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Abstract—Special-purpose computing hardware can provide sig-
nificantly better performance and power efficiency for certain 
applications than general-purpose processors. Even within a sin-
gle application area, however, a special-purpose machine can be 
far more valuable if it is capable of efficiently supporting a num-
ber of different computational methods that, taken together, ex-
pand the machine’s functionality and range of applicability. We 
have previously described a massively parallel special-purpose 
supercomputer, called Anton, and have shown that it executes 
traditional molecular dynamics simulations orders of magnitude 
faster than the previous state of the art. Here, we describe how 
we extended Anton’s software to support a more diverse set of 
methods, allowing scientists to simulate a broader class of biolog-
ical phenomena at extremely high speeds. Key elements of our 
approach, which exploits Anton’s tightly integrated hardwired 
pipelines and programmable cores, are applicable to the hard-
ware and software design of various other specialized or hetero-
geneous parallel computing platforms. 

I. INTRODUCTION 
Specialization of computing hardware to a particular appli-

cation can be a powerful approach for accelerating certain 
computations on both high-performance and embedded sys-
tems [1–15]. Many application areas, however, benefit from the 
utilization of a variety of computational methods, and support-
ing diverse methods efficiently in a specialized hardware sys-
tem has historically proven challenging.  

We have previously described a massively parallel special-
purpose machine, called Anton, and have shown that it per-
forms traditional molecular dynamics (MD) simulations of 
biomolecular systems nearly two orders of magnitude faster 
than was previously possible on any existing hardware plat-
form1 [17, 18]. An Anton machine performs the entire MD 
computation on a large number of identical application-specific 
integrated circuits (ASICs), each of which includes hardwired 
pipelines for fast particle–particle and particle–gridpoint inter-
actions [19], programmable cores with instructions tailored to 
MD simulations [20], fast on-chip static memory, and a spe-

                                                           
1  In addition to providing much higher performance than general-purpose 
supercomputers and commodity clusters, Anton consumes dramatically less 
power: a 512-node Anton machine consumes 52 kW, which includes the pow-
er required for the built-in cooling units. While low power was not a primary 
goal in the design, it is a valuable side effect of hardware specialization that is 
likely to become increasingly important as supercomputing designs hit the 
“power wall” [16]. 

cialized interconnect that allows both the hardwired and pro-
grammable components to send short messages efficiently [21].  

Our previous publications have focused on the implementa-
tion and performance of traditional, “plain vanilla” MD simula-
tions on Anton. In this paper, we discuss the software imple-
mentation of a much more diverse set of methods on Anton, 
substantially expanding Anton’s functionality and range of 
applicability. Despite the fact that Anton is a specialized ma-
chine, we were able to accommodate the great majority of these 
methods while maintaining simulation performance orders of 
magnitude greater than that achievable on other hardware plat-
forms. In particular, most such methods achieve performance 
exceeding 90% of Anton’s peak benchmark performance. 

The diverse set of methods implemented on Anton, which 
involve a wide variety of computational routines and data 
structures, fall into several categories: 

• Techniques for incorporating various physical interac-
tions and effects within the physical model, referred to as 
a force field, that is used in an MD simulation to calcu-
late the forces acting on all atoms in the simulated bio-
logical system. Examples include methods for supporting 
applied electric fields, electrostatic polarizability, cross 
terms, “virtual” atomic sites, free energy perturbation 
calculations, and the special-case treatment of forces be-
tween certain pairs of atoms that are not covalently 
bonded to each other. 

• More complex integration methods, which are used to 
calculate where atoms move in response to these forces. 
Such methods include several schemes for controlling 
the simulated pressure and temperature of the molecular 
system being simulated. 

• Enhanced sampling techniques employed to facilitate 
the efficient exploration of the set of distinct three-
dimensional configurations that can be assumed by a 
given biomolecule, and to efficiently capture important 
but infrequent structural changes in biomolecular sys-
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tems. These methods include temperature-accelerated 
molecular dynamics, simulated tempering, and the ap-
plication of several types of non-physical biasing forces. 

Anton simulations employing various combinations of 
these methods have helped characterize processes including the 
binding of drug molecules to their protein targets [22–24], the 
folding of proteins into their characteristic three-dimensional 
structures [25, 26], and key structural changes underlying the 
function of important classes of protein molecules, including 
ion channels [27], kinases [28], and G protein–coupled recep-
tors [29, 30].  

As for other massively parallel specialized or hetero-
geneous machines, the main challenge of mapping additional 
functionality to Anton reflects Amdahl’s law: calculations that 
are not accelerated using Anton’s hardware may become a per-
formance bottleneck even if they represent only a small frac-
tion of total runtime on more conventional machines. Several 
features of Anton’s hardware and software architecture proved 
critical in addressing this challenge. Our software implementa-
tion of various methods heavily exploited the fact that Anton 
provides general-purpose compute capacity that is tightly inte-
grated with the more specialized components of each ASIC: 
Anton’s programmable cores can manipulate the inputs and 
outputs of its hardwired pipelines at very fine granularity (i.e., 
at the word level), and communication operations can be per-
formed with very low latency between computational subunits 
within an ASIC or on different ASICs. We also architected our 
software to allow users to specify different execution frequen-
cies for each of a wide variety of operations involved in these 
methods, providing opportunities to reduce performance penal-
ties with little or no loss of accuracy. While Anton is special-
ized for molecular dynamics, a similar combination of hard-
ware and software design strategies may be useful in accom-
modating a diverse set of methods on machines designed for 
other applications. 

II. BACKGROUND  
This section provides a brief introduction to traditional MD 

simulation and to Anton’s hardware architecture, with an em-
phasis on details relevant to the implementation of the extended 
MD methods that are described in the rest of this paper. More 
details about Anton’s architecture are available in our previous 
work [17–21]. 

