
Original Article

The International Journal of High
Performance Computing Applications
1–18
� The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015592960
hpc.sagepub.com

Scaling up Hartree–Fock calculations
on Tianhe-2

Edmond Chow1, Xing Liu1, Sanchit Misra2, Marat Dukhan1,
Mikhail Smelyanskiy2, Jeff R. Hammond2, Yunfei Du3, Xiang-Ke Liao3 and
Pradeep Dubey2

Abstract
This paper presents a new optimized and scalable code for Hartree–Fock self-consistent field iterations. Goals of the
code design include scalability to large numbers of nodes, and the capability to simultaneously use CPUs and Intel Xeon
Phi coprocessors. Issues we encountered as we optimized and scaled up the code on Tianhe-2 are described and
addressed. A major issue is load balance, which is made challenging due to integral screening. We describe a general
framework for finding a well-balanced static partitioning of the load in the presence of screening. Work stealing is used
to polish the load balance. Performance results are shown on Stampede and Tianhe-2 supercomputers. Scalability is
demonstrated on large simulations involving 2938 atoms and 27,394 basis functions, utilizing 8100 nodes of Tianhe-2.
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1 Introduction

Given a set of atomic positions for a molecule, the
Hartree–Fock (HF) method is the most fundamental
method in quantum chemistry for approximately sol-
ving the electronic Schrödinger equation (Szabo and
Ostlund, 1989). The solution of the equation, called the
wavefunction, can be used to determine properties of
the molecule. The solution is represented indirectly in
terms of a set of n basis functions, with more basis
functions per atom leading to more accurate, but more
expensive approximate solutions. The HF numerical
procedure is to solve an n 3 n generalized nonlinear
eigenvalue problem via self-consistent field (SCF)
iterations.

Practically all quantum chemistry codes implement
HF. Those that implement HF with distributed compu-
tation include NWChem (Valiev et al., 2010),
GAMESS (Schmidt et al., 1993), ACESIII (Lotrich et
al., 2008) and MPQC (Janssen and Nielsen, 2008).
NWChem is believed to have the best parallel scalabil-
ity Foster et al. (1996); Harrison et al. (1996); Tilson et
al. (1999). The HF portion of this code, however, was
developed many years ago with the goal of scaling to
one atom per core, and HF in general has never been
shown to scale well beyond hundreds of nodes. Given
current parallel machines with very large numbers of

cores, much better scaling is essential. Lack of scalabil-
ity inhibits the ability to simulate large molecules in a
reasonable amount of time, or to use more cores to
reduce time-to-solution for small molecules.

The scalability challenge of HF can be seen in
Figure 1, which shows timings for one iteration of SCF
for a protein-ligand test problem. Each iteration is com-
posed of two main computational components: con-
structing a Fock matrix, F, and calculating a density
matrix, D. In the figure, the dotted lines show the per-
formance of NWChem for these two components. Fock
matrix construction stops scaling after between 64 and
144 nodes. The density matrix calculation, which
involves an eigendecomposition, and which is often
believed to limit scalability, also does not scale but only
requires a small portion of the time relative to Fock
matrix construction. Its execution time never exceeds
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that of Fock matrix construction due to the poor scal-
ability of the latter. The figure also shows a preview of
the results of the code, GTFock, presented in this
paper. Here, both Fock matrix construction and density
matrix calculation (using purification rather than eigen-
decomposition) scale better than in NWChem.

An outline of the SCF algorithm, using traditional
eigendecomposition to calculate D, is shown in
Algorithm 1. For simplicity, we focus on the restricted
HF version for closed shell molecules. The most com-
putationally intense portions just mentioned are the
Fock matrix construction (line 6) and the diagonaliza-
tion (line 9). In the algorithm, Cocc is the matrix formed
by nocc lowest energy eigenvectors of F, where nocc is
the number of occupied orbitals. The overlap matrix, S,
the basis transformation, X, and the core Hamiltonian
Hcore, do not change from one iteration to the next and
are usually precomputed and stored. The algorithm is
terminated when the change in electronic energy E is
less than a given threshold.

In this paper, we present the design of a scalable
code for HF calculations. The code attempts to better
exploit features of today’s hardware, in particular, het-
erogeneous nodes and wide single instruction multiple
data (SIMD) CPUs and accelerators. The main contri-
butions of this paper are in four areas, each described
in its own section.

� Scalable Fock matrix construction. In previous
work, we presented an algorithm for load balancing
and reducing the communication in Fock matrix
construction and showed good performance up to
324 nodes (3888 cores) on the Lonestar supercom-
puter (Liu et al., 2014). However, in scaling up this
code on the Tianhe-2 supercomputer, scalability
bottlenecks were found. We describe the improve-
ments to the algorithms and implementation that
were necessary for scaling Fock matrix construc-
tion on Tianhe-2. We also improved the scalability
of nonblocking Global Arrays operations used by
GTFock on Tianhe-2 (see Section 3).

� Optimization of integral calculations. The main
computation in Fock matrix construction is the cal-
culation of a very large number of electron repul-
sion integrals (ERIs). To reduce time-to-solution,
we have optimized this calculation for CPUs and
Intel Xeon Phi coprocessors, paying particular
attention to wide SIMD (see Section 4).

� Heterogeneous task scheduling. For heterogeneous
HF computation, we developed an efficient hetero-
geneous scheduler that dynamically assigns tasks
simultaneously to CPUs and coprocessors (see
Section 5).

� Density matrix calculation. To improve scalability
of density matrix calculation, we employ a purifica-
tion algorithm that scales better than diagonaliza-
tion approaches. We also implemented efficient,
offloaded 3D matrix multiply kernels for purifica-
tion (see Section 6).

In Section 7, we demonstrate results of large calcula-
tions on Stampede and Tianhe-2 supercomputers.
Scalability is demonstrated on large molecular systems
involving 2938 atoms and 27,394 basis functions, utiliz-
ing 8100 nodes of Tianhe-2.

2 Background

In this section, we give the necessary background on
the generic distributed Fock matrix construction algo-
rithm needed for understanding the scalable implemen-
tation presented in this paper.

In each SCF iteration, the most computationally
intensive part is the calculation of the Fock matrix, F.
Each element is given by

1 9 36 144 529

10
−1

10
0

10
1

10
2

Number of nodes

T
im

e
 (

s
)

NWChem Fock

NWChem Eig

GTFock Fock

GTFock Purif

Figure 1. Comparison of NWChem to GTFock for 1hsg_28, a
protein-ligand system with 122 atoms and 1159 basis functions.
Timings obtained on the Stampede supercomputer (CPU cores
only).

Algorithm 1. SCF algorithm.

1 Guess D;
2 Compute Hcore;
3 Diagonalize S = UsUT;
4 Form X = Us1/2;
5 repeat
6 Construct F, which is a function of D;
7 Form F# = XTFX;
8 Compute energy E=

P
k, l Dkl(H

core
kl + Fkl);

9 Diagonalize F# = C#eC#T;
10 C = XC#;
11 Form D=CoccC

T
occ;

12 until converged;
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Fij =H core
ij +

X
kl

Dkl 2(ijjkl)� (ikjjl)ð Þ ð1Þ

where Hcore is a fixed matrix, D is the density matrix,
which is fixed per iteration, and the quantity (ijjkl) is
standard notation that denotes an entry in a four-
dimensional tensor of size n 3 n 3 n 3 n and indexed
by i, j, k, l, where n is the number of basis functions.
To implement efficient HF procedures, it is essential to
exploit the structure of this tensor. Each (ijjkl) is an
integral, called an ERI, given by

(ijjkl)=

Z
fi(x1)fj(x1)r

�1
12 fk(x2)fl(x2) dx1 dx2 ð2Þ

where the f functions are basis functions, x1 and x2 are
coordinates in R

3, and r12= ||x12x2||. From this for-
mula, it is evident that the ERI tensor has eight-way
symmetry, since (ijjkl)= (ijjlk)= (jijkl)=
(jijlk)= (kljij)= (kljji)= (lkjij)= (lkjji).

