convergence is
fast.

relative error norm. Iteration j of the Lanczos process leads to an approximation

j; = GHGAG™) %,

where we recall that A is the covariance matrix, GTG ~ A~! is the preconditioner,
and z is a standard normal vector. We define the relative error norm as
g; — G"H(GAGT)! 2|,
e; =
’ |G=HGAGT)1 /22|,

In practice, this quantity cannot be computed. Instead, we estimate the relative error
norm using

o = Wi =il
! 141012

When convergence is fast, this estimate closely matches the exact relative error norm,
since most of the absolute error remaining is reduced in the current step. We use this
estimate for both the preconditioned and unpreconditioned cases.

Figure 4 plots the exact and estimated relative error norm of the Krylov subspace
sampling method for four covariance matrices, with and without preconditioning. The
covariance matrices were constructed using a small, regular 40 x 40 grid of sample
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Fia. 5. Krylov subspace sampling method with and without reorthogonalization, with no precon-
ditioning, for an ill-conditioned matriz of size 1000 x 1000. Without reorthgonalization, convergence
slows down.

locations (matrices are 1600 x 1600) so that the exact relative error norm could be
easily computed and compared. The results verify that the relative norm estimate is
suitable for use in a stopping criterion, especially in the preconditioned cases when
convergence is fast. The error norm estimate slightly underestimates the exact error
norm in the unpreconditioned cases. These problems are smaller versions of those used
in the next two subsections. See these subsections for details of the preconditioner
used in each case.

The proposed sampling method is based on the Lanczos process, and like any
algorithm based on it, a practical concern is the loss of orthogonality between the basis
vectors, especially when A is ill-conditioned and when many iterations are used. For
our method, loss of orthogonality can be addressed by standard reorthogonalization
or restarting techniques. These are discussed specifically for sampling methods in
[14, 22, 27]. Tt is important to understand, however, that the conjugate gradient
algorithm for solving linear systems (case f(t) = 1/t) can be viewed as a modification
of the Lanczos algorithm without reorthogonalization, and yet the algorithm typically
converges without a problem, and reorthogonalization is never performed in practice.
Our experiments show that in this regard the behavior of our algorithm (case f(t) =
V1) is similar. While it is beyond the scope of this paper to study the behavior
of our algorithm in the presence of rounding, we will illustrate the effect of loss of
orthogonality, with a test on a 1000 x 1000 diagonal matrix with diagonal values
1.05%, k = 1,...,1000, i.e., with eigenvalues distributed geometrically between 1.05
and approximately 102!, Figure 5 shows the convergence of the sampling method with
and without reorthogonalization. Without reorthogonalization, convergence slows
down. In both cases, since convergence is very slow (without preconditioning), the
estimated error norm is underestimated. Note that addressing loss of orthogonality is
an issue separate from the preconditioning ideas presented in this paper. The other
numerical tests in this paper did not use reorthogonalization because preconditioning
typically resulted in a relatively small number of iterations.

Finally, for the case of low-rank covariance matrices, we point out that approxi-
mating A by V;,, T, V,L (Lanczos) or AV, T,,'V.I'A [34] will not work well without a
good orthogonality level of the vectors v;, and so reorthogonalization is mandatory
for these methods. Our algorithm works more like a conjugate gradient algorithm to
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TABLE 1
Piecewise polynomial covariance matrices with sample locations on a regular 1000 x 1000 grid:
Iteration counts and timings (in seconds) for the Krylov subspace sampling method. Matrices with
different values of the parameter | are tested, and the average number of nonzeros per row for these
matrices is also shown. The preconditioner factor G contains at most 3 nonzeros per row.

Unpreconditioned Preconditioned
l nnz/row  Iterations Iter time Iterations Setup time Iter time
2.5 21.0 11 1.50 6 0.21 1.35
4.5 68.7 22 5.28 10 0.23 3.12
6.5 136.2 34 13.46 12 0.25 5.39
8.5 223.4 47 30.22 13 0.29 8.70
10.5 345.9 61 53.62 15 0.34 13.38

approximate f(A)z, separately for each z, and orthogonality is not essential in the
same way that orthogonality is not essential for the conjugate gradient algorithm.