A molecular dynamics simulation consists of sequence of 
iterations, each covering a time step of fixed duration, for ex-
ample of length 2 fs. In its most basic form, each “MD itera-
tion” consists of the calculation of the forces acting on all at-
oms, followed by an integration phase that updates the posi-
tions and momenta of the atoms according to the classical laws 
of motion, as depicted in Figure 1. The forces are calculated as 
a function of particle positions using a physical model known 
as a force field, which traditionally includes bonded, van der 
Waals, and electrostatic forces. Bonded forces involve interac-
tions between small groups of atoms connected by one or more 
covalent bonds, whereas van der Waals and electrostatic forces 
(non-bonded forces), involve all pairs of atoms in the system. 
On Anton, non-bonded forces are expressed as the sum of 
range-limited interactions and long-range interactions. Range-
limited interactions, which consist of van der Waals interac-

tions and a contribution from electrostatic interactions, decay 
quickly with distance and are computed explicitly between all 
pairs of atoms separated by less than a specified cutoff radius. 
Long-range interactions, which comprise the remaining elec-
trostatic contributions, decay slowly but smoothly; they are 
efficiently computed on Anton using a grid-based method [31].  

Anton is a special-purpose machine designed to accelerate 
the MD computations described above. An Anton machine 
consists of nodes connected in a toroidal topology; for exam-
ple, a 512-node configuration uses an 8 × 8 × 8 topology, cor-
responding to an 8 × 8 × 8 spatial partitioning of the biological 
system with periodic boundary conditions. The partitioning 
maps each atom to a “home node,” which is responsible for its 
force accumulation and integration. 

Each Anton node includes an application-specific integrat-
ed circuit (ASIC) containing two major computational subsys-
tems: the high-throughput interaction subsystem (HTIS) [18] 
and the flexible subsystem [19]. Figure 2 summarizes Anton’s 
hardware organization in three views: a machine-level view, a 
node-level view, and an overview of the flexible subsystem. 
The HTIS contains parallel hardwired pipelines and is con-
trolled by a specialized programmable core called the interac-
tion control block processor (ICB). The flexible subsystem 
contains four general-purpose programmable cores, which are 
responsible for the overall data flow of the MD computation, 
and eight programmable geometry cores (GCs) with a special-
ized instruction set designed to accelerate MD computations. 
The flexible subsystem also contains four asynchronous data 
transfer engines and a correction pipeline (CP)—a single in-
stance of the pipeline contained in the HTIS—which selective-
ly reverses a few of the interactions computed by the HTIS. 
Finally, the ASIC also contains DRAM controllers, an intra-
chip ring network, communication channels to neighboring 
ASICs, and a host interface.  

The node’s hardware units, both hardwired and program-
mable, are tightly integrated so that they can operate efficiently 
on fine-grained data. This tight integration is made possible by 
communication primitives for fine-grained, low-latency data 
transfer [21], and smart DRAM controllers that are accessible 
to both programmable and hardwired units and are equipped 
with independent arithmetic units (e.g., for force, charge, and 

 
Figure 1.  Data flow diagram of a basic MD iteration. 
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potential accumulation) and sizeable caches.  

Anton has a highly customized memory hierarchy of caches 
and software-managed scratchpad memories, without hardware 
cache coherence across cores. Cache memories are sized to 
contain the code and data associated with an MD simulation, 
and are smaller than those typically found in commodity sys-
tems; for example, each GC has a 4K-instruction I-cache and a 
16 KB data cache. Cores implement simple branch predictors 
(general-purpose cores) or no branch predictors at all (GCs). 
The simplicity of branch prediction, absence of cache coher-
ence, and small size of cache contribute to significant area and 
power savings, but create additional software design challeng-
es. 

III. HARDWARE AND SOFTWARE DESIGN STRATEGIES TO 
SUPPORT EXTENSIBILITY 

Several aspects of Anton’s hardware and software architecture 
allowed us to implement the broad range of methods discussed 
in this paper with only a modest slowdown, despite the high 
degree of hardware specialization in Anton's design, 

First, many of these implemented methods take advantage 
of Anton’s fine-grained, low-latency communication mecha-
nisms. In a plain vanilla simulation, the general-purpose cores 
of the flexible subsystem primarily calculate bonded forces 
and perform integration. These calculations require massive 
gathers and scatters of position and force data. Anton’s com-
munication networks were designed to facilitate these opera-
tions by supporting primitives that act at a very fine granulari-
ty (a single force or position), both within a node and across 
the entire machine. Bonded force computation and integration 
have often served as the paradigms for the implementation of 
the enhancements discussed later in this paper, but even for 
methods that do not strictly follow this communication pat-
tern, like the conformation restraints in Section V-A, Anton’s 
support for fine-grained, low-latency communication allows 
us to distribute and balance computations effectively across 
flexible resources throughout the entire machine. 

Second, Anton’s software architecture allows users to 
specify different application frequencies for each of a wide 
variety of force calculations and integration operators. Many 
of the extended methods described in this paper can be applied 
infrequently with no significant reduction in overall simulation 
accuracy, and such infrequent application substantially de-
creases their impact on performance. Because each simulation 
uses a different combination of methods, and because the op-
timal frequencies for applying a given method may vary from 
one simulation to the next, each simulation requires a different 
schedule for the execution of various operations. To minimize 
code complexity without sacrificing efficiency, we  we use a 
software “sequencer” abstraction to implement these sched-
ules. The sequencer is analogous to the hardware sequencer in 
micro-programmed CPUs [32], but generalized for parallel 
software on a heterogeneous machine with many programma-
ble cores and hardwired pipelines. In our implementation, each 
general-purpose core runs an independent replica of the same 
software sequencer, and issues commands to a subset of the 
GC cores and hardwired pipelines. Anton’s fine-grained, low-
latency communication between the general-purpose cores and 
hardwired pipelines supports an efficient implementation of 
this scheduler. (The sequencer will be discussed further in 
Section IV.) 

Finally, to support some classes of methods, Anton’s hard-
ware pipelines were designed with a limited degree of pro-
grammability. For example, the PPIP functions include a tabu-
lated piecewise polynomial subexpression that admits a variety 
of functional forms. Moreover, the PPIP’s parameters and ta-
bles can be efficiently reloaded on the fly at a time-step granu-
larity. Thus the HTIS may be quickly switched from computing 
forces to computing potential energy or pressure, and these 
alternative quantities can be computed in the same amount of 
time as a comparable force calculation. The frequent computa-
tion of such quantities, like energy and pressure, is crucial to 
the implementation of several important integrators and en-
hanced sampling methods discussed below. 