The basis functions are Gaussians (or combinations
of Gaussians) whose centers are at the coordinates of
one of the atoms in the molecular system. The formula
(2) also shows that some values of (ijjkl) can be very
small, e.g. when fi(x) and fj(x) are basis functions with
far apart centers, then the product of these basis func-
tions is small over all x. Small ERIs are not computed,
which is an essential optimization in quantum chemis-
try called screening. To determine if an integral is small
without first computing it, one uses the Cauchy–
Schwarz relation

(ijjkl)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ijjij)(kljkl)

p
ð3Þ

which gives a cheap-to-compute upper bound, once all
possible values of (ijjij) are precomputed and stored in a
2D array. If this upper bound is less than the screening
tolerance t, then the integral is neglected.

To understand the computation of ERIs, we must
know that basis functions are grouped into shells, which
vary in size. All basis functions in a shell have the same
atomic center. For efficiency, ERIs must be computed
in batches called shell quartets, defined as

(MN jPQ)= f(ijjkl) s:t: i 2 shell M , j 2 shell N ,
k 2 shell P, l 2 shell Qg

These batches are four-dimensional arrays of different
sizes and shapes. To apply screening to shell quartets,
define the screening value for the pair of shell indices M
and N as

s(M ,N)= max
i2M , j2N

(ijjij)

Then the shell quartet (MNjPQ) can be neglected if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(M ,N )s(P,Q)

p
� t ð4Þ

The generic distributed Fock matrix construction
algorithm is shown as Algorithm 2. The algorithm
loops over shell quartets rather than Fock matrix
entries in order to apply screening to shell quartets, and
to not repeat the computation of symmetric but other-
wise identical shell quartets. Because of symmetry, each
uniquely computed shell quartet contributes to the
computation of six submatrices of F and requires six
submatrices of D. The data access pattern arises from
the structure of (1); see Janssen and Nielsen (2008) for
an explanation. The Fock and density matrices are par-
titioned and distributed onto nodes. Thus, inter-node
communication is generally needed to receive subma-
trices of D and send submatrices of F. In NWChem
and our own code, Global Arrays is used for storing D
and F and implicitly managing communication of these
submatrices.

3 Scalable Fock matrix construction

There are two main ways to parallelize Algorithm 2.
The first approach is to use a dynamic scheduling algo-
rithm to schedule tasks onto nodes, where each task is
lines 3–6 in the algorithm for one or more shell quar-
tets. This approach is naturally load balanced and is
used by NWChem. The second approach is to statically
partition the shell quartets among the nodes; each node
executes lines 3–6 for the shell quartets in its partition.
The advantage of this approach is that the necessary
communication is known before computation starts, so
the partitions can be chosen to reduce communication.
Further, the required submatrices of D can be pre-
fetched before computation, and submatrices of F can
be accumulated locally before sending them all at once
at the end of the computation. The disadvantage of the
second approach, however, is that load balance and
reducing communication are difficult to achieve.

In our previous work (Liu et al., 2014), we proposed
a hybrid of the above two approaches. A static parti-
tioning is used that reduces communication but only
approximately balances the load across the nodes. A
dynamic work stealing phase is used to polish the load
balance. Specifically, when a node finishes its allocated

Algorithm 2. Generic distributed Fock matrix construction.

1 for unique shell quartets (MN|PQ)do
2 if (MN|PQ) is not screened out then
3 Compute shell quartet (MN|PQ);
4 Receive submatrices DMN, DPQ, DNP, DMQ, DNQ, DMP;
5 Compute contributions to submatrices FMN, FPQ, FNP,

FMQ, FNQ, FMP;
6 Send submatrices of F to their owners;
7 end
8 end

Chow et al. 3
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work, it steals work from another node. The results of
this approach showed better scalability than NWChem
on the Lonestar supercomputer up to 343 nodes (3888
cores) (Liu et al., 2014). However, when scaling up this
technique to many more nodes on Tianhe-2, the static
partitionings across more nodes were relatively less
balanced, and the work stealing phase of the hybrid
approach became a bottleneck due to the communica-
tion that it involves. To address these issues, we first
improved the initial static partitioning, which also
reduces the imbalance that needs to be handled in the
work stealing phase. We next improved the work steal-
ing phase by reducing the synchronization require-
ments. The improvements to the hybrid approach that
were necessary for scalability are described in the fol-
lowing subsections.

3.1 Static partitioning

The static partitioning is a partitioning of the shell
quartets among the nodes. To balance load, each parti-
tion should have approximately the same number of
non-screened shell quartets (shell quartets surviving
screening). To reduce communication, the computa-
tions with the non-screened shell quartets within a par-
tition should share submatrices of D and F as much as
possible.

We now present a framework for defining different
partitionings of shell quartets. From Section 2, a shell
quartet (MNjPQ) is indexed by four shell indices, M,
N, P, and Q, which range from 1 to nshells, where nshells
is the number of shells. Thus the shell quartets can logi-
cally be arranged in a 4D array. This array can be par-
titioned using 1D, 2D, 3D, or 4D partitionings. (More
general ways of partitioning the 4D array, using irregu-
larly shaped partitions, require listing all the shell quar-
tets in a partition, but this is impractical due to the
large number of shell quartets.)

A 1D partitioning is a partitioning of the indices
along one of the dimensions; a 2D partitioning is a par-
titioning of the indices along two of the dimensions,
etc. More precisely, a 1D partitioning into p parts is the
p sets

(Mi, : j : , : )[f(MN jPQ),

s:t: M 2 Mi, for all N ,P,Qg, i 2 f1, . . . , pg

where Mi is a subset of the shell indices
I= f1, . . . , nshellsg such that no two distinct subsets
intersect, and the union of all subsets comprises all of
the indices I . The above is a partitioning along the first
dimension, and different ‘‘types’’ of partitionings arise
from partitioning along different dimensions. However,
due to eight-way symmetry in the 4D array of shell
quartets (due to the eight-way symmetry in the 4D
array of ERIs), partitionings along other dimensions

are equivalent, e.g. (Mi, : j : , : ) and ( : ,Mij : , : )
contain the same shell quartets.

There are two different types of 2D partitionings
into p= pr 3 pc parts:

(Mi,N jj : , : )[f(MN jPQ),

s:t: M 2 Mi, N 2 N j, for all P,Qg,
i 2 f1, . . . , prg, j 2 f1, . . . , pcg

and

(Mi, : jPk , : )[f(MN jPQ),

s:t: M 2 Mi,P 2 Pk , for all N ,Qg,
i 2 f1, . . . , prg, j 2 f1, . . . , pcg

whereMi, N j, and Pk are subsets of I . Due to symme-
try, other ways of partitioning along two dimensions
are equivalent to one of the two types of partitioning
above. In addition, all 3D partitionings are equivalent
to each other, and there is only one way to define a 4D
partitioning. In summary, there are five distinct forms
of partitionings to consider, one each for 1D, 3D, and
4D, and two for 2D.