4.2. Tests on sparse covariance matrices. Sparse covariance matrices were
generated using the piecewise polynomial covariance function (3.1), with parameter
7 = 3, and with sample locations on a regular 1000 x 1000 grid with spacing 1, giving
a matrix with 10® rows and columns. (A “natural” or rowwise ordering of the sample
locations was used for this and all covariance matrices with regularly spaced sample
locations.) Values of [ were chosen between 2.5 and 10.5. The matrices have more
nonzeros and are more ill-conditioned for larger values of [.

Table 1 shows the iteration counts and timings for the Krylov subspace sampling
method with these covariance matrices. In this and the following tables, setup time
denotes the time for constructing the FSAI preconditioner, and iter time denotes the
time for computing a sample vector using the Krylov subspace method. All timings
are reported in seconds. The Lanczos iterations were stopped when the estimated
relative error norm é fell below 1076,

Results are shown with and without preconditioning. In the preconditioned case,
a very sparse FSAI preconditioner was used, with G containing at most 3 nonzeros
per row. In contrast, the covariance matrix has 21.0 to 345.9 nonzeros per row for the
range of [ tested. The results show that preconditioning reduces the iteration count
for convergence as well as the computation time compared to the unpreconditioned
case. The time for constructing and applying such a sparse preconditioner is very
small. It is also observed that as [ increases, the iteration count also increases and
that the benefit of preconditioning is greater for larger [.

A sparse piecewise polynomial covariance matrix using an irregular distribution
of sample locations was also tested. This test problem consists of 205,761 sample
locations on a square domain, [0, 1] x [0, 1], corresponding to nodes of a finite element
triangulation of the domain. Figure 6 shows a small example of the distribution of
the sample locations.

The ordering of the rows and columns of the covariance matrix and thus of the
preconditioner affects the preconditioner quality. We computed a reverse Cuthill-
McKee (RCM) ordering [18] of the sparse matrix associated with the finite element
triangulation and used this to reorder the covariance matrix. We found this ordering
to be slightly more effective than minimum degree orderings sometimes proposed for
sparse approximate inverse preconditioners [6].

Table 2 shows the iteration counts and timings for this covariance matrix with
irregular sample locations. For this problem, the iterations were stopped using a
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Fia. 6. Sample locations distributed irreqularly over a square domain. This is a small version
of the actual problem used.

TABLE 2
Piecewise polynomial covariance matriz with 205,761 irregular sample locations: Iteration
counts and timings (in seconds) for the Krylov subspace sampling method. Matrices with differ-
ent values of the parameter | are tested, and the average mumber of nonzeros per row for these
matrices is also shown. The preconditioner factor G contains on average 3.99 nonzeros per row.

Unpreconditioned Preconditioned
l nnz/row  Iterations Iter time Iterations Setup time Iter time
.0050 17.2 22 0.605 11 0.048 0.494
.0075 37.9 38 1.739 16 0.054 0.917
.0100 68.0 55 3.396 20 0.057 1.423

relative error norm tolerance of 1072, For the preconditioner factor G, the sparsity
pattern is the lower triangular part of the matrix corresponding to the finite element
triangulation, giving G an average of 3.99 nonzeros per row. The results again show
that preconditioning reduces the iteration count and computation time for computing
a sample vector.

The iterative timings are also much lower than timings for computing a sample via
sparse Cholesky factorization. A Cholesky factorization, using approximate minimum
degree ordering and computed using 12 threads, required 4.23, 7.75, and 8.34 seconds
for the cases [ = 0.0050, 0.0075, and 0.100, respectively.