 
Figure 2.  Hardware architecture of Anton at the machine level, node-level, and flexible-subsystem level. 
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In the following sections we describe the implementation of 
several of these more general MD methods on Anton. Figure 3 
illustrates how these methods fit into the traditional data flow 
introduced in Figure 1 and how they interact with each other. In 
this diagram, each new method is represented as a block. The 
computations associated with the blocks may take place in par-
allel on multiple programmable and/or hardwired units. The 
arrows in the figure denote data dependencies between compu-
tational blocks, which impose temporal constraints between 
communicating blocks. Data transfers implicitly enforce these 
dependencies through the counted remote write mechanism 
described in previous publications [21]. 

IV. TEMPERATURE- AND PRESSURE-CONTROLLED 
SIMULATIONS 

The basic integration phase described in the Background 
section simulates a biological system in which the number of 
particles (N), the volume (V), and the total energy of the system 
(E) are constant. In MD parlance, such a basic MD simulation 
samples the “NVE ensemble.” Yet most biological processes 
occur in an environment where temperature and pressure are 
fixed. As a consequence, users frequently wish to maintain 
constant temperature (“NVT ensemble”), or both temperature 
and pressure (“NPT ensemble”). 

The algorithms that keep the temperature and the pressure 
constant in a simulation are called “thermostats” and “baro-
stats,” respectively. Thermostats operate by coupling the atoms 
in the simulation with a virtual heat bath, while barostats oper-
ate by adjusting the volume and the aspect ratio of the simula-
tion box in response to pressure fluctuations. 

The thermostat selection offered by Anton includes Nosé-
Hoover chains and the Berendsen, Andersen, and Langevin 
thermostats [33]. Some of these thermostats operate in a closed 
loop and require a measurement of the current system’s total 
kinetic energy (which is directly related to the system’s tem-
perature) as an input at every invocation. Others operate in an 
open loop and use a source of randomness to model the influ-
ence of the heat bath; for example, the Langevin thermostat 
adds a small random noise to the velocities of atoms and im-
poses a frictional force on each atom directly proportional to its 
velocity. The initial design of the parallel random number gen-
erator presented in [34] was motivated by these applications.  

Barostats operate in a closed loop, taking as input the in-
stantaneous pressure, which is computed and globally reduced 
across the machine at every barostat invocation. Computing the 
pressure requires the calculation of the virial, labeled “virial 
phase” in Figure 3. Anton implements the Berendsen barostat 
[33] and the Martyna, Tuckerman and Klein (MTK) barostat 
[35].  

Thermostats and barostats, as well as the integration phase 
from the basic MD iteration, can be construed formally as 
“state operators,” that is, functions 𝐹: (𝑥⃑, 𝑝, 𝛾⃑) ↦ (𝑥⃑′, 𝑝′, 𝛾⃑′) 
that map positions 𝑥⃑ , momenta 𝑝 , and extended variables 𝛾⃑ 
(e.g., internal thermostat or barostat state) to new values. The 
formalism of state operators has the useful property that the 
composition of state operators is itself a state operator; we use 
this property to describe an entire simulation as a nested com-
position of primitive state operators, each of which corresponds 

roughly to one MD instruction. State operators can be com-
posed with arbitrary intervals in theoretically rigorous ways to 
maintain desirable integration properties such as symplecticity 
and time reversibility. Furthermore, if operators for infrequent 
temperature or pressure control are constructed correctly, they 
provably converge to the same distribution produced by fre-
quent temperature or pressure control in the limit of long time-
scales. An extensive treatment of this topic will appear in a 
separate work [36]. The main advantage of this approach is that 
users can apply operators infrequently, thus amortizing the cost 
of their computation over several basic MD iterations, without 
degrading accuracy. 

To implement such schedules, the software sequencer run-
ning on each general-purpose core iterates over an “MD pro-
gram.” An MD program is a predetermined sequence of “MD 
instructions,” where each MD instruction corresponds to one 
iteration of the simulation, and specifies the set of blocks (in 
Figure 3) enabled during that iteration. The pressure-controlled 
simulation includes an MD instruction that enables the virial 

 
Figure 3.  Data flow diagram of an MD iteration that includes the extended 
methods presented in Sections IV, V, and VI. The new data flow conserves a 
division of methods between the force and integration phases, as in the basic 
MD data flow illustrated in Figure 1. Two new phases are present to compute 
the potential energy and the virial. The new phases are composed of the same 
feature blocks as in the force phase, but blocks are executed in special modes, 
leading them to compute potential energy or virial terms instead of force 
terms. 
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computation phase and the barostat block, but not the integra-
tion block. The corresponding step in the MD program com-
putes the system’s pressure and adjusts the simulation box’s 
dimensions, but does not integrate atom positions.  

To hide the latency of inter-unit command communication, 
we perform software pipelining on the sequencer loop running 
on the general-purpose cores, which results in computation 
blocks being pipelined across the entire machine. All the se-
quencers proceed independently, issuing multiple commands 
for each MD instruction; as a result, several commands may be 
outstanding at any time. Correctness does not require additional 
synchronization beyond that which is implicit in the data flow; 
for example, the force phase begins on the arrival of new atom 
positions, and integration begins when all force components 
(which are counted by the DRAM controllers) have been ac-
cumulated. Thus, the sequencer abstraction provides an effi-
cient way to schedule computation at a fine grain without the 
need for synchronizing control state explicitly. 