A specific partitioning is defined by how the indices
I are partitioned for each dimension, e.g. in the 1D
case, this is how the subsets Mi are chosen. The
straightforward technique is to choose each subset of I
to contain approximately the same number of shell
indices, to attempt to balance load. To reduce commu-
nication of D and F submatrices, subsets should con-
tain shell indices corresponding to geometrically nearby
atomic centers. Both of these can be accomplished sim-
ply by ordering shell indices using a space-filling curve
to promote geometric locality, and then partitioning
the shell indices equally along this curve. Each partition
is a set of shell quartets with similar combinations of
shell indices, which reduces the number of distinct sub-
matrices of D and F that are needed by the partition.

The above technique guarantees that the number of
shell quartets before screening is about the same in each
partition. Although there is no guarantee that the num-
ber of non-screened shell quartets in each partition will
be similar, the hope is that due to the large number of
shell quartets, the number of non-screened shell quar-
tets in each partition will ‘‘average out’’. To check this,
and to check the communication cost, we measured
properties of different forms of partitioning for two dif-
ferent test models. Table 1 shows results for a truncated
globular protein model and Table 2 shows results for a
linear alkane. In the tables, 2D, 3D, and 4D partition-
ings are shown with how many subsets were used along
each dimension that is partitioned (e.g. 8 3 8 in the 2D
case). The shell quartet balance is the ratio of the largest
number of non-screened shell quartets in a partition to
the average number in a partition. The communication
balance is the maximum number of bytes transferred by

4 The International Journal of High Performance Computing Applications

 by guest on July 3, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


a node to the average number of bytes transferred by a
node. The average communication per node is reported
in terms of the number of D and F submatrices and in
kilobytes (kB). The last line in each table below the hor-
izontal line is for a modified 2D partitioning that will
be explained later.

We note that in these tables, we do not show results
for 1D partitioning. Such partitionings limit the
amount of parallelism that can be used. For example, if
there are 1000 shells, parallelism is limited to 1000
cores. Due to this limitation, we do not consider 1D
partitionings further in this paper.

The results in the tables suggest that 2D partition-
ings of the form (Mi, : jPk , : ) have the best load and
communication balance. However, 3D and 4D parti-
tionings require less average communication per node.
In our previous work, 2D partitionings of the form
(Mi, : jPk , : ) were used Liu et al. (2014). We continue
to use this choice as Fock matrix construction is gener-
ally dominated by computation rather than communi-
cation, and thus it is more important to choose the
option that balances load rather than the one that has
the least communication (Liu et al., 2014). In general,
however, the best form of partitioning to use may
depend on the relative cost of communication and com-
putation, the size of the model problem, and the
amount of parallel resources available.

In attempting to scale up the above technique on
Tianhe-2, using partitions of the form (Mi, : jPk , : ),
we found poor load balance because the average num-
ber of shell quartets per partition is relatively small
when the number of partitions is very large. This
increases the standard deviation of the number of non-
screened shell quartets in a partition. We thus sought a
new partitioning with better load balance. The tech-
nique described above divides the indices equally along
each dimension. Instead, we now seek to divide the
indices possibly unequally such that the number of
non-screened shell quartets is better balanced. For par-
titions of the form (Mi, : jPk , : ), to determine the sub-
setsMi and Pk , we need to know the number of non-
screened shell quartets in the 2D slices of the 4D array
of shell quartets,

(M , : jP, : )[f(MN jPQ) for all N ,Qg,
M 2 f1, . . . , nshellsg,P 2 f1, . . . , nshellsg

The set of shell quartets in a 2D slice is called a task,
which is the unit of work used by the work stealing
dynamic scheduler to be described later. These (nshells)

2

numbers can be stored in a 2D array (indexed by M
and P) and a better balanced 2D partitioning can be
found. In the 4D case, this procedure is impossible
because (nshells)

4 is generally too large. In the 3D case,
this procedure is only possible for small model prob-
lems where (nshells)

3 is not too large. This leaves the two
2D cases as practical possibilities. We choose partitions
of the form (Mi, : jPk , : ) rather than (Mi,N jj : , : )
because they are more balanced and require less com-
munication as shown in the previous tables. Indeed,
slices of the form (M, Nj:, :) may contain widely vary-
ing numbers of non-screened shell quartets: if M and N
are the indices of two shells with far-apart centers, then
there will not be any shell quartets in (M, Nj:, :) that
survive screening.

Instead of counting the non-screened shell quartets
in each of the above 2D slices, these counts can be esti-
mated as follows, beginning with a few definitions. We
say that the shell pair M, N is significant if

s(M ,N ) � t2=m�, m�= max
P,Q

s(P,Q)

which is based on rearranging (4). We define the signifi-
cant set of a shell as

F(M)= fN s:t: s(M ,N ) � t2=m�g

and h(M) to be the number of elements in F(M). From
these definitions, an upper bound on the number of
shell quartets in (M,: jP,:) that survive screening is
h(M)h(P). Figure 2 shows that the upper bound is a
good estimate on the actual number of non-screened
shell quartets in a slice (M,: jP,:).

Now that the number of non-screened shell quartets
can be estimated as the product of two terms, the slices
can be assigned to partitions in a balanced manner very
elegantly as we now describe. For p nodes (with p
square), the assignment of slices to p partitions can be

Table 1. Characteristics of different forms of partitioning for 64 nodes. The test model is a truncated protein with 64 atoms, 291
shells, and 617 basis functions.

Shell quartet
balance

Communication
balance

Ave comm/node
(submatrices)

Ave comm/node (kB)

(Mi,N jj : , : ) 8 3 8 3.81 1.36 40,731.3 633.6
(Mi, : jPk, : ) 8 3 8 2.01 1.57 42,789.4 665.7
(Mi,N jjPk, : ) 4 3 4 3 4 7.71 4.71 18,093.6 281.5
(Mi,N jjPk,Ql) 4 3 4 3 2 3 2 11.38 4.98 16,629.7 258.7

(Mi, : jPk, : ) 8 3 8 1.15 1.37 35,674.4 555.0
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performed by dividing the shells into
ffiffiffi
p
p

subsets, with
the ith subset denoted as Gi. We choose the subsets
such that the sum of the h(M) for each subset is about
the same,

X
M2Gi

h(M)’h�

where h�=
P

h(M)ð Þ= ffiffiffi
p
p

. The partitions or nodes can
be indexed by (i, j) with i and j running from 1 to

ffiffiffi
p
p

.
Then slice (M,: jP,:) is assigned to partition (i, j) if
M 2 Gi and P 2 Gj. The estimated number of shell
quartets in each partition (i, j) isX

M 2 Gi

P 2 Gj

h Mð Þh Pð Þ=
X
M2Gi

h(M)3
X
P2Gj

h(P)’(h�)2

which is thus approximately balanced.
In Tables 1 and 2, the last row shows the result of

this new partitioning technique. In both model

problems, load balance is improved. As a side effect,
the average communication cost is also slightly
reduced.

We note in passing that NWChem uses a 4D parti-
tioning of the ERI tensor into a large number of
‘‘tasks’’. There is no attempt to balance the number of
non-screened shell quartets in each task because
dynamic scheduling of the tasks is used. There is also
no attempt to schedule the tasks such that submatrices
of D and F are reused as much as possible.

3.2 Work stealing

Static partitioning schemes for distributed Fock matrix
construction have the advantage of being able to parti-
tion work such that communication is reduced.
However, as the actual amount of work performed is
difficult to predict, these schemes do not give perfect
load balance in practice. Our approach is to combine
static partitioning with work stealing. Nodes steal tasks
from other nodes when they run out of tasks in their
originally assigned partitions. This reduces the overall
execution time by utilizing otherwise idle processors
and essentially balancing the load.

