
doi: 10.1016/j.procs.2015.05.210 

Efficient Particle-Mesh Spreading on GPUs

Xiangyu Guo1, Xing Liu2, Peng Xu1, Zhihui Du1, and Edmond Chow2

1 Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China

gxy13@mails.tsinghua.edu.cn, bly930725@gmail.com, duzh@tsinghua.edu.cn
2 School of Computational Science and Engineering, Georgia Institute of Technology,

Atlanta, Georgia, 30332, USA
xing.liu@gatech.edu, echow@cc.gatech.edu

Abstract
The particle-mesh spreading operation maps a value at an arbitrary particle position to con-
tributions at regular positions on a mesh. This operation is often used when a calculation
involving irregular positions is to be performed in Fourier space. We study several approaches
for particle-mesh spreading on GPUs. A central concern is the use of atomic operations. We
are also concerned with the case where spreading is performed multiple times using the same
particle configuration, which opens the possibility of preprocessing to accelerate the overall com-
putation time. Experimental tests show which algorithms are best under which circumstances.

Keywords: particle-mesh, spreading, interpolation, sparse matrices, GPU, warp shuffle

1 Introduction

Many scientific applications involve both a set of particles that can reside at arbitrary locations
in space, and a Cartesian mesh with regularly-spaced mesh points. Given a set of values,
such as velocities, on the mesh points, it may be desired to find the interpolated values at
the arbitrary particle locations. This is called the particle-mesh interpolation operation. Mesh
points nearby the particle are used to interpolate the value of the quantity at that particle. The
inverse operation takes values at particle positions and contributes them to values at nearby
mesh points. This is called the particle-mesh spreading operation. The topic of this paper
is particle-mesh spreading. The operation is a key step in the non-equispaced fast Fourier
transform [5, 16], with applications including tomography, magnetic resonance imaging, and
ultrasound. Particle-mesh spreading is also used in the particle-mesh Ewald summation (PME)
method [4], widely used in molecular dynamics [7] and other types of simulations [15, 11] to
evaluate long-range interactions between particles.

In various particle-mesh applications, given quantities located at particle positions, such as
velocities, forces or charges, are mapped onto a 3D regular mesh. The spreading contributes to

Procedia Computer Science

Volume 51, 2015, Pages 120–129

ICCS 2015 International Conference On Computational Science

120 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.210&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.210&domain=pdf


a p× p× p region of the mesh roughly centered at the particle. The value of p is related to the
order of the (inverse) interpolation function. Figure 1 illustrates the particle-mesh spreading of
two particles onto a 2D mesh using p = 4.

Figure 1: Particle-mesh spreading onto a 2D mesh with p = 4. The solid circle and triangle represent
two particles. The mesh points receiving contributions from these particles are shown with open circles
and triangles, respectively.

While both particle-mesh interpolation and spreading are important, we focus on the latter
because it is much more challenging to obtain high performance for the spreading operation.
The reason why these operations have very different performance characteristics is because
data structures are usually particle based rather than mesh based. This is due to the fact
that it is easy to determine the neighboring mesh points of a particle, but not easy to efficiently
determine the neighboring particles of a mesh point, especially when particles can move. For the
spreading operation, a natural parallelization across particles means that the mesh variables are
shared, and locking/waiting is needed to control access to these variables. For the interpolation
operation, the quantity at each particle is simply computed by reading the values at nearby
mesh points. This paper focuses on the particle-mesh spreading operation on GPUs, where
large numbers of threads may be contending for writes on mesh variables.

The simple method of parallelizing particle-mesh spreading on GPUs is to use one thread to
perform the spreading operation for each particle. As mentioned, this requires using expensive
atomic operations as multiple threads might attempt to update the same mesh location simulta-
neously. Additional challenges arise from the sparse and irregular nature of spreading, making
it hard to achieve load balance and coalesced memory access, leading to poor performance on
GPU hardware.

Previous research on particle-mesh spreading on GPUs attempt to enhance coalesced mem-
ory access and partially avoid the use of atomic operations [8, 2]. In these studies, a prepro-
cessing step is used to create a mesh based data structure. Each mesh point can store a single
particle [8] or a list of particles [2]. No atomic operations are needed to perform the actual
spreading operation because a single thread sums the contributions for a mesh point using the
mesh based data structure.