Finally, to maintain performance comparable to traditional 
MD simulation on Anton, we ensure that the code and data 
used by simulation capabilities that are applied frequently fit in 
on-chip cache or SRAM. Anton’s general-purpose and geome-
try cores have instruction and data caches, but they are single-
level and backed by DRAM, with typical DRAM-latency pen-
alties: a fill from DRAM costs about 100 ns, which can cause a 
1% slowdown in a basic MD iteration. To avoid these penal-
ties, we explicitly control the layout of our object code and 
data, so that all frequently used code and data are placed in a 
single cache image that can be accessed at run time without 
cache conflicts. To accomplish this, we rebuild our MD soft-
ware for the specific needs of each user simulation, allowing 
the compiler to eliminate blocks of code that are not needed by 
that simulation, and the linker to achieve an optimized layout. 
In addition to reducing footprint (and thus cache misses), this 
“specialized build” produces code that benefits from reduced 
branching (cores have limited or no branch prediction) and 
call-stack depth (a shallow call stack makes more efficient use 
of the register window–based stack cache of the general-
purpose cores). As a result, a given simulation only pays a per-
formance penalty (in terms of cache usage and branching) for 
the methods it employs. On the GCs, even a specialized build 
exceeds the size of the instruction cache, so the code is further 
organized into overlays by capability and frequency of use, so 
that cache misses are incurred only for the most infrequently 
applied methods. 

V. ENHANCED SAMPLING 
While Anton provides the ability to simulate biological 

processes that occur over millisecond timescales, many pro-
cesses occur over timescales that are orders of magnitude larger 
and are currently inaccessible to traditional MD simulations. 
Enhanced sampling refers to a group of methods that attempts 
to bridge this timescale gap [37]. When used carefully, these 
methods can often provide a qualitative, and sometimes quanti-
tative, view of long-timescale events using a fraction of the 
simulation time required to observe the events directly with 
traditional MD. Most enhanced sampling methods involve in-
troducing biasing forces and other modifications to traditional 
MD to increase the likelihood of observing events of interest. 

In the next two sections, we will discuss the restraints and mod-
ifications to traditional MD that have been implemented on 
Anton and some of the enhanced sampling methods that are 
made possible by these new features. 

A.  Restraints  
Distance and conformation restraints are examples of tech-

niques commonly used in enhanced sampling. A distance re-
straint is an interaction between the centers of mass of two 
groups of particles. Such a restraint allows users to bias a simu-
lation by keeping two molecules—a drug molecule and a pro-
tein receptor, for example—or two portions of molecules, at a 
particular distance from one another. A conformation restraint 
generates forces that tend to hold a group of particles in a de-
sired conformation. This allows a user to bias a simulation by 
holding part or all of a molecule—the binding pocket of a pro-
tein, for example—in a particular conformation. Distance and 
conformation restraints play a role in many of the MD simula-
tions that scientists run on a day-to-day basis, not only in the 
context of enhanced sampling simulations.  

The “target value” for a restraint—that is, the desired dis-
tance between two molecules, or the desired distance of a mol-
ecule from a model conformation—is often a constant value, 
particularly in enhanced sampling methods like umbrella sam-
pling [38]. Alternatively, target values and force constants can 
vary over the course of a simulation allowing for steered mo-
lecular dynamics (SMD) [39, 40] and temperature-accelerated 
molecular dynamics (TAMD) [41]. In SMD, target values 
change according to a predefined schedule, whereas in TAMD 
they change dynamically in response to fluctuations of the sys-
tem and a high-temperature external Brownian thermostat. 

We now present the algorithm and implementation of con-
formation restraints as an example of how enhanced sampling 
methods can map to Anton. Forces in a conformation restraint 
cause a selected molecule to assume a conformation that is 
close to a desired “model” that the user specifies. Not only does 
the user specify the model, but also the desired distance be-
tween the actual and the model conformations, which we call 
the target value of the restraint. Distances between the actual 
and model conformations are measured as a root-mean-square 
deviation (RMSD) of the restrained atoms relative to the mod-
el. More formally, if 𝑥𝚤���⃗  and 𝑦𝚤��⃗  are the positions of the 𝑖P

th atom 
in the actual and model conformation, respectively, then: 

𝑅𝑀𝑆𝐷 = min
𝜃
�

1
𝑁

 �  ‖𝑥𝚤���⃗ − 𝜃(𝑦𝚤��⃗ )‖2
𝑁

𝑖=1
 

where θ is a rigid-body transformation (rotations and transla-
tions) applied to the model, and N is the number of atoms re-
strained. By construction, the RMSD is invariant to rotations or 
translations of the model or of the actual conformations. 

We now describe the algorithm used to compute conformation 
restraint forces. We represent the actual conformation X and 
the model conformation Y as two N × 3 matrices, each contain-
ing all the 𝑥𝚤���⃗  as rows and all the 𝑦𝚤��⃗  as rows, respectively. The 
algorithm proceeds as follows: 
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1. For each conformation X and Y, center it at the origin by 
subtracting its center of mass from each atom’s coordi-
nates, thus obtaining 𝑿′ and 𝒀′, respectively; 

2. Compute the covariance matrix 𝑹 = 𝑿′𝑻𝒀′; 

3. Compute matrix 𝑼 , the rotation matrix that aligns 
𝑿′and 𝒀′ optimally, using Kabsch’s algorithm [42, 43]; 

4. Compute the RMSD distance  

𝑑 =� 
1
𝑁

 �  �𝑥𝚤′���⃗ − 𝑼𝑦𝚤′���⃗ �
2𝑁

𝑖=1
 

5. Compute the restraint force 𝐹𝚤��⃗ = −
𝑘 �𝑑−𝑑𝑒𝑞� �𝑥𝚤′

����⃗ −𝑼𝑦𝚤′
����⃗ �

𝑁 𝑑
 on 

each atom 𝑖 ∈ {1,2, … ,𝑁}, where 𝑘 denotes the spring 
constant and 𝑑𝑒𝑞  denotes the target distance. 