Work stealing is an established paradigm for load
balancing, particularly for shared memory systems
where synchronization costs are relatively low. A steal
operation has significant overhead, involving locking
the work queue of another node to check for available
work; if no work is found (a failed steal), another node
must be checked. Dinan et al. (2009) discuss the effi-
cient implementation of work stealing on large distribu-
ted systems, primarily focusing on low-level
optimizations, such as managing the work queue and
locking. Nikodem et al. (2014) use work stealing to
construct the Fock matrix, starting with a primitive
partitioning of work. As steal operations have over-
head, the task granularity cannot be too small, but
tasks must be small enough so that all nodes can finish
at approximately the same time. Nikodem et al. (2014)
discuss an optimization that sorts work by their granu-
larity, so that larger tasks are performed first.

In previous work (Liu et al., 2014), we used a com-
pletely decentralized work stealing scheme where each

Table 2. Characteristics of different forms of partitioning for 64 nodes. The test model is an alkane with 242 atoms, 966 shells, and
1930 basis functions.

Shell quartet balance Communication
balance

Ave comm/node
(submatrices)

Ave comm/node (kB)

(Mi,N jj : , : ) 8 3 8 6.37 3.09 82,484.9 1283.1
(Mi, : jPk, : ) 8 3 8 1.07 1.25 84,447.5 1313.7
(Mi,N jjPk, : ) 4 3 4 3 4 4.26 4.79 40,707.0 633.3
(Mi,N jjPk,Ql) 4 3 4 3 2 3 2 8.01 7.32 37,533.6 583.9

(Mi, : jPk, : ) 8 3 8 1.03 1.20 80,027.0 1245.0
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Figure 2. Number of shell quartets in each shell pair after
screening, sorted by decreasing number of shell quartets. The
graph shows that the estimate is a good upper bound on the
actual number. The molecular model is the alkane C24H50 with
the cc-pVDZ basis set, giving 294 shells and 586 basis functions.
The bound would be looser for larger molecules.
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node has its own task queue, to allow efficient local
access, as suggested by Dinan et al. (2009). Victim
nodes were chosen by scanning the logical 2D process
grid from left-to-right and top-to-bottom starting from
the thief node. Although the standard strategy is to
select the victim randomly, which has good provable
properties (Blumofe and Leiserson, 1999), our strategy
attempted to find work from a nearby node that might
involve similar sets of D and F submatrices. However,
when scaling up this work stealing implementation on
Tianhe-2 using many more nodes than we had used
previously, we encountered a very large number of
failed steals, adding significantly to the overhead. This
can happen if the load is very unbalanced, as can hap-
pen near the end of a computation when some nodes
still have work, but many nodes have exhausted their
work.

To address the large number of failed steals on
Tianhe-2, we designed a hierarchical work stealing
scheme. The main idea is to use a shared variable syn-
chronized across all nodes (implemented using Global
Arrays) that indicates whether any node in a group of
nodes has work. Each node still has its own work
queue. However, it is now possible to tell in a single
operation if an entire group of nodes does not have any
work, to reduce the number of failed steals. Pseudocode
for this hierarchical (two-level) work stealing scheme is
shown in Algorithm 3.

In the algorithm, the nodes or processes are assumed
to be arranged in a logical pr 3 pc process grid. The
nodes are grouped by row, that is, the process row l
forms the process group PGl. The global array W indi-
cates which groups still have tasks. Initially all entries
of W are set to 1, and Wl=1 means PGl still has
remaining tasks. The algorithm terminates when all Wl

are zero. The variable C acts as a node’s private coun-
ter that is used to determine when all nodes in its

victim’s process group have no more tasks to steal.
Within a group, the victim is selected randomly. If the
victim has tasks to steal, then the thief steals half of the
victim’s tasks. This is the classic choice, which balances
the work between the victim and the thief.

To understand the effect of combining static parti-
tioning with work stealing dynamic scheduling, Table 3
shows the load balance ratio for a test protein-ligand
system. The load balance ratio is the ratio of the maxi-
mum compute time among all nodes to the average
time for the ERI calculations and the local updates of
the Fock matrix. The table shows that for static parti-
tioning alone, load imbalance increases with number of
nodes, but this is ameliorated by work stealing, which
limits the imbalance to about 5%. Further, Table 4
shows the number of steals that were performed for dif-
ferent molecular problem sizes and for different num-
bers of nodes. For smaller problems and for more
nodes, there are more steals because the static parti-
tioning is less balanced.

3.3 Global Arrays on Tianhe-2

Our HF code, like NWChem, uses Global Arrays
(Nieplocha et al., 2006) for communication and

Algorithm 3. Hierarchical work stealing dynamic scheduling
(see the text for an explanation of variables).

1 On a node in PGk do
2 while there are entries of W equal to 1 do
3 Select a victim process group PGl with

Wl = 1 that is closest to PGk

4 C ;
5 repeat
6 Randomly select a node n from PGl

7 if n ; C then
8 while the task queue of n has tasks do
9 steal half of the tasks from n;
10 end
11 C C [ n
12 end
13 until |C| = pc

14 Wl 0
15 end

Table 3. Fock matrix construction load balance ratio for static
partitioning alone and hybrid of static partitioning and work
stealing. Test system is a protein-ligand system, 1hsg_28, with
122 atoms and 1159 basis functions.

Nodes Static Hybrid

1 1.000 1.000
9 1.077 1.049
36 1.183 1.048
64 1.293 1.046
144 1.358 1.051
225 1.439 1.046
529 1.457 1.047

Table 4. Number of steals in the work stealing phase of
distributed Fock matrix construction. The test systems 1hsg_28,
1hsg_38, 1hsg_45, 1hsg_90 have 1159, 3555, 5065, 11,163 basis
functions, respectively.

Nodes 1hsg_28 1hsg_38 1hsg_45 1hsg_90

1 0 0 0 —
9 2 2 2 —
36 34 18 14 6
64 62 32 24 9
144 134 87 65 42
225 269 160 127 109
529 2444 380 366 349
1024 — 1738 1310 797
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synchronization between nodes. Thus, the performance
of Global Arrays on Tianhe-2 is critical for scalability
of our code. The communication runtime of Global
Arrays is called ARMCI, which supports Put (write),
Get (read), and Accumulate (update) operations, as
well as atomic operations on single integers. On many
platforms, ARMCI is implemented directly on top of a
system-specific interface, e.g. Verbs for InfiniBand and
DCMF for Blue Gene/P. However, there is no imple-
mentation for the Galaxy Express network on Tianhe-
2. Instead, we had to use the portable ARMCI-MPI
implementation which is built on MPI one-sided com-
munication (also know as remote memory access
(RMA)) as a portable conduit (Dinan et al., 2012).
ARMCI-MPI originally targeted the MPI-2 RMA fea-
tures, which was sufficient to run NWChem across a
number of supercomputing platforms (Dinan et al.,
2012), but the performance was limited due to the
absence of atomics and non-blocking operations in
MPI-2 RMA.

To improve performance of our HF code on Tianhe-
2, we optimized the implementation of ARMCI-MPI
for MPI-3 RMA, including a rewrite of the non-
blocking ARMCI primitives. Many of the new features
in MPI-3 RMA were critical for this optimized version
of ARMCI-MPI, including window allocation (e.g.
MPI_Win_allocate), atomics (MPI_Fetch_and_op)
(Hoefler et al., 2013), unified memory, and better syn-
chronization (MPI_Win_lock_all and MPI_Win_flush).
In addition, we added explicit progress calls inside the
library to ensure responsive remote progress, which is
critical for remote accumulate operations, among oth-
ers. Thread-based asynchronous progress was found to
be ineffective, due to the overhead of mutual exclusion
between the communication thread and the application
(main) thread. Finally, we found that it was necessary
to use an existing feature in ARMCI-MPI to work
around a bug in the datatypes implementation of MPI
on Tianhe-2 by communicating multiple contiguous
vectors rather than a single subarray.

