
Improving the Performance of Dynamical
Simulations Via Multiple Right-Hand Sides

Xing Liu Edmond Chow
School of Computational Science and Engineering

College of Computing, Georgia Institute of Technology
Atlanta, Georgia, 30332, USA

xing.liu@gatech.edu, echow@cc.gatech.edu

Karthikeyan Vaidyanathan Mikhail Smelyanskiy
Parallel Computing Lab

Intel Corporation
Santa Clara, California, 95054, USA

{karthikeyan.vaidyanathan, mikhail.smelyanskiy}@intel.com

Abstract—This paper presents an algorithmic approach for
improving the performance of many types of stochastic dy-
namical simulations. The approach is to redesign existing
algorithms that use sparse matrix-vector products (SPMV)
with single vectors to instead use a more efficient kernel, the
generalized SPMV (GSPMV), which computes with multiple
vectors simultaneously. In this paper, we show how to redesign
a dynamical simulation to exploit GSPMV in way that is not
initially obvious because only one vector is available at a time.
We study the performance of GSPMV as a function of the
number of vectors, and demonstrate the use of GSPMV in the
Stokesian dynamics method for the simulation of the motion
of macromolecules in the cell. Specifically, for our application,
we find that with modern multicore Intel microprocessors in
clusters of up to 64 nodes, we can typically multiply by 8
to 16 vectors in only twice the time required to multiply
by a single vector. After redesigning the Stokesian dynamics
algorithm to exploit GSPMV, we measure a 30 percent speedup
in performance in single-node, data parallel simulations.

Index Terms—sparse matrix-vector product (SPMV); it-
erative methods; block Krylov subspace methods; SIMD
(SSE/AVX); Stokesian dynamics; Brownian dynamics; biological
macromolecular simulation

I. INTRODUCTION

The performance of large-scale scientific computations
largely depends on the choice of numerical algorithms and
the efficiency of these algorithms on high-performance hard-
ware. Thus, much research has been devoted to developing
new algorithms or adapting existing ones to have better per-
formance characteristics. Common strategies include reduc-
ing communication and synchronization requirements in the
parallel context, as well as adapting algorithms rich in parallel
work for specific architectures such as GPUs. These new
algorithms usually come with tradeoffs, such as increased
complexity, and possibly poorer numerical properties. The
overall goal, however, is to reduce the throughput time of a
scientific application. In this paper, we present an approach
for speeding up certain types of dynamical simulation codes
by redesigning their algorithms to use multiple right-hand
sides. These new algorithms can exploit sparse matrix-vector
products with multiple vectors, which run much more ef-
ficiently than sparse matrix-vector products with a single
vector.

The sparse matrix-vector product (SPMV) is a common
kernel in numerical simulation codes. The performance of
SPMV on various architectures has been studied over many
dozens of papers and many techniques, such as ordering
and blocking, have been suggested for improving perfor-

mance [38], [29], [36]. In recent years, numerous methods
have been invented to improve SPMV by reducing its band-
width requirements, such as Compressed Sparse Blocks [8]
and Bitmasked Register Blocks [7]. Although many opti-
mizations have been intensively studied, SPMV is generally
known for poor performance on modern CPUs. Studies have
shown the best performance to be about 30% of peak CPU
flop rates [38], [14], [24].

The performance of a very similar kernel has a much
higher flop rate. Gropp, Kaushik, Keyes, and Smith [16]
observed that a “generalized” SPMV (GSPMV), which mul-
tiplies a sparse matrix by a block of vectors simultaneously,
can be performed in little more time than a traditional SPMV
with a single vector. This result is easily seen from the fact
that the memory bandwidth cost of accessing the matrix in
DRAM is amortized over many vectors. In 1999, when the
paper appeared, the rule of thumb was that one could multiply
by four vectors in about 1.5 times the time needed to multiply
by a single vector. Today, given the well-known growing
imbalance between memory access and computation rates,
the incremental cost of additional vectors is much smaller.
Just like the fact that flops are becoming “free,” additional
vectors for SPMV are also becoming free.