Now we present our parallel implementation. It statically 
assigns each restrained atom i to a distinct “worker core” 𝑊𝑖. 
This assignment has two benefits: first, it achieves a better load 
balancing than the “natural” assignment of each restrained at-
om to its home core; in fact, atoms involved in a conformation 
restraint tend to be spatially close to each other, and thus clus-
tered on a small number of home cores. The natural assignment 
will distribute all the load of a conformation restraint to the few 
home cores interested, and leave all other cores idle. Second, 
model positions for each atom can reside permanently on each 
worker rather than having to migrate with each atom. At each 
application of the restraint, each core where a restrained atom i 
resides (i.e., its home core) transfers the atom’s coordinates to 
worker core 𝑊𝑖 . Each worker 𝑊𝑖  receives the coordinates of 
atom i and cooperates with the other workers, performing both 
computations specific to atom i and computations associated to 
the entire restraint. At the end, each worker returns forces for 
its atom to the atom’s home for accumulation. The specific 
parallelization proceeds as follows: 

1. Each restrained atom’s home core sends atom position 
𝑥⃗𝑖 to core 𝑊𝑖, which owns the model coordinates 𝑦𝚤′���⃗  

2. 𝑊𝑖 computes atom i's contribution to covariance ma-
trix R, which is 𝒓𝒊 = 𝑥𝚤���⃗

𝑇𝑦𝚤′���⃗  

3. Workers perform one global reduction that yields 
(𝑹 ; 〈𝑥⃗〉) = 𝑟𝑒𝑑𝑢𝑐𝑒 � 𝒓𝒊 ;  1

𝑁
𝑥⃗𝑖� 

4. Workers compute their centered atoms’ coordinates 
𝑥𝚤′���⃗ = 𝑥⃗𝑖 − 〈𝑥⃗〉 

5. Workers perform identical computations of 𝑼, by ap-
plying Kabsch’s algorithm to 𝑹 

6. Each worker 𝑊𝑖  computes atom i's contribution to the 
mean-squared deviation 

 𝑚𝑖 =
1
𝑁
�𝑥𝚤′���⃗ − 𝑼𝑦𝚤′���⃗ �

2

 

7. All workers perform a global reduction 

𝑚 = 𝑟𝑒𝑑𝑢𝑐𝑒(𝑚𝑖) and compute the RMSD as 
𝑑 =√ 𝑚 ; 

8. Each worker calculates the restraint force 𝑭𝒊 and sends it 
to atom i's home core for accumulation. 

The parallelized algorithm takes advantage of an optimiza-
tion to combine the global reduction of R and 〈𝑥⃗〉 into a single 
step (Step 3 in the parallel algorithm). First, we compute 𝒀′of-
fline; then, thanks to the mathematical property 𝑹 =
𝑿′𝑻𝒀′ =  𝑿𝑻𝒀′, we compute 𝒓𝒊  using the uncentered confor-
mation X without the need for 〈𝑥⃗〉. We can thus delay the com-
putation of 〈𝑥⃗〉, and compute it, together with R, in one global 
reduction rather than two, which reduces latency. Step 5 in the 
parallel algorithm is replicated across cores: all cores compute 
the same value at the same time; this choice leads to lower la-
tencies than computing U on a single core and broadcasting the 
result.  

The parallel portion of the computation of conformation re-
straints benefits from the tight integration among cores made 
possible by the low-latency interconnect and by the smart 
DRAM controllers on Anton, especially to accelerate the coor-
dinate distribution of Step 1, the force accumulation of Step 8 
and the global reductions in Steps 3 and 7. Some additional 
challenges are involved in optimizing the serial portion of the 
computation, primarily Step 5, whose relative latency after 
parallelization is significant. To mitigate its performance im-
pact, we adopt a selection of the strategies presented before in 
Section III. We allow users to apply conformation restraints 
infrequently by packaging them in the form of an extended 
state operator. In addition to that, Kabsch’s algorithm of Step 5 
is amenable to an optimization that preconditions its arguments 
and postconditions its results using the values of arguments and 
results of the previous iteration, thus rendering its cost even 
lower. To make the general-purpose cores most able to partici-
pate at a fine grain in the MD computation by accumulating 
forces on individual atoms, we used mixed arithmetic, perform-
ing only Steps 5 and 6 in floating point, and all other steps in 
the same fixed-point format used to represent and process forc-
es and coordinates across Anton. 

Thanks to these optimizations, Anton supports con-
formation restraints at a small performance cost, as reported in 
Section VII. In addition, Anton supports variants of confor-
mation restraints that use different atom weights, multiple 
models, time-varying parameters and composite flat-bottom 
harmonic potentials. 

B. Simulated Tempering 
The “conformation space” of a system is the set of all the 

spatial conformations that the system’s molecule can assume. 
Simulated tempering attempts to speed up the sampling of con-
formation space by periodically modifying the temperature of 
the system [44]. At lower temperatures, molecules may not 
have sufficient thermal energy to overcome barriers in their 
energy landscape frequently, while at higher temperatures they 
overcome these barriers more frequently, resulting in better 
sampling. By periodically raising and lowering the temperature 
along a discrete “ladder of temperatures,” simulated tempering 
facilitates conformational exploration. 
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Transitions occur only between target temperatures that are 
consecutive along the ladder, up or down one rung, in a Monte 
Carlo process. At each interval, the system either transitions or 
not according to the following Metropolis acceptance criterion:  

𝐴(𝜑,𝑇𝑎 → 𝑇𝑏) = min �𝑒
−𝑈(𝜑)
𝑘𝑇𝑎

+𝑈(𝜑)
𝑘𝑇𝑏

+𝑤𝑎−𝑤𝑏

1 
 

Where A is the probability of accepting a transition from 
temperature Ta to temperature Tb (where Tb is selected with 
equal probability to be either one rung above or below Ta), 
given the state of the system 𝜑. 𝑈(𝜑) is the energy of state 𝜑, 
k is Boltzmann’s constant, 𝑇𝑖  is the temperature of ladder 
rung 𝑖, and 𝑤𝑖  is a weight chosen for 𝑇𝑖  to promote equal sam-
pling time at each temperature. Note that the system’s potential 
energy must be computed before each putative transition to 
calculate the acceptance probability. Figure 4 shows tempera-
ture changes produced by simulated tempering in a short simu-
lation of dialanine on Anton. 