The work stealing dynamic scheduler uses
MPI_Fetch_and_op operations. While our code scales
very well on both Lonestar and Stampede up to 1000
nodes, the performance is relatively poor on Tianhe-2
even for 256 nodes. Efficient MPI_Fetch_and_op oper-
ations rely on hardware support of remote atomics.
However, this is not supported by Tianhe-2, resulting
in poor MPI_Fetch_and_op performance on this
machine. This issue was our main motivation for
improving the quality of the static partitioning, in order
to reduce the number of steals needed in the work steal-
ing dynamic scheduler. We note that this issue is much
more serious for NWChem, which uses a globally
shared counter (the NXTVAL operation in Global
Arrays) every time a task in acquired.

4 Optimization of integral calculations

In Fock matrix construction, the vast majority of the
execution time is spent computing ERIs. Thus much
effort has been devoted by researchers to develop effi-
cient implementations for ERIs, including on Intel
Xeon Phi (Shan et al., 2013), GPUs (Asadchev et al.,
2010; Luehr et al., 2011; Miao and Merz, 2013;
Ufimtsev and Martinez, 2008; Wilkinson et al., 2011;
Yasuda, 2008), and specialized hardware (Ramdas et
al., 2008, 2009). Early GPU implementations for quan-
tum chemistry simply offload integral calculations to
the GPU (e.g. Asadchev et al., 2010). This, however,
entails transferring ERIs from the GPU to the host,
which is a very large communication volume relative to
computation. Later implementations compute the Fock
matrix on the GPU to avoid this large data transfer
(e.g. Miao and Merz, 2013). Some previous GPU
implementations were also concerned with precision.
Because earlier generations of GPU hardware greatly
favored single precision calculation, but ERIs must be
calculated in double precision, some of these GPU
implementations considered mixed-precision calcula-
tions, where single precision is used when possible and
double precision is used when necessary (Luehr et al.,
2011; Yasuda, 2008). The double precision perfor-
mance of current GPUs make some of these techniques
unnecessary. We also note that current GPU imple-
mentations generally assume single node computations,
to simplify the grouping of shells of the same type, to
reduce thread divergence in the calculations.

A notable limitation of most GPU implementations
is that they do not port the full functionality of a typical
integrals package, due to the complexity of ERI calcula-
tions and the wide range of possible ERIs to compute.
A GPU implementation may only compute integrals
involving certain shell types (Ufimtsev and Martinez,
2008; Wilkinson et al., 2011), thus limiting the types of
chemical systems that can be simulated. An advantage
of Intel Xeon Phi is that the full functionality of an inte-
grals package can at least be ported easily.

We used the ERD integral library (Flocke and
Lotrich, 2008) and optimized it for our target plat-
forms, Ivy Bridge (IVB) and Intel Xeon Phi, although
we expect these optimizations to also benefit other
modern CPUs. The ERD library uses the Rys quadra-
ture method (Dupuis et al., 1976; Rys et al., 1983)
which has low memory requirements and is efficient for
high angular momentum basis functions compared with
other methods. The computation of a shell quartet of
ERIs by Rys quadrature requires several steps, includ-
ing computation of Rys quadrature roots and weights,
computation of intermediate quantities called 2D inte-
grals using recurrence relations, computation of the
constants used in the recurrence relations (which
depend on the parameters of the basis functions in each
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shell quartet), and computation of each ERI from the
2D integrals. Reuse of the 2D integrals in a shell quar-
tet is what requires ERI calculations to be performed at
least one shell quartet at a time. Due to the many steps
involved in computing ERIs, there is no one single ker-
nel that consumes the bulk of the time. Each step con-
sumes a small percentage of the total time (Figure 3).
We thus had a considerably large optimization effort,
encompassing nearly 30,000 lines of Fortran code.

Loops were restructured so that they could be vec-
torized and exploit wide SIMD units. For example, the
‘‘vertical’’ recurrence relations can be computed in par-
allel for different quadrature roots and different expo-
nents. To increase developer productivity, we relied on
programmer-assisted compiler auto-vectorization for
several parts of the ERI code. We aligned most arrays
on the width of SIMD registers and padded them to be
a multiple of the SIMD register size. We annotated
pointer arguments with the restrict keyword, and used
Intel compiler-specific intrinsics __assume_aligned and
__assume to convey information about array alignment
and restrictions on variable values. We also employed
#pragma simd to force loop vectorization. In addition,
we explicitly vectorized several hot-spots using intrin-
sics where the compiler lacked high-level information
to generate optimal code. Wherever possible and bene-
ficial, we tried to merge multiple loop levels to get a
larger number of loop iterations, thereby achieving bet-
ter SIMD efficiency. In almost every function, we also
had to work around branching inside loops, in order to
fully vectorize the code. We note, however, that in ERI
calculations, there are many scalar operations and the
loops generally have a relatively small number of itera-
tions, limiting the performance gains on SIMD
hardware.

In the process of converting the baseline Fortran
code to C99, we found several low-level optimizations
to be beneficial. First, instead of using globally allo-
cated scratch arrays, we used local on-stack variable-
length arrays provided by the C99 standard. Second,
we converted signed 32-bit indices to unsigned 32-bit

indices because, on x86-64, the processor needs to
extend a signed 32-bit index to 64 bits to use it as an
index for a memory load or store. For unsigned indices,
an extension instruction is not necessary because any
operation on the low 32 bits implicitly zeroes the high
part. Third, we found register pressure to be a problem.
The ERD code was originally developed for the
PowerPC architecture, which has 32 general purpose
and 32 floating-point registers. On x86-64 we have only
16 general-purpose and 16 floating-point/SIMD regis-
ters (32 SIMD registers on Intel Xeon Phi). In our opti-
mized code we revised interfaces to reduce the number
of function parameters, and thus lowered the register
pressure.

We observed that 30% of ERD computation time is
devoted to primitive screening. This operation com-
putes an upper bound on the size of the integrals in a
shell quartet. If this upper bound is below a threshold,
then the shell quartet is not computed. The bound,
however, requires division and square root operations,
which are not pipelined on the CPU and which require
several multiply-add instructions on Intel Xeon Phi.
Computation of this bound was rearranged to avoid
these operations. Furthermore, the bound also requires
computing the Boys function. The zero-order Boys
function is defined as

F0(x)=

Z 1

0

exp �t2x
� �

dt=

ffiffiffi
p
p

2

erf
ffiffi
x
pffiffi
x
p if x . 0

1 if x= 0

(

The original ERD approximates the Boys function via
a set of Taylor expansions on a grid of points. Such an
approximation, however, is suboptimal for the follow-
ing reasons. First, although Taylor expansions give
good approximations in the vicinity of tabulated points,
they are much less accurate away from tabulated
points. Second, fetching coefficients at tabulated points
in vectorized code requires a gather operation, which is
lacking in IVB processors and is expensive, albeit sup-
ported, on Intel Xeon Phi coprocessors. We derived a
more efficient way to compute the Boys function based
on Chebyshev polynomials, which can minimize the
maximum error over an interval. The main idea is to
manipulate the bound so that we need to approximate
(erf

ffiffiffi
x
p

)2. This can be well approximated by a fifth-
degree Chebyshev polynomial approximation.