A number of issues can be raised with the above mesh based approach. Performance is
highly dependent on the number of particles per grid point. (The relationship between the
number of particles and the number of grid points is chosen by balancing accuracy and cost.)
For fewer than 1 particle per grid point on average, the mesh based approach may be inefficient
because of the large number of mesh points not associated with particles. Also, while avoiding
atomic operations is a good optimization guideline, on recent GPU microarchitectures, e. g.,
the Kepler GK110, the atomic operation throughput has been substantially improved, making
particle based approaches more competitive.

In traditional uses of particle-mesh spreading, the operation is performed once for a given
configuration of particles, where a configuration is a set of particle locations. In this paper, we

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

121



are motivated by the important and emerging case of needing to perform the spreading operation
multiple times for the same particle configuration, in sequence. This use case coincides with
the increasing use of iterative methods for solving systems of equations or computing functions
of operators. An example is using the Lanczos algorithm to compute Brownian displacements
in Brownian dynamics simulations [11]. Here, the main cost is applying the particle-mesh
operator where the spreading operation is the most difficult to parallelize part. This use case
means that it may be profitable to perform some preprocessing, such as construction of mesh
based data structures, to speed up the overall computation. Indeed, this study was initiated
because we need to know what particle-mesh spreading algorithm to use for our Brownian
dynamics simulation code [11].

The main contribution of this paper is two-fold: 1) study the use of mesh based data
structures that can be useful when the spreading operation is performed multiple times, and 2)
propose a technique of using GPU warp shuffle operations to optimize the spreading operation
with mesh based structures. It is unlikely that one single spreading method achieves the best
performance for all applications, with different densities of particles relative to mesh points. To
fully understand when to use which algorithms, we compare several spreading algorithms using
parameterized test cases.

2 Critique of Existing Approaches

Particle Based Approach. The simple particle based approach assigns one thread per parti-
cle to perform the spreading operations. Because multiple threads working on nearby particles
may need to update the same mesh points concurrently, the use of atomic operations is gener-
ally necessary. While this approach may work well on CPUs, it is traditionally thought to be
inefficient on GPUs where atomic operations are relatively more expensive.

A major advantage of the particle based approach is that it only needs a simple data
structure, consisting of the list of particles and their coordinates. The (inverse) interpolation
coefficients are computed “on-the-fly” using the particle coordinates.

Mesh Based Approach. The mesh based approach, in contrast to the particle based
approach, assigns threads to mesh points. This is the approach in the clever work of Harvey
and Fabritiis [8] on NVIDIA’s Tesla microarchitecture. The basic idea is to use a “gather”
for each mesh point rather than a “spread” for each particle. The algorithm consists of three
steps. In the first step, each particle is placed at the nearest mesh point. Atomic operations
are still needed in this step, but they are much fewer than in the particle based approach (by
a factor of p3 because particles rather than spreading contributions are collected at the mesh
points). Each mesh point can hold at most one particle, so any additional particles are placed
on an overflow list. In the second step, the actual spreading operation is performed at each
mesh point by gathering contributions from particles placed in the surrounding p3 mesh points.
Since each thread only updates one mesh point, the use of atomic operations is not needed
in this step. As designed, memory access is coalesced in this step as adjacent threads update
adjacent mesh points. In the third step, particles on the overflow list are processed using the
particle based approach. This algorithm follows the paradigm of dividing the computation
into a regular part and an irregular part. The regular part can be computed quickly on GPU
hardware and hopefully dominates the irregular part. In this paper, we refer to this specific
mesh based algorithm as the “Gather algorithm.”

When the number of particles is smaller than the number of mesh points, the Gather al-
gorithm has many more memory transactions than the particle based approach. This may be
an acceptable cost if it is lower than the penalty of using atomic operations. This was the

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

122



case for the Tesla microarchitecture used by Harvey and Fabritiis [8], but on NVIDIA’s Kepler
microarchitecture where atomic operations can be as fast as global memory load operations,
the extra memory transactions may outweigh the gain of avoiding atomic operations.

Another potential disadvantage of the Gather algorithm is that the interpolation weights
must be computed multiple times, once for every particle contributing to a mesh point, rather
than simply once for every particle in the particle based approach. This is because the interpola-
tion weights for a particle depends on a particle’s position. In essence, the interpolation weights
are computed p3 times rather than once. In this paper, we use cardinal B-spline interpolation
(used in the smooth PME method [6]).