On commodity hardware, a related enhanced sampling al-
gorithm, replica exchange, is often preferred over simulated 
tempering [45]. Replica exchange performs concurrent simula-
tions of multiple “replicas” of the system, running at different 
temperatures, and swaps configurations between replicas in a 
Monte Carlo process. Replica exchange has the advantage that 
it allows for parallelization over the replicas being simulated, 
and it guarantees equal simulation time at each temperature 
without having to choose weights. 

Anton’s architecture, however, favors simulated tempering 
over replica exchange. Anton’s limited SRAM size per node 
puts a lower bound on the number of ASICs required to simu-
late a single replica efficiently, so the parallelizability of replica 
exchange is limited by the number of ASICs available. On the 
other hand, Anton’s architecture allows for efficient use of 
many ASICs in parallel for a single simulation. Furthermore, 

replica exchange imposes additional input/output costs on An-
ton, either to communicate between machines running parallel 
replicas or to swap state from DRAM between time-
multiplexed replicas running on the same machine. These costs 
are considerable, since an exchange interval of a few picose-
conds corresponds to only tens of milliseconds of wall-clock 
time on Anton. As for the preliminary simulations required to 
calculate weights for simulated tempering, they can be run very 
quickly on Anton, as they typically require hundreds of nano-
seconds of simulation time.  

An Anton simulation that employs simulated tempering 
typically attempts a Monte Carlo exchange every 1,000 to 
10,000 time steps. This procedure consists of a potential energy 
computation, a transition attempt, and—if successful—a modi-
fication to the thermostat temperature. 2 

The data flow of a potential energy computation on Anton 
is very similar to that of a force computation, but each of the 
force computation kernels—bonded, range-limited, long-range, 
etc.—is replaced by a related but distinct energy computation 
kernel. The force polynomial tables in the HTIS and CP must 
therefore be swapped for energy tables, and modified bond 
calculations must be performed to compute energies instead of 
forces. All of these changes are controlled by the sequencers 
running on general-purpose cores, which send commands to the 
GCs, HTIS, and CP, indicating that an energy computation is to 
be performed.  

Since potential energy computation is performed so infre-
quently, the energy computation code is not included in the 
general-purpose cores’ specialized build (mentioned in Section 
III) but instead lives in a separate code section in DRAM. The 
normal force computation thus pays no branch or instruction 
cache penalty for energy computation, even when simulated 
tempering is enabled.  

Simulated tempering transition attempts and state updates 
are executed on each node in parallel, with no need for com-
munication between nodes. On each node, only the core re-
sponsible for the thermostat executes the update routine and 
stores the simulated tempering data and state, saving space on 
other cores. 

VI. FORCE FIELD SUPPORT AND NEW FORCE TERMS 
Biomolecular force fields are continuously improved by the 

computational chemistry research community, and Anton’s 
software has been extended to support many force field fea-
tures needed by the researchers using Anton. These features 
include virtual sites, which have been introduced in more accu-
rate models of electrostatics; uniform electric fields used, for 
example, to model transmembrane potentials; Drude particles 
that model polarization; and soft-core potentials, employed in 
certain free-energy perturbation techniques that compute dif-

                                                           
2 Anton also supports generalized simulated tempering, in which components 
of the Hamiltonian are modified. In that case, the simulated tempering algo-
rithm must perform two potential energy calculations (one for each Hamilto-
nian), and must modify the Hamiltonian in addition to thermostat state. This 
two-energy computation program is managed by the sequencer, with no 
changes required to the code on the GC or ICB units. 

 
Figure 4.  Temperature of dialanine in a simulated tempering simulation with 
ladder rungs at 300 K, 310 K, and 320 K. The red line is the thermostat 
temperature imposed by simulated tempering; the blue line is the 
instantaneous system temperature. 

            
             

          
    



8 
 

ferences in free energy between two states of a system (for 
example, ligand-binding free energies). Our strategies for han-
dling these features are diverse. Here we discuss in detail two 
of these features, nonstandard interactions and CMAP terms, to 
illustrate some of the techniques we used to implement such 
diverse features on a specialized platform.  

One example involves adding support for nonstandard van 
der Waals interactions. Force fields generally specify the ener-
gy terms corresponding to the interaction between a pair of 
non-bonded particles in diverse forms that can all be represent-
ed by 𝐸 = 𝑎 ∙ 𝑓(𝑘 ∙ 𝑟2), where f is a suitable function, r is the 
distance between the two particles, and a and k are each com-
puted as either the arithmetic or the geometric mean of parame-
ters associated with the two particles. This is the functional 
form hardwired into the pipelines of Anton’s HTIS. Bucking-
ham’s form of the van der Waals interaction [46] does not di-
rectly fit this model, although it does decompose as a sum of 
terms that are supported directly by the HTIS. In this case, we 
accelerate evaluation of the force term by executing two passes 
through the HTIS—essentially running two force phases back-
to-back. In other cases, a force field may override the values of 
a and k for specific pairs of atom types (e.g., selected ion–
protein interactions). When there are few of these exceptional 
cases, we make use of the CP to correct the calculation. First, 
the CP repeats the same computation that takes place on the 
HTIS with the sign reversed. This effectively removes the un-
desired force contribution produced by the HTIS, which has 
treated the interaction as if it were standard. Then, we compute 
the forces due to the nonstandard interaction by loading into the 
CP the variant a and k parameters.  

A second example involves CMAP terms, which appear in 
the CHARMM family of force fields, starting with variant 
CHARMM22/CMAP. CMAP is a cross term that adds a cor-
rection for each pair of neighboring φ- and ψ-dihedral angles 
along a protein’s backbone. The energy of each term is com-
puted by first calculating the angles (φ, ψ), and then interpolat-
ing the energy from one of four two-dimensional tables (each 
containing 24 × 24 discrete points) by bicubic interpolation. 
There are generally few instances of these terms in a simula-
tion—roughly one for each amino acid in a protein.  

CMAP terms can be viewed as a new kind of bond term. 

Yet, in contrast to other bond terms, CMAP terms are relatively 
complex, both in computation and in code and data size. We 
store precomputed CMAP interpolation functions in DRAM. 
The GC data caches, though, can only accommodate a small 
window of that table, centered around the most recently used 
entry of each term; since the changes to these dihedrals are 
generally small, table lookups are almost always serviced from 
the cached windows. After each force or energy phase, a GC 
may explicitly request updates to these windows; these requests 
are queued and handled by a general-purpose core, off the criti-
cal path.  