Table 5 shows the performance improvement factors
due to our ERI optimizations. Since ERI calculations
run independently on each node, these tests were per-
formed using a single node (24 threads for IVB and 224
threads for Xeon Phi). The overall improvement factor
averages 2.3 on IVB and 3.1 on Xeon Phi. From tim-
ings with vector instructions turned off, we believe the
greater improvement for Intel Xeon Phi is due to better
SIMD usage. However, SIMD usage is still low due to
short loops. In the tests, four very different molecular

Figure 3. Breakup of runtime for the original ERD code.
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systems were used, ranging from 936 to 1424 atoms and
using the cc-pVDZ basis set: a linear alkane, a 19mer
segment of DNA, a planar graphene molecule, and a
truncated globular protein-ligand system (1hsg). The
different molecular configurations affect the screening
procedures used in the integral code.

5 Heterogeneous computation

Each node of Tianhe-2 contains 2 Xeon CPUs and 3
Intel Xeon Phi coprocessors. There are two main modes
of using the coprocessors simultaneously with CPUs in
a distributed computation: (1) offload mode, where
CPU processes offload work to be run on coprocessors;
and (2) symmetric mode, where MPI processes run on
both CPUs and coprocessors, and communication
between processes fundamentally uses some form of
message passing. We did not choose symmetric mode
because CPU processes and coprocessor processes have
vastly different capabilities in terms of main memory
available and interprocess communication perfor-
mance, making an already challenging load balancing
problem even more challenging. We thus chose offload
mode for heterogeneous computations, with one MPI
process per node.

To load balance Fock matrix construction between
CPUs and coprocessors, we again used a work stealing
scheduler, this time at the node level. A special thread
running on a dedicated CPU core is responsible for off-
loading tasks onto coprocessors and for managing the
task queues of the coprocessors. The tasks for a node
are initially partitioned among the threads on the
CPUs. Threads, including the special thread, steal from
each other when they run out of work.

Our heterogeneous implementation computes Fock
submatrices on both CPUs and coprocessors simulta-
neously. In particular, by offloading Fock matrix con-
struction rather than simply ERI calculations onto
coprocessors, we only require transferring D and F sub-
matrices across the PCIe interface. This is a much
smaller volume of communication than transferring the
ERIs if ERI calculations were offloaded. The special
thread managing the coprocessors also is responsible
for transferring the D and F submatrices between the
host and coprocessors. The initial partitioning of nodes
is similar to the distributed partitioning to maximize

reuse of D and F submatrices, which is particularly
important for partitions on coprocessors, due to limited
memory on coprocessors.

Threads on a node may simultaneously want to
update the same Fock submatrices. This can be done
safely by using atomic operations. However, atomic
operations have relatively low performance on Intel
Xeon Phi due to the large number of cores. An alterna-
tive is for each thread to store its own copy of the Fock
submatrices, and perform a reduce operation at the
end. While this approach works very well for CPU-only
computations, we generally do not have enough space
to store a copy of the Fock submatrices for each of up
to 224 threads on the coprocessors.

Our solution is to combine the use of atomic opera-
tions with multiple copies of Fock submatrices, as fol-
lows. First, it is unnecessary to store one Fock matrix
copy for each Intel Xeon Phi thread. Four threads on a
core can share one copy, as atomic operations within a
core have low overhead. Second, for each task, there
are six submatrices of F that need to be updated (see
Algorithm 2). Not all of these blocks are the same size,
due to different types of shells. Instead of storing copies
of all of these blocks, we only store copies for the
smaller blocks, and use atomic operations for single
copies of the larger blocks. We found experimentally
that this approach introduces less than 5% overhead
due to atomic operations, while the memory require-
ment remains manageable.

To test the efficiency of offloading (which involves
PCIe communication) and the heterogeneous work
stealing scheduler (which attempts to balance the load),
we measured the offload efficiency. For dual IVB and
dual Intel Xeon Phi, the offload efficiency is defined as
the ratio of two speedups: the actual speedup versus
theoretical speedup, where the actual speedup is the
speedup of dual IVB with dual Phi over single IVB,
and the theoretical speedup is the speedup if the dual
IVB and dual Phi ran independently with no offload
overheads. More precisely, if one Phi behaves like F
IVB processors, then with two IVB processors and two
Phi coprocessors, the theoretical speedup is (2 + 2F).
The quantity F may be measured as the ratio of the
time consumed for one IVB processor versus the time
consumed by one Phi coprocessor for the same work-
load. Table 6 shows timings for Fock matrix construc-
tion for different node configurations and the offload
efficiency. The timings use a single node, simulating
one MPI process of a multi-node run. For different
molecular systems, the offload efficiency is high, indi-
cating little overhead due to offloading and dynamic
scheduling involving the four processing components in
this test. We note that the results show that the Intel
Xeon Phi is slightly slower than one Intel IVB proces-
sor (socket). The main reason for this is the poor use of
SIMD in the integral calculations, as mentioned earlier.

Table 5. ERI calculation performance improvement factor of
the optimized code over the original code.

Dual IVB Intel Xeon Phi

alkane_1202 2.32 3.13
dna_19mer 2.28 3.20
graphene_936 2.17 2.98
1hsg_100 2.44 3.25
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6 Density matrix calculation

In addition to construction of the Fock matrix F, the
other major step in each iteration of the SCF algorithm
is the calculation of the density matrix D. In HF, this is
traditionally performed using an eigendecomposition
of F, computing D as

D=CoccC
T
occ

where Cocc is the matrix formed by the lowest energy
eigenvectors of F, corresponding to the number of
occupied orbitals of the molecular system. Although
massive parallel resources can be used to compute F of
moderate size, the same resources cannot be efficiently
employed to compute the eigenvectors of F, due to the
relatively small workload and lack of large amounts of
parallelism in this computation.

Our solution is to use a ‘‘diagonalization-free’’
method that avoids solving an eigenvalue problem and
computes D directly from F. The method, in its most
basic form, is known as McWeeny purification
(McWeeny, 1960). The algorithm is based on matrix
multiplication, starting with an appropriate D0,

Dk + 1 = 3D2
k � 2D3

k

and thus it can be very efficient on modern processors,
including in distributed environments. We use a variant
of McWeeny purification, called canonical purification
(Palser and Manolopoulos, 1998), which allows us to
compute D based on a given number of lowest energy
eigenvalues (rather than the eigenvalue or chemical
potential, in standard McWeeny purification). The pur-
ification iterations are stopped when

Dk � D2
k

�� ��
F
\10�11, i.e. when the approximation Dk is

nearly idempotent.
For distributed matrix multiplication, we use a 3D

algorithm (Agarwal et al., 1995; Dekel et al., 1981),
which utilizes a 3D processor mesh, and which has
asymptotically lower communication cost (by p1/6 for p
nodes) than 2D algorithms such as SUMMA (van de
Geijn and Watts, 1997). However, 3D algorithms
require more memory and have the additional cost and
complexity of redistributing the data to a 3D partition-
ing, which may originally be in a 2D partitioning.

Our implementation offloads local dgemm computa-
tions to Intel Xeon Phi coprocessors using the Intel

MKL offload library. While we see up to 6 3 speedup
due to offload to three coprocessors for large matrices,
the speedup shrinks as the number of nodes increases
and the local matrix size decreases. For very small
matrices, offloading to coprocessors results in a slow-
down. This is due to higher overhead of copying
matrices over PCIe and lower dgemm efficiency for
smaller matrices. In addition, for very large numbers of
nodes, the overhead of communication dominates, and
accelerating computation via offload has a very small
impact on overall performance. Hence, our implemen-
tation uses dgemm performance profiling information
to dynamically decide when to offload to the
coprocessors.