We note that when the Gather algorithm for spreading must be performed many times for
the same particle configuration, the result of the first placement step of the Gather algorithm
can be saved and reused.

Multicoloring Approach. In previous work on Intel Xeon Phi, we parallelized the spread-
ing operation with a particle based approach that does not need atomic operations [11]. Mul-
ticoloring is used to partition the particles into sets called “colors.” Spreading is performed
in stages, each corresponding to a color. In each stage, a thread is assigned a subset of the
particles of the current color such that each thread can update mesh locations without conflict
from other threads. This algorithm, however, is not appropriate for GPUs because of limited
parallelism, due to each thread being assigned the spreading operation for many particles. In
essence, the particles assigned to a thread must be processed sequentially, otherwise conflicts
would occur. We will not discuss the multicoloring approach further in this paper.

3 Proposed Mesh Based Approaches

3.1 Mesh Based Data Structures

When the spreading operation is performed multiple times for the same particle configu-
ration, it may be worthwhile to separately consider a preprocessing step and a spreading step
such that the spreading step is as fast as possible, and the cost of the preprocessing step can be
amortized over the multiple spreading operations. To avoid needing atomic operations in the
spreading step, the preprocessing step generally needs to compute a mesh based data structure.
The mesh based data structure computed by the Gather algorithm, however, has two main
issues: 1) it requires performing gather operations on every mesh point even for mesh points
that do not have particles spreading onto them, and 2) it requires recomputing the interpolation
coefficients many times.

In order to make the spreading step as fast as possible, it is tempting to use a different mesh
based data structure where the interpolation coefficients are stored and not recomputed. This
addresses the second problem above, but introduces the drawback that DRAM reads would be
needed for the interpolation coefficients. Although these reads can be coalesced, the tradeoff
between storage and recomputation of interpolation coefficients must be studied. To address
the first problem above, we can explicitly store a list of contributions at each mesh point. This
also avoids the need for an overflow list in the Gather algorithm.

The above ideas can be implemented using a sparse matrix. Each row of the sparse matrix
is stored contiguously, and the elements in a row represent the interpolation weights for a given
mesh point. Applying the spreading operation consists of performing a sparse matrix-vector
product (SpMV), where the vector is the quantities at the particle locations to be spread. The
challenge, however, lies in constructing this sparse matrix as efficiently as possible.

We use three mesh based data structures, which we call single mesh, group mesh, and

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

123



hybrid mesh. Single mesh is identical to the compressed sparse row (CSR) data structure used
in sparse matrix computations. We implement an optimized CUDA code for constructing this
data structure in three steps: 1) traversing all particles and counting the number of spreading
contributions to each mesh point, 2) a prefix sum to obtain the starting positions of each mesh
point in the data structure, and 3) computing the spreading contributions from each particle
and inserting these into the rows of the data structure. Since multiple threads may attempt
to update the same row of the matrix simultaneously, atomic operations must be used. In all
three steps, we assign p3 threads rather one thread to each particle to maximize use of parallel
resources.

An inefficiency with the above procedure, however, is that in the first step, the threads
assigned to each particle are in one warp, but will update different rows of the CSR matrix. This
step will have low performance on GPUs because of non-coalesced memory access. To promote
coalesced memory access, we group sets of grid points in the single mesh data structure. This
gives the group mesh data structure. It is similar in spirit to various multirow sparse matrix
storage formats for GPUs [14, 9, 10] and has good memory access locality and tends to have
coalesced memory accesses.

For completeness we also test the hybrid mesh data structure, which is analogous to using
the hybrid sparse matrix format [1] in cuSPARSE for representing the spreading operator.

3.2 Spreading Optimization
With the spreading operator stored in a sparse matrix format, the spreading step can be

efficiently computed using sparse matrix-vector multiplication (SpMV). While optimization
techniques for SpMV have been intensively studied on GPUs, e.g., [1, 3], we apply special tech-
niques to accelerate the spreading step on GPUs that utilizes the hardware features introduced
in the Kepler microarchitecture.

We define a compute unit (CU) as a group of threads used to collect the spreading contri-
butions at a mesh point. By using more than one thread for a mesh point, thread divergence
is reduced and coalesced memory access is promoted. This is analogous to why more than one
thread is used to multiply a row in GPU implementations of SpMV [1].