That paper by Gropp et al. [16] was likely the first
to promote the use of algorithms that can make use of
multiple vectors with each SPMV. Although no specific
algorithms were identified in that paper, there are obvious
applications where multiple vectors can be exploited. For
example, in a finite element analysis where solutions for
multiple load vectors, or more generally, “multiple right-
hand sides” are desired, it is natural to use a block iterative
solver, where each iteration involves an SPMV with a block
of vectors. Such iterative methods have been avoided because
of numerical issues that can arise [27], but these methods
can be expected to gain more attention with the increasing
performance advantage of GSPMV over single-vector SPMV.
The importance of block iterative solvers is increasing as
well, given the increasing number of applications in which
multiple right-hand sides occur, for example, in applications
of uncertainty quantification, where solutions for multiple
perturbed right-hand sides are desired.

In the above applications, the use of GSPMV with a
block iterative solver is natural because all the right-hand
side vectors are available at the same time. It is not clear,
however, how to use GSPMV when the right-hand sides are
only available sequentially, i.e., one after another. This is the

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.14

36

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.14

36

common situation in dynamical simulations where, at each
time step, a single right-hand side system is solved, and the
solution of this system must be computed before the system
at the next time step can be constructed.

In this paper, we present and test a novel algorithm that can
exploit GSPMV for many types of dynamical simulations,
even though the right-hand sides are only available sequen-
tially. The main idea is to set up and solve an auxiliary system
of equations with multiple right-hand sides; the solution to
this auxiliary system provides good initial guesses for the
original systems to be solved iteratively at each time step.
Solving the auxiliary system is extra work, but it can be
done very efficiently using GSPMV, and it is piggy-backed
onto a solve which must be performed anyway, leading to
an overall reduced computation time. The algorithm can be
regarded as an instance of a technique or approach that is
applicable to other situations.

In addition to presenting the algorithm above, another pur-
pose of this paper is to show experimentally and with some
simple analyses the performance advantages of GSPMV
compared to SPMV. We discuss how to implement GSPMV
efficiently with the SIMD (e.g., SSE/AVX) capabilities of
general-purpose processors. Moreover, we study the perfor-
mance of GSPMV in the distributed memory case.

We have implemented our algorithm in a Stokesian dynam-
ics code which is being developed with the long term goal of
simulating the motion of proteins and other macromolecules
in their cellular environment. Section II provides background
on the Stokesian dynamics method. Our algorithm is pre-
sented in Section III. Section IV presents a performance
analysis of GSPMV, in particular for matrices arising in our
application. In Section V, we test our approach by demon-
strating the use of GSPMV in a Stokesian dynamics code.
The results here are suggestive of results of applying our
approach to other types of dynamical simulations. Section VI
concludes the paper. Like [16], we hope that this paper
will encourage exploration into developing algorithms that
can use efficient kernels that operate on multiple vectors
simultaneously.

II. BACKGROUND ON STOKESIAN DYNAMICS

A. General Principles

The algorithmic work in this paper is motivated by and
studied in the context of the Stokesian dynamics (SD)
method [4], [5]. We use this method for the simulation of the
motion of biological macromolecules in solvent, but SD may
be used in many applications. In SD simulations, the particles
may be colloids, polymers, proteins, or other macromolecules
in environments where the inertial forces are much smaller
than the inter-particle forces, i.e., the particle Reynolds
number is small. Of scientific and engineering interest are
the macroscopic properties of the particle motion, such as
average diffusion constants, that arise from the microscopic
motions of the particles. We are interested in large-scale SD
simulations, for example, those involving upwards of one
million particles.

In SD simulations, the macromolecules are modeled as
spherical particles of possibly varying radii. At each time
step, like in other particle simulation methods, forces on
the particles are computed and then the particle positions

are updated. For macromolecules in solvent, it is important
to accurately model the hydrodynamic forces, that is, the
forces mediated by the solvent on one particle due to the
motion of other particles. Hydrodynamic forces are long
range, varying as 1/r, where r is the inter-particle separation.
Particles that are nearly touching, however, also experience
a strongly repulsive, short-range hydrodynamic force, called
the “lubrication” force. SD accurately models both long- and
short-range hydrodynamic forces. This is in contrast to the
well-known Brownian dynamics (BD) method [11] which
cannot accurately model short-range forces, and has thus been
used only to study relatively dilute systems. SD, however,
is able to study more closely-packed, high volume fraction
systems, such as the crowded macromolecular environment
of the cell [1]. This capability, however, makes SD much
more computationally demanding than BD.

Biological molecules also experience stochastic forces
corresponding to random collisions with molecules of the
solvent. Since the particles of the solvent are not modeled
explicitly, a Gaussian noise vector with a configuration-
dependent correlation is used to simulate this “Brownian”
force in SD (as in BD). This adds a significant complexity
to a SD simulation. In addition, other forces can be incor-
porated, such as bonded forces for simulating long-chain
molecules as a bonded chain of particles.