As shown earlier in Figure 1, density matrix purifi-
cation can be much more scalable than
eigendecomposition-based approaches. For small num-
bers of nodes, however, eigendecomposition
approaches are still faster.

7 Performance results

7.1 Test setup

The performance of our HF code, called GTFock, is
demonstrated using truncated protein-ligand systems.
The base system is a drug molecule, indinavir, bound
to a protein, human immunodeficiency virus (HIV) II
protease. The entire protein-ligand complex (Figure 4,
pdb code 1HSG) is too large to study quantum

Table 6. Speedup compared with single -socket IVB processor, and offload efficiency for dual IVB and dual Intel Xeon Phi.

Molecule Single IVB Single Phi Dual IVB Dual IVB and dual Phi Offload efficiency

alkane_1202 1 0.84 1.98 3.44 0.933
dna_19mer 1 0.98 2.00 3.75 0.945
graphene_936 1 0.96 2.00 3.71 0.944
1hsg_100 1 0.98 2.01 3.76 0.950

Figure 4. Indinavir bound to HIV-II protease (pdb code 1HSG).
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mechanically, so truncated models are used, where the
ligand is simulated with residues of the protein within a
truncation radius. We use different truncation radii to
generate test systems of different sizes, to test the per-
formance of our code for different problem sizes. In
addition to studying code performance, studying
sequences of larger problems such as this has scientific
importance in understanding the limits of truncated
model systems. This particular protein-ligand complex
has been studied earlier using HF and other methods,
but here we are able to go to much larger model sys-
tems, with 2938 atoms compared with 323 atoms in
previous work (Ucisik et al., 2011).

Table 7 lists a sample of the molecular systems of dif-
ferent sizes that were tested. The largest corresponds to
all protein residues 18 Å from the ligand (the entire pro-
tein is within 22 Å). A test system named 1hsg_35 indi-
cates that all residues containing any atom within 3.5 Å
of any ligand atom is included in the model. Bonds cut
by the truncation are capped appropriately.

GTFock implements the SCF iteration of
Algorithm 1 but uses purification rather than eigende-
composition for computing the density matrix, D. In
addition, the GTFock code accelerates the convergence
of the SCF iteration by using direct inversion of the
iterative subspace (DIIS) (Pulay, 1980). In this method,
an improved approximation to the Fock matrix is
formed from a linear combination of Fock matrices
from previous iterations. The linear combination is the
one that reduces the error, as measured by the commu-
tator (FDS2SDF), where S is the overlap matrix. The
additional computational cost is small relative to the
cost of forming F, but the real cost is the need to store
the Fock matrices from previous iterations, reducing
memory available for other optimizations. GTFock
also uses a standard initial guess for the density matrix
called ‘‘superposition of atomic densities’’ (SAD). To
verify accuracy of GTFock, results of smaller simula-
tions were checked against those from the Q-Chem
package (Krylov and Gill, 2013). Finally, we note that
a Cauchy–Schwarz tolerance of t =10210 was used for
screening ERIs.

Performance results were measured on the Tianhe-2
supercomputer located at the National Supercomputing

Center in Guangzhou, China. The machine was devel-
oped by the National University of Defense
Technology, China. Tianhe-2 is composed of 16,000
nodes with a custom interconnect called TH Express-2
using a fat-tree topology. Each node is composed of
two Intel IVB E5-2692 processors (12 cores each at
2.2GHz) and three Intel Xeon Phi 31S1P coprocessors
(57 cores at 1.1GHz). Memory on each node is 64GB
DRAM and 8GB on each Intel Xeon Phi card.
Capable of a peak performance of 54.9 PFlops, Tianhe-
2 has achieved a sustained performance of 33.9 PFlops
with a performance-per-Watt of 1.9GFlops/W. Tianhe-
2 has 1.4PB memory, 12.4 PB storage capacity, and
power consumption of 17.8MW. We were able to use
8100 nodes of Tianhe-2 for our tests.

Performance results were also measured on the
Stampede supercomputer located at Texas Advanced
Computing Center. We were able to use 1024 nodes of
the machine, which is the limit for jobs on the ‘‘large’’
queue. We used nodes composed of two Intel Sandy
Bridge E5-2680 processors (8 cores each at 2.7GHz)
with one Intel Xeon Phi coprocessor (61 core). Memory
on these nodes is 32GB DRAM and 8GB for the Intel
Xeon Phi card.

7.2 SCF strong scaling

Figure 5 shows timing and speedup results for a single
SCF iteration for the 1hsg_80 model on Stampede and
Figure 6 shows the same for 1hsg_180 on Tianhe-2. In
the figures, ‘‘Total’’ denotes the total time for CPU-
only computations, ‘‘Purif’’ denotes portion of the
CPU-only time for canonical purification, and ‘‘Total
w/accel’’ denotes total time for heterogeneous
(CPU+coprocessor) computations. For the speedup
graphs, ‘‘Fock’’ denotes the time for CPU-only Fock
matrix construction. We chose the number of nodes of
be squares, but this is not necessary for our code. For
runs on Stampede, we used 2D matrix multiplication
for purification. For runs on Tianhe-2, we used 3D
matrix multiplication. In this case, purification used the
nearest cubic number of nodes smaller than the number
of nodes for Fock matrix construction.

The results show good speedup for Fock matrix con-
struction. An important observation is that timings for
purification are small relative to those for Fock matrix
construction. Also important is the observation that
the purification timings continue to decrease for
increasing numbers of nodes. This is despite the fact
that, as we increase the number of nodes, the dgemms
performed by each node in the distributed matrix mul-
tiply algorithm become smaller and less efficient, while
the communication cost increases. Due to the increased
inefficiency, the scaling of purification is much poorer
than the scaling of Fock matrix construction. However,
since timings for purification remain relatively small,

Table 7. Test systems of varying size using the cc-pVDZ basis
set (unoptimized contractions).

Molecule Atoms Shells Basis functions

1hsg_35 220 981 2063
1hsg_45 554 2427 5065
1hsg_70 789 3471 7257
1hsg_80 1035 4576 9584
1hsg_100 1424 6298 13,194
1hsg_140 2145 9497 19,903
1hsg_160 2633 11,646 24,394
1hsg_180 2938 13,054 27,394
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they make a relatively small impact on total speedup,
as shown as the difference between total speedup and
Fock matrix construction speedup. On Tianhe-2, CPU-
only relative speedup at 8100 nodes is 5954.1, or 73.5%
parallel efficiency.

The speedup of heterogeneous over CPU-only com-
putations on Stampede is 1.49 to 1.53. On Tianhe-2,
this speedup is 1.50 to 1.68. In heterogeneous mode,
small numbers of nodes could not be used for large
problems, due to limited memory for submatrices of D
and F on the coprocessors. To explain why, note that
for small numbers of nodes, each node performs more
tasks than when large numbers of nodes are used.
When more tasks are performed, more submatrices of
D must be prefetched and more submatrices of F must
be stored locally. In heterogeneous mode, these subma-
trices of D and F are stored on each Intel Xeon Phi
card on the node. With limited memory on the copro-
cessor cards, heterogeneous mode can only be used for

large node counts. However, heterogeneous mode can
be used for smaller node counts for smaller problems.