4.3. Tests on dense covariance matrices. Dense covariance matrices were
generated using the exponential, Gaussian RBF, and Matérn covariance functions.
We used sample locations on a M x M regular grid over the domain [0,1] x [0, 1],
but sample locations on an irregular grid were also used in the Matérn case. The
largest grid tested was M = 160, corresponding to a 25600 x 25600 dense covariance
matrix. For all dense covariance matrices, the Lanczos iterations were stopped using
an estimated relative error norm tolerance of 1076.

Table 3 shows iteration counts and timings for exponential covariance matrices
of increasing size and with parameter [ = 1/2. It is observed that iteration counts
increase with problem size. Preconditioning is shown to dramatically decrease the
iteration count and computation time, particularly for larger problems, and even more
so than for the sparse covariance matrices. Here, the factor GG contains not more than
six nonzeros per row, which minimizes the iteration time. We also note that the setup
time for the preconditioner is very small. For dense matrices, the FSAT algorithm is
particularly efficient if the entire matrix A is available, since sparse matrix indexing
is not needed to construct the subproblem matrices A7, 7.
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TABLE 3
Exponential covariance matriz on a regular M x M grid: Iteration counts and timings (in
seconds) for the Krylov subspace sampling method. The preconditioner factor G contains at most 6
NONZeros per row.

Unpreconditioned Preconditioned
M Tterations  Iter time  Iterations  Setup time Iter time
40 74 0.189 13 0.00032 0.023
70 122 1.949 17 0.00092 0.192
100 148 7.418 20 0.00163 0.895
130 191 29.553 24 0.00330 2.810
160 252 81.509 26 0.00478 7.283
TABLE 4

Gaussian RBF covariance matriz on a regular M x M grid: Iteration counts and timings (in
seconds) for the Krylov subspace sampling method. The preconditioner factor G contains at most
22 nonzeros per row.

Unpreconditioned Preconditioned
M Tterations  Iter time Iterations  Setup time Iter time
40 108 0.516 9 0.00219 0.021
70 115 1.736 9 0.00709 0.138
100 119 5.781 9 0.01207 0.430
130 121 14.806 9 0.01852 1.154
160 122 34.045 9 0.02085 2.649

We note that for a dense 25600 x 25600 matrix (corresponding to the 160 x
160 grid), the Cholesky factorization required 40.8 seconds (corresponding to 139
Gflops/s). In comparison, the preconditioned Krylov subspace sampler required 7.283
seconds for this problem, as shown in Table 3.

Table 4 shows iteration counts and timings for Gaussian RBF covariance matrices
of increasing size. For this problem, we chose the parameter [ = 1/M, which appears
to not significantly alter the conditioning of the problem as the problem size increases.
For this problem, the optimal number of nonzeros per row of G is 22, much larger
than for the exponential covariance matrix. However, the main observation is that
again preconditioning greatly reduces the cost of computing a sample vector.

In Table 5 we investigate the effect of the number of nonzeros in G on convergence
for the Gaussian RBF problem using a large 160 x 160 grid. Recall that we refer to
the maximum number of nonzeros per row of G as the stencil size. As mentioned,
the minimum iteration time is attained at stencil size of approximately 22. For larger
stencil sizes, the iteration count is no longer significantly reduced and the additional
cost of applying the preconditioner increases the iteration time.

Similar improvements due to preconditioning are shown in Table 6 for Matérn
covariance matrices. Here, we vary the parameter v from 2 to 30, which affects
matrix conditioning. Once again, sample locations on a regular 160 x 160 grid are
used. The preconditioner factor G used a 10-point stencil for its sparsity pattern.
Increasing the stencil size to 24 does not reduce the iteration count when v = 2 but
does reduce the iteration count to 7 for v = 30. Here, the setup time is 0.01882
seconds and the iteration time is 1.816 seconds—a more than tenfold improvement
over the unpreconditioned case.