Using multiple threads for a mesh point or row, however, requires the use of atomic oper-
ations because multiple threads within a CU will update the same mesh point simultaneously.
To avoid the use of atomic operations, we let a specific thread in the CU collect the sum using
an intra-CU reduction operation. On the Kepler microarchitecture, the reduction operation
can be efficiently implemented by using a hardware feature called warp shuffle. Warp shuffle is
a new set of instructions that allows threads of a warp to read each other’s registers, providing
a new way to communicate values between parallel threads besides shared memory. Compared
to shared memory communication, warp shuffle is much more efficient. The throughput of warp
shuffle instructions is 32 operations per clock cycle per multiprocessor for Kepler GPUs [13].

Figure 2 illustrates the intra-CU reduction implemented using warp shuffle instructions.
The figure shows a warp of 32 threads, organized such that 8 threads are assigned to a row (or
mesh point), i.e., CU=8. To perform a reduction operation within a row using 8 threads, 3
iterations of warp shuffle operations are needed, following the binomial tree algorithm.

The performance of the spreading step using the single mesh method is dependent on the
choice of the size of CU. Here, we describe a heuristic of choosing the size of CU, which can be
expressed as

CUoptimal =

⎧⎪⎨
⎪⎩

1 if Np3/K3 < 1

2t if 2t ≤ Np3/K3 < 2t+1 and 0 ≤ t < 4

16 if Np3/K3 ≥ 16

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

124



Figure 2: Illustration of intra-CU reduction using warp shuffle operations. The reduction across 4 sets
of 8 threads is performed in 3 iterations following the binomial tree algorithm (see text).

Figure 3: The performance of the spreading step
using the single mesh method with various sizes
of CU.

Figure 4: Performance of the spreading step using
the group mesh method with various gsize. The
tests used K = 128.

where N refers to the particle numbers used, p represents the interpolation order and K stands
for the mesh dimension, therefore, Np3/K3 represents the average number of spreading con-
tributions per mesh point (ASM). In sparse matrix terms, ASM is the average number of
nonzeros per row.

To explain the heuristic, we use CU sizes that are powers of 2 for efficiency of the warp shuffle
reduction. The CU size should also be at least larger than ASM , otherwise some threads will be
idle. When ASM is larger than 16, the heuristic selects the optimal CU size as 16. Increasing
the CU size from 16 to 32 does not significantly improve the load balance as 16 appears to
be fine enough parallelism. Also, increasing the CU size from 16 to 32 increases the number
of warp shuffle iterations from 4 to 5. We have run some experiments to verify the heuristic.
Figure 3 shows the results.

The performance of the group mesh algorithm depends on the selection of the group size
(gsize), i. e., the number of mesh points that are grouped together. On the one hand, there is
more write contention when gsize is small. On the other hand, the total number of warps that
can be used for spreading is smaller when gsize is larger. We experimentally determined that
an optimal value of gsize is 64 for any average number of spreading contributions per mesh
point. The number may vary on different GPUs. On the GPU hardware used in our test, using
gsize = 64 appears to be an appropriate compromise between parallelism and memory access
conflicts. Figure 4 shows this result.

Figure 5 compares the execution time of the single mesh method using warp shuffle and
using shared memory. As can be seen, use of warp shuffle reductions is never worse than the
shared memory counterpart. When the average number of spreading contributions per mesh

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

125



point (ASM) is larger than 20, these two versions achieve approximately the same performance.
One explanation for this phenomenon is that, when ASM is sufficiently large, the shuffle or
shared memory load is hidden by other costs such as warp divergence or poor cache usage
(Figure 3 tells us one warp only uses half the cache line when ASM is larger than 20).

Figure 5: Performance comparison of the spreading operation using warp shuffle and shared memory
reduction (K = 128).

4 Experimental Comparisons

4.1 Test Environment

Experiments were conducted on a NVIDIA K40c with the Kepler GK110 microarchitecture.
For evaluating the effect of using atomic operations, we also used a GTX 480, based on the
earlier Fermi microarchitecture. CUDA version 6.5 toolkit was used in all the experiments.