As noted earlier, we often assign specialized roles to vari-
ous cores. In general, we do this either to parallelize a task on a 
small scale, or to reduce miss rates in the core’s instruction or 
data caches. Since the code for CMAP terms is relatively 
large—more than a quarter of the available instruction cache—
our implementation uses core specialization for the latter pur-
pose. Anton’s bond-program generator, which assigns bond 
terms to GCs and balances their load across the machine, is 
modified to reserve a set of GCs for CMAP computation. 
CMAPs are assigned only to these cores. We also compile the 
CMAP-only code and non-CMAP code in separate segments of 
the GCs’ code image; we deliberately align these segments so 
that they occupy overlapping regions in cache, forming over-
lays. The result is that each GC either has a CMAP-only role or 
a non-CMAP role during the calculation of bond terms. Either 
way, the footprint of the code run by each GC during an MD 
iteration will not exceed the capacity of core’s instruction 
cache. 

VII. PERFORMANCE 
In this section, we measure Anton’s performance on the ex-

tended set of methods presented in the previous sections, using 
six representative biological systems, listed at the top of Table 
1, which range in size from 13,543 to 229,983 atoms. 

First, we present Anton’s baseline performance using tradi-
tional, plain vanilla MD (i.e., without the use of extended MD 
techniques), measured on a representative set of biological sys-
tems under conditions identical to those used in our previously 
reported benchmarks [18]: a time step duration of 2.5 fs and a 
RESPA integrator that computes long-range electrostatics eve-
ry 5 fs with the k-space Gaussian split Ewald (GSE) method 

 BPTI DHFR GPCR ApoA1 K+ channel 1 K+ channel 2 
System size (# of atoms)  13,543 23,558 53,005 92,224 107,117 229,983 
Machine size (# of nodes) 512 512 512 512 512 1024 
Baseline performance (µs/day) 18.1 17.4 9.10 5.69 5.22 5.13 
NVT ensemble 1.02 0.99 0.98 1.01 1.01 1.00 
NPT ensemble 1.05 1.03 1.09 1.15 1.15 1.18 
Distance Restraints 1.05 1.05 0.99 1.02 1.01 1.01 
Distance Restraints + TAMD  1.07 1.07 1.00 1.01 1.01 1.02 
Conformation Restraints 1.19 1.18 1.06 1.05 1.05 1.06 
Simulated Tempering 1.07 1.04 1.00 1.02 1.02 1.01 
Uniform E Field 1.16 1.22 1.01 1.10 1.07 1.09 
CMAP 1.30 1.38 1.05 1.03 1.03 1.07 
Virtual Sites 1.05 1.15 1.54 1.10 1.10 1.15 
Nonstandard Interactions 1.07 1.37 1.17 1.13 1.04 1.05 
       

Table 1. Slowdowns caused by each of the extended methods discussed in this paper, relative to baseline performance with all extended methods disabled. 
We evaluate the performance across six biological systems, presented in order of increasing number of atoms. Two systems (DHFR, and ApoA1) are com-
mon benchmark systems; the other four (BPTI, GPCR, K+ channel 1, and K+ channel 2) come from recent biochemical studies [24, 25, 27].  
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[31]. Performance values are expressed in microseconds of 
simulated time per day of wall-clock time.  

Then, we measure the performance with each extended 
method described in this paper enabled individually, and report 
slowdown relative to the baseline. The results are in Table 1.  

Among the biological systems considered, DHFR and 
ApoA1 are widely used benchmark systems; we have previous-
ly reported baseline performance for these systems on both 
Anton and commodity hardware [18, 47]. BPTI was the subject 
of Anton’s first millisecond-scale simulation [18]. DHFR and 
BPTI consist of proteins and ions solvated in water; ApoA1 
also includes a lipid membrane The other three systems 
(GPCR, K+ channel 1, and K+ channel 2) have been studied on 
Anton using methods presented in this paper. The GPCR sys-
tem was used to study the escape pathway of a drug from its 
binding site in a G protein–coupled receptor [24]. The two K+ 
channel systems were used to model the behavior of a voltage-
gated ion channel, a protein embedded in a cell’s membrane 
that regulates the flow of ions in and out of the cell in response 
to changes in the transmembrane voltage [27]. The GPCR and 
K+ channel simulations contain proteins embedded in a lipid 
membrane, as well as ions, water, and—in the case of GPCR—
a drug molecule.  

In order to obtain baseline performance measurements for 
the BPTI, GPCR, and K+ channel systems, we disabled all ex-
tended methods utilized in the published simulations. We per-

formed all simulations on 512-node Anton machines, except 
for K+ channel 2, which we simulated on a 1024-node machine. 
In order to obtain stable performance measurements, we simu-
lated each system for 100 ns of biological time. 

We chose for each method parameters typical of those that 
scientists use in Anton simulations. To simulate NVT and NPT 
ensembles, we employed a Nosé-Hoover thermostat applied 
every 24 time steps and an MTK barostat applied every 480 
time steps. For the application of distance and conformation 
restraints, we chose an interval of 12 time steps. Conformation 
restraints were applied to a subset of atoms in the protein back-
bones. We applied TAMD on the target value of distance re-
straints. For simulated tempering, the transition attempt interval 
was 10 ps. 

CMAP terms were added by parameterizing systems with 
the CHARMM27 force field [48]. To add virtual sites, we 
adopted the TIP4P model [49] for all water molecules. The 
TIP4P model uses, in addition to the three real atoms, one vir-
tual particle for each water molecule.3 To add nonstandard in-
teractions, we selected, for all systems, parameters consistent 
with the originally published simulations of K+ channel 1. This 

                                                           
3 The implementation of TIP4P water on Anton takes advantage of the fact 
that all atoms in a water molecule are located on the same node to perform 
virtual site calculations locally. “Generalized virtual sites,” in which the atoms 
determining a virtual site’s position may be located on more than one node, 
are currently only used for force field experimentation, and their performance 
is not measured here. 