Finally, we consider dense covariance matrices using irregular sample locations.
Table 7 shows the iteration counts and timings for Matérn covariance matrices using
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TABLE 5
Gaussian RBF covariance matriz on a regular 160 x 160 grid: Iteration counts and timings (in
seconds) for the Krylov subspace sampling method. The preconditioner stencil size is varied from 3
to 24. The unpreconditioned case is also shown in the last row.

Preconditioner  Iterations  Setup time Iter time
stencil size

3 50 0.00324 13.320
6 28 0.00480 7.382
8 21 0.00724 5.651
10 19 0.00890 5.464
13 14 0.00977 4.031
15 14 0.01085 4.184
17 12 0.01234 3.583
20 10 0.01768 2.983
22 9 0.02085 2.649
24 9 0.02472 2.711
Unprecon 122 - 34.045
TABLE 6

Matérn covariance matriz with parameter v on a regular 160 x 160 grid: Iteration counts and
timings (in seconds) for the Krylov subspace sampling method. The preconditioner factor G contains
at most 10 nonzeros per row.

Unpreconditioned Preconditioned
v Tterations  Iter time  Iterations Setup time Iter time
2 29 7.001 7 0.00840 2.005
6 48 11.772 8 0.00842 2.610
10 62 17.267 9 0.00852 2.445
14 71 20.250 10 0.00915 3.137
18 78 19.211 11 0.00909 3.644
22 83 24.533 12 0.00812 4.034
26 87 23.488 13 0.00874 4.331
30 91 25.973 13 0.00821 4.003
TABLE 7

Irregular Matérn covariance matriz with parameter v with 13041 irreqular sample locations:
Iteration counts and timings (in seconds) for the Krylov subspace sampling method. The precondi-
tioner factor G contains on average 60.8 nonzeros per row.

Unpreconditioned Preconditioned

v Iterations  Iter time  Iterations Setup time Iter time
2 43 3.244 3 0.23863 0.326
6 93 6.513 5 0.24322 0.515
10 124 9.283 6 0.24759 0.665
14 152 12.848 7 0.22196 0.692
18 170 13.747 8 0.22161 0.821
22 181 16.261 9 0.22999 0.884
26 194 16.574 9 0.24543 0.931
30 197 18.074 10 0.24414 1.211

13041 irregular sample locations over a unit square domain, where the sample locations
are nodes of a finite element triangularization. RCM ordering based on the finite
element mesh was used to order the rows and columns of the covariance matrix.
Letting A denote the sparse matrix associated with this discretization, the sparsity
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pattern we choose for G is the sparsity pattern of the lower triangular part of AS,
which reduces iteration time compared to other powers. The matrix GG contains 60.8
nonzeros per row on average. This is a much denser preconditioner than used for the
Matérn covariance matrix with regularly spaced sample locations. We attribute this
partially to the fact that the optimal sparsity pattern cannot be selected as precisely.

5. Conclusion. The methods presented in this paper compute Gaussian samples
having a target covariance matrix A, in matrix polynomial form, i.e., the computed
samples are of the form p(A)z for a given vector z, where p is a polynomial. The Lanc-
zos algorithm is used to compute a good approximation of this type to vectors A'/2z.
The main goal of the paper was to show how to precondition the process. As was
argued, standard preconditioners based on Cholesky factorizations have a few draw-
backs and so we advocated the use of approximate inverse preconditioners instead.
Among these we had a preference for FSAI, since it can be computed very efficiently
even if A is dense. In the past, approximate inverse preconditioners have not been
very effective preconditioners for solving linear systems of equations, mainly because
the inverses of the corresponding matrices do not always have a strong decay prop-
erty. The picture for covariance matrices is rather different. These matrices are often
dense and their inverse Cholesky factors, which are approximated for preconditioning,
show a good decay away from the diagonal and can thus can be well approximated
at a minimal cost. For various dense covariance matrices of size 25600 x 25600, we
showed that sparse approximate inverse preconditioning can reduce the iteration time
by at least a factor of 10. Such preconditioners can also be used for other calculations
involving Gaussian processes, not just sampling [7].
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