The performance of particle mesh spreading will be problem dependent, and therefore no
single test problem is sufficient. We expect that different algorithms will be best for different par-
ticle configurations. Here, we propose a class of test problems for particle-mesh problems. The
key parameter is the average number of spreading contributions for each mesh point (ASM). To
construct problems with different values of ASM , we use different numbers of particles ranging
from 1000 to 10,000,000, and different mesh dimensions K ×K ×K, with K chosen as 32, 64,
128 and 256. We also use interpolation parameter p = 6. We generate random positions for the
particles using a uniform distribution over the mesh, which is the usual case for simulations of
biological molecules in solvent.

4.2 Atomic Operation Overhead on Different Platforms

In previous work [8, 2], particle based approaches were considered less efficient than mesh
based approaches method due to the use of atomic operations. While this may be true on
earlier GPU microarchitectures, the Kepler GK110 microarchitecture has significantly improved
performance of atomic operations [12]. We are thus interested in the improvement of the particle
based approaches compared to mesh based approaches on contemporary GPU hardware.

In this section, we test the particle based algorithm, and show the overhead of atomic
operations by comparing the execution time of the algorithm itself and a modified version
that replaces atomic operations with normal global memory store operations. We use both the
Kepler platform and the older Fermi platform. Although the modified version does not generate
correct results, it is useful for determining the performance impact of atomic operations.

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

126



Figure 6: Impact of using atomic operations for
problems with K = 64. “Atomic” is the parti-
cle based algorithm; “non-atomic” shows effect
of replacing atomic operations by global memory
writes.

Figure 7: Performance comparison between the
particle based algorithm and the Gather algo-
rithm on Fermi and Kepler microarchitectures.
The test problems used K = 64.

Figure 8: Performance of spreading for different
algorithms (K = 128).

Figure 9: Performance of constructing the mesh
based data structure for different algorithms
(K = 128).

As shown in Figure 6, on the Fermi microarchitecture, atomic operations add a very large
overhead to the particle based algorithm. On the Kepler microarchitecture, the overhead is
much smaller, and is only a small fraction of the overall execution time.

Figure 7 compares the performance of the particle based algorithm and the Gather algorithm
on the Fermi and Kepler microarchitectures. On Fermi, the particle based algorithm requires
more time than the Gather algorithm, but on Kepler, the Gather algorithm requires more time.
This change is directly related to the improvement in performance of the atomic operations on
Kepler.

4.3 Comparison of Spreading Costs

Figure 8 compares the cost of the spreading operation using different algorithms. For the
mesh based algorithms, we do not include the time for constructing the mesh based data
structures, which will be considered in the next subsection. We make the following observations.

1. For small numbers of particles, the particle based algorithm is best. Threads are less
likely to experience contention on atomic writes when there are fewer particles, which gives this
algorithm an advantage in this regime. It can be observed in the figures that the slope of the

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

127



timing curve for this algorithm (red triangles) increases very slightly as the number of particles
is increased. This effect may be due to greater contention due to more particles.

2. Except for small numbers of particles, the hybrid mesh algorithm, using the cuSPARSE
SpMV operation for the hybrid format, is generally best.

3. The cost of the Gather algorithm is composed of gathering contributions at each mesh
point, and processing the overflow particles (these are steps 2 and 3 of the Gather algorithm,
as explained in Section 2). When the number of particles is much less than K3, there are few
if any overflow particles, and thus the cost of the algorithm is independent of the number of
particles. For K3 particles or more, the overflow phase adds to the execution time. The cost of
this phase increases linearly with the number of overflow particles. Thus there is an expected
knee in the timing for the Gather algorithm, as observed.

4.4 Comparison of Preprocessing Costs

We now compare the costs of constructing the mesh based data structures. From the sparse
matrix point of view, transferring from a particle based data structure to a mesh based data
structure is a matrix transpose operation. However, note that in particle-mesh applications,
there is no sparse matrix corresponding to the particle based data structure.

Figure 9 shows the overhead of constructing the mesh based data structures. The group
mesh data structure can be constructed the fastest, due to better memory access patterns. The
hybrid mesh data structure (the ELL-COO format) is generally slowest to construct.

4.5 Spreading Multiple Times

Putting together the above results, we can determine the best algorithm to use depending
on how many spreading operations are performed for the same particle configuration. When
only a single spreading operation is performed for a given particle configuration, the simple
particle based method is fastest. This is due to very fast atomic operations on current GPU ar-
chitectures. When multiple spreading operations are performed and the preprocessing costs can
be amortized, the single mesh and group mesh algorithms are marginally better, for moderate
numbers of spreading operations (around 20). For very large numbers of spreading operations,
the hybrid mesh approach using the hybrid sparse matrix data structure in cuSPARSE is fastest.
This is due to very fast spreading but relatively high data structure construction times.