 
 
Figure 5: Performance of simulations with extended techniques applied at different intervals, for three biological systems (DHFR, GPCR and APOA1). 
On the left, performance of simulations of NVT and NPT ensembles are plotted as a function of the thermostat/barostat application interval. On the right, 
performance of simulations with conformation restraints are plotted as a function of restraint application interval; different data series compare the 
traditional and the incremental version of Kabsch’s algorithm (discussed in Section V). 
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corresponded to adding nonstandard interactions between 24 
protein oxygen atoms and potassium ions added at a concentra-
tion of 500 mM, which produced between 672 (BPTI) and 
12,312 (K+ channel 2) nonstandard interactions.  

As a point of comparison, the fastest reported non-Anton 
simulation performance of the DHFR and ApoA1 benchmarks 
of which we are aware of is 0.471 and 0.289 µs/day, respec-
tively [47], obtained using Desmond, a software package for 
MD simulation on commodity clusters [50]. This performance 
was achieved on a cluster consisting of 512 nodes, each with 
two 2.66-GHz Intel Xeon E5430 processors, connected by a 
DDR InfiniBand network. DHFR used only two of the eight 
cores on each node in order to increase network bandwidth per 
core. 

In addition to the performance results presented above, we 
also analyze the performance of simulations that utilize multi-
ple extended methods at the same time. In particular, we con-
sider the sets of methods used in the published simulations on 
the GPCR and K+ channel systems. The K+ channel systems 
employ an NPT ensemble, a uniform electric field, and the 
CHARMM27 protein force field, which includes CMAP terms. 
Although the simulations published on this system [27] used a 
Berendsen thermostat and a barostat applied at every time step, 
in our simulations we use the same Nosé-Hoover/MTK baro-
stat combination described above for consistency. Additionally, 
K+ channel 1 uses nonstandard interactions [51], while K+ 
channel 2 uses a conformation restraint. The GPCR system 
used a TAMD-controlled distance restraint, an NPT ensemble, 
and the CHARMM27 force field with CMAP terms. Our 
measurements are reported in Table 2. We find that the sum of 
the individual slowdowns associated with each method is usu-
ally a good predictor of the slowdown measured when all the 
methods in a set are used; the slowdowns below are within 5% 
of the sum of the individual slowdowns reported in Table 1. 

In Section III, we discussed the infrequent application of an 
MD method as a means to mitigate its performance impact. 
Figure 5 demonstrates how the choice of interval impacts the 
performance of a simulation. The performance of simulations 
for three biological systems (DHFR, ApoA1, and GPCR) are 
plotted as a function of the application interval of three extend-
ed MD operations (NVT thermostat, NPT barostat, and con-
formation restraints).  

The plot of conformation restraint interval contains four da-

ta series. In the first data series, we used a traditional form of 
Kabsch’s algorithm (discussed in Section V). In the other three 
data series, we used the incremental version of Kabsch’s algo-
rithm that accelerates convergence by reusing results from its 
previous run. We report performance as the incremental Kab-
sch algorithm is reset via a traditional run every 5, 10, or 15 
iterations. Note that, because of the parallelization approach, 
the performance of conformation restraints is approximately 
invariant over number of atoms restrained. 

Unsurprisingly, slowdowns are approximately inversely 
proportional to the application interval of MD methods. At 
long intervals, the performance asymptotically approaches a 
value near the baseline simulation performance. The asymptot-
ic performance for NPT is not as high as the baseline perfor-
mance because of the specialized builds described in Section 
III: the specialized build of the baseline simulation does not 
require code for the barostat and virial computation, and can 
thus reduce branching and instruction cache usage, leading to 
higher performance. 

The plot of NPT performance in Figure 5 illustrates a trade-
off inherent in the barostat of [36], in that it permits application 
intervals of roughly 480 time steps, but requires several con-
secutive iterations of force and virial calculations for each bar-
ostat invocation. An alternative, such as the Berendsen or clas-
sic MTK barostat, would require less work per invocation but 
more frequent application .  

VI. CONCLUSIONS 
Extending Anton’s software to support diverse methods in 

molecular dynamics has allowed biochemistry researchers to 
use Anton for a broad set of simulations while maintaining 
performance dramatically superior to that of general-purpose 
supercomputers. This performance was achieved using soft-
ware approaches that exploited Anton’s low-latency communi-
cation mechanisms and tight, fine-grain coupling between pro-
grammable cores and hard-wired pipelines, in order to effec-
tively parallelize computation in the face of Amdahl’s law. As 
a result, the extended methods discussed in this paper incur 
only modest slowdown, allowing simulations using combina-
tions of complex methods to run at a substantial fraction of 
peak performance. We believe that extending the repertoire of 
MD methods on Anton combined with the performance of spe-
cial-purpose hardware will enable the study of biological pro-
cesses that are currently considered outside the reach of tradi-
tional MD methods. 

More broadly, our experience suggests that specialized ma-
chines can support a diverse set of methods while maintaining a 
substantial performance advantage over general-purpose ma-
chines. Future specialized machines may benefit from some of 
the hardware features we exploited in implementing these 
methods on Anton, including support for fine-grained opera-
tions and low latency communication within and between 
chips. Likewise, the features of Anton’s software architecture 
that facilitated efficient implementation of these methods, in-
cluding our approach to enabling variable-frequency execution 
of a wide variety of methods, may prove applicable on other 
heterogeneous machines and in other application domains. 

  

 GPCR K+ channel 1 K+ channel 2 

System size (# of atoms) 53,005 107,117 229,983 

Machine size (# of nodes) 512 512 1024 

Baseline performance (µs/day) 9.10 5.22 5.13 

Performance (µs/day) 7.62 4.23 3.65 

Slowdown 1.19 1.23 1.41 
 

Table 2: Aggregate slowdown measured for MD simulations when multi-
ple extended capabilities are employed at the same, relative to the baseline 
MD performance. The combinations of systems and features measured 
replicate those presented in biochemical research published by our group 
[24, 27]. 
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