7.3 SCF weak scaling

Weak scaling is difficult to measure because it is diffi-
cult to increase computational work exactly propor-
tionally with number of nodes. This is primarily
because, due to ERI screening, the amount of compu-
tational work is not known beforehand. However, the
ERI calculation time can be measured and used as a
proxy for the amount of computational work, assum-
ing the load is balanced. We timed SCF for a set of test
systems of various sizes (Table 7), using a number of
nodes approximately proportional to the square of the
number of basis functions for each problem. To pro-
duce the plot for weak scaling, the timings are ‘‘cor-
rected’’ by scaling them by the proxy ERI calculation
time. Table 8 shows the timings for SCF using
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Figure 5. Timings and speedup for one SCF iteration for 1hsg_80 (9584 basis functions) on Stampede.
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Figure 6. Timings and speedup for one SCF iteration for 1hsg_180 (27,394 basis functions) on Tianhe-2.
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heterogeneous computations. ‘‘ERI’’ denotes the por-
tion of Fock matrix construction time spent in ERI cal-
culations. The resulting weak scaling plot is shown in
Figure 7. Weak scaling for CPU-only computations is
also plotted for comparison. As expected, scalability is
better for CPU-only because computations are slower
(no coprocessor acceleration) while communication
remains the same. Table 8 shows that communication
cost for Fock matrix construction (difference between
‘‘Fock’’ and ‘‘ERI’’ columns) increases with the number
of nodes and becomes a substantial portion of the total
time. Purification remains a relatively smaller portion
of the total time for all problem sizes.

7.4 Flop rate

Although SCF is not a flop-rich algorithm, it is still
interesting to compute the achieved flop rate. We show
this as an example of how to count flops in a complex
calculation where the number of flops performed can-
not be estimated analytically. We count the flops in
purification and ERI calculation; all other operations
(e.g. summation of the Fock matrix) perform a

relatively small number of flops, which we neglect. The
number of flops spent in purification can be counted
analytically. ERI calculation, however, is very unstruc-
tured, and the different types of integrals and different
ways for integrals to be screened out makes analytical
counting unwieldily. Instead, we use hardware counters
to measure the number of flops in ERI calculations.
Specifically, we use the perf_events interface exported
by recent versions of the Linux kernel. As Intel Xeon
Phi does not have proper flop counters support, we per-
form all hardware event measurements on x86 CPUs.
We compiled with the -no-vec option to avoid inaccura-
cies due to partial use of vector registers in SIMD oper-
ations. Estimates of flop counts for ERI calculations
are shown in Table 9 for a selection of test systems. The
columns in the table are estimates computed in the fol-
lowing ways.

1. Retired floating point operations on AMD
Piledriver, which separately counts multiplications
and additions, and jointly counts divisions and
square roots. We call this count CPU intrinsic. We
verified the total of these counts using the retired
flops counter on Intel Harpertown.

2. Floating point operations at the execution stage of
the pipeline on Intel Nehalem. The counters we
use also count compares, and may also overcount
due to speculative execution and recirculations of
these operations in the pipeline. We call this count
CPU executed, and it is an upper bound on the

Table 8. Timing data (seconds) for one SCF iteration for different problem sizes using heterogeneous computations. ‘‘ERI’’ denotes
the portion of Fock matrix construction time spent computing ERIs. Time for purification is also shown. We note that 33 to 36
purification iterations were used for converging the density matrix calculation.

Molecule Nodes Fock ERI Purif Total

1hsg_35 64 7.3 5.9 0.7 8.4
1hsg_45 256 21.1 18.2 1.2 22.7
1hsg_70 576 25.5 19.2 1.5 27.3
1hsg_80 1024 30.0 19.4 1.9 32.3
1hsg_100 2304 31.9 21.3 3.0 35.2
1hsg_140 4096 38.3 25.1 5.0 43.6
1hsg_160 6400 41.4 25.5 5.7 47.5
1hsg_180 8100 44.1 26.2 8.4 52.9
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Figure 7. Weak speedup, relative to 64 nodes.

Table 9. Flop counts (Gflops) for ERI calculation.

Molecule CPU intrinsic CPU executed Intel Xeon Phi

1hsg_35 30,646 33,951 45,105
1hsg_45 386,695 448,561 575,323
1hsg_80 1,830,321 2,124,477 2,721,020
1hsg_140 8,751,659 10,223,033 13,027,801
1hsg_160 13,844,868 16,141,342 20,547,502
1hsg_180 17,820,050 20,853,142 26,487,829
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number of flops performed. This result gives addi-
tional confidence in our intrinsic count.

3. Intel Xeon Phi does not have counters for flops.
Also, Intel Xeon Phi does not have single-
instruction division and square root operations;
these functions are computed with a sequence of
multiplication, addition, and fused multiply-add
operations. Square roots and divisions require a
sequence of 10 and 11 flops, respectively, and thus
the flop counts on Intel Xeon Phi are higher than
on CPUs. We instrumented our code to count the
number of square root operations, and used AMD
Piledriver counts to deduce the number of divi-
sions. We used these results to estimate the number
of flops performed on Intel Xeon Phi.

Table 10 shows approximate flop rates using the tim-
ing data from the previous tables. Interestingly, purifi-
cation, which is based on dgemm, has a lower rate than
ERI calculation. This is because of the small size of the
matrices per node, as well as communication costs. In
summary, for the largest problem on 8100 nodes, the
aggregate flop rate for HF-SCF is 441.9 Tflops/s.

8 Conclusions

The HF method has a complex data access pattern and
irregular computations that are challenging to vector-
ize. This paper has presented an optimized, scalable
code for HF calculations. The software, called
GTFock, has been released in open-source form at
https://code.google.com/p/gtfock. The code described
in the paper corresponds to version 0.1.0 of GTFock,
except for some optimizations that were necessary for
efficient performance on the Tianhe-2 proprietary inter-
connect (e.g. explicit MPI progress calls). The reposi-
tory also contains the test molecular geometries used in
this paper. GTFock can be integrated into existing
quantum chemistry packages and can be used for
experimentation as a benchmark for high-performance
computing. The code is capable of separately comput-
ing the Coulomb and exchange matrices and can thus
be used as a core routine in other quantum chemistry
methods.

Scalability problems were encountered when scaling
up the code to 8100 nodes on Tianhe-2. These were
resolved by using a better static partitioning and a bet-
ter work stealing algorithm than used in previous work.
We also fully utilized the Intel Xeon Phi coprocessors
on Tianhe-2 by using a dedicated thread on each node
to manage offload to coprocessors and to use work
stealing to dynamically balance the work between
CPUs and coprocessors. The ERI calculations were
also optimized for modern processors including Intel
Xeon Phi.

The partitioning framework for Fock matrix con-
struction presented in this paper is useful for compar-
ing existing and future partitioning techniques. The
best partitioning scheme may depend on the size of the
problem, the computing system used, and the paralle-
lism available.

In Fock matrix construction, each thread sums to its
own copy of Fock submatrices in order to avoid con-
tention for a single copy of the Fock matrix on a node.
However, accelerators including Intel Xeon Phi have
limited memory per core, making this strategy impossi-
ble for reduction across many threads. In effect, the
problem size is limited when we run heterogeneously.
Like many other applications, parallel HF calculations
will benefit from accelerators that can directly access
main DRAM memory on the node.

Finally, the main current challenge for improving
HF performance is to speed up ERI calculations, which
do not fully utilize SIMD capabilities on CPUs and
Intel Xeon Phi. SIMD performance may be improved
by grouping integrals of the same type, and computing
them together using SIMD operations. This entails new
interfaces between integral packages and the codes
using them.
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