5 Conclusion

In this paper, we discussed the advantages and disadvantages of various algorithms for particle-
mesh spreading. We categorized algorithms as being particle based or mesh based. Those that
are particle based generally require atomic operations. Those that are mesh based require the
construction of mesh based data structures. We discussed single mesh and group mesh data
structures that are related to sparse matrix data structures. We also introduced the use of
warp shuffle operations for performing reductions for summing contributions to a mesh point
with multiple threads. This idea can be extended to optimize the SpMV operation on GPUs
for row-based data structures.

Timing tests were used to determine which algorithms are best for a test set parameterized
by the average number of particles per mesh point. With this knowledge in hand, we can use
a simple procedure to select the best algorithm to use for different particle-mesh spreading
problems.

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

128



Acknowledgements

This work was supported by the U.S. National Science Foundation under grant ACI-1306573,
the National Natural Science Foundation of China (No. 61440057, 61272087, 61363019 and
61073008), the Beijing Natural Science Foundation (No. 4082016 and 4122039), the Sci-Tech
Interdisciplinary Innovation and Cooperation Team Program of the Chinese Academy of Sci-
ences, and the Specialized Research Fund for State Key Laboratories.

References

[1] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In Proc. SC ’09, pages 18:1–18:11, New York, NY, USA, 2009. ACM.

[2] W. Brown, A. Kohlmeyer, S. Plimpton, and A. Tharrington. Implementing molecular dynamics
on hybrid high performance computers–particle–particle particle-mesh. Comput. Phys. Commun.,
183(3):449–459, 2012.

[3] J. W. Choi, A. Singh, and R. Vuduc. Model-driven autotuning of sparse matrix-vector multiply
on GPU. In PPoPP ’10, pages 115–126, New York, NY, USA, 2010. ACM.

[4] T. Darden, D. York, and L. Pedersen. Particle mesh Ewald – an N log(N) method for Ewald sums
in large systems. J. Chem. Phys., 98(12):10089–10092, 1993.

[5] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput.,
14(6):1368–1393, 1993.

[6] U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, and L. Pedersen. A smooth particle
mesh Ewald method. J. Chem. Phys., 103(19):8577–8593, 1995.

[7] A. Götz, M. Williamson, D. Xu, D. Poole, S. Le Grand, and R. Walker. Routine microsecond
molecular dynamics simulations with AMBER on GPU. 1. Generalized Born. J. Chem. Theory
Comput., 8(5):1542–1555, 2012.

[8] M. Harvey and G. De Fabritiis. An implementation of the smooth particle mesh Ewald method
on GPU hardware. J. Chem. Theory Comput., 5(9):2371–2377, 2009.

[9] Z. Koza, M. Matyka, S. Szkoda, and L. Miroslaw. Compressed multirow storage format for sparse
matrices on graphics processing units. SIAM J. Sci. Comput., 36(2):C219–C239, 2014.

[10] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. Bishop. A unified sparse matrix data
format for efficient general sparse matrix-vector multiplication on modern processors with wide
SIMD units. SIAM J. Sci. Comput., 36(5):C401–C423, 2014.

[11] X. Liu and E. Chow. Large-scale hydrodynamic Brownian simulations on multicore and manycore
architectures. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International,
pages 563–572. IEEE, 2014.

[12] NVIDIA. NVIDIA Kepler GK110 Architecture Whitepaper, 2012.

[13] NVIDIA. CUDA C Programming Guide, 2014.

[14] T. Oberhuber, A. Suzuki, and J. Vacata. New row-grouped CSR format for storing the sparse
matrices on GPU with implementation in CUDA. arXiv preprint arXiv:1012.2270, 2010.

[15] D. Saintillan, E. Darve, and E. Shaqfeh. A smooth particle-mesh Ewald algorithm for Stokes
suspension simulations: The sedimentation of fibers. Phys. Fluids, 17(3):033301, 2005.

[16] A. Ware. Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev., 40(4):838–
856, 1998.

Efficient GPU Spreading X. Guo, X. Liu, P. Xu, Z. Du, and E. Chow

129