B. Governing Equations

The governing equation for particle simulations with
Brownian interactions is the Langevin equation,

M
d2r
dt2

= f H + f B+ f P

where r is a 3n-dimensional vector containing the three
components of position of n particles, M is a mass matrix,
and f H , f B, and f P are the hydrodynamic, Brownian, and
other external or inter-particle forces, respectively. We note
that in this paper, we will use an approximation that neglects
the rotation of the particles. The Langevin equation is simply
a modification of Newton’s equation of motion to include
the stochastic term f B. The equation also often implies that
r contains a reduced number of degrees of freedom, for
instance r does not contain degrees of freedom due to the
solvent, as the solvent is modeled by f B.

In SD simulations, the inertial forces are small and thus
particle mass can be neglected, i.e., Md2r/dt2 = 0. The hy-
drodynamic force on a particle is dependent on the positions
and velocities of all other particles; f H takes the form

f H = R(r)

(
dr
dt
−u∞

)

where R(r) is a “resistance” or friction matrix that depends
on the particle configuration, and u∞ is the velocity of the
bulk flow at the position of the particles. In this paper, we
will use u∞ = 0 without loss of generality. The Brownian
force f B is a Gaussian random vector with mean zero and
covariance proportional to R(r). The latter requirement is due
to the fluctuation-dissipation theorem of statistical physics
which relates fluctuations in the Brownian force with friction.
Finally, in this paper, and for our simulations, f P = 0.

The matrix R (dropping the dependence on r in our
notation) describes the relationship between the hydrody-

3737

namic forces and the velocities of a system of particles.
The exact relationship involves solving the Stokes equations
for multiple particles. In the Stokesian dynamics method, by
contrast, R is constructed by superimposing the analytical
solutions for two spherical particles in Stokes flow to approxi-
mate the multi-particle solution. Separate analytical solutions
are provided for the long- and short-range hydrodynamic
interactions, resulting in

R= (M∞)−1 +Rlub

where the first component is a dense matrix representing
the long-range hydrodynamic interactions, and the second
component is a sparse matrix representing the short-range
lubrication interactions [10]. Structurally, R and its two
components are block matrices, with blocks of dimension
3× 3. Each block represents the interaction between two
particles. The blocks in M∞ are the Oseen or Rotne-Prager-
Yamakawa tensors [30], [39]; the blocks in Rlub are tensors
coming from lubrication theory [21], [23]. It is these tensors
that make R dependent on the particle positions and radii.
We further adjust Rlub to project out the collective motion of
pairs of particles [9]. With these choices, M∞ is symmetric
positive definite and Rlub is symmetric positive semidefinite.

We will see in the next section that each time step
involves solves with the matrix R. For small problems, a
Cholesky factorization is used; for the large problems in
which we are interested, iterative solution methods have been
suggested [34], [33], [35]. Iterative methods involve matrix-
vector multiplies with R and, for efficiency, must multiply
the dense component of the matrix R using fast algorithms
such as particle-mesh Ewald (PME) [33], [17], [31]. Like
GSPMV, such algorithms may also exploit multiple vectors
for efficiency. In this paper, we will only study the efficiency
of GSPMV and leave the study of PME with multiple
vectors for future work. We thus use an alternative, sparse
approximation to R proposed by [34]

R= μFI+Rlub

which is applicable when the particle interactions are dom-
inated by lubrication forces. The term μFI is a “far-field
effective viscosity” with the parameter μF chosen depending
on the volume fraction of the particles [34]. We use a slight
modification of this technique to account for different particle
radii.

C. Method of Simulation

In SD simulations where f P = 0, the hydrodynamic forces
balance the Brownian forces. The governing equation to be
solved is

R(r)
dr
dt

=− f B

which is, notably, a differential equation of first order. Al-
though this problem is not smooth due to time-fluctuations
in f B, a second-order integrator must be used because of
the configuration dependence of R; a first-order integrator
makes a systematic error corresponding to a mean drift,
∇ ⋅R−1, see [11], [12], [15]. (For the Oseen and Rotne-Prager-
Yamakawa tensors, the gradient with respect to r is zero,
making the second-order method unnecessary.) For example,
the explicit midpoint method may be used, which requires

two matrix solves at each time step,

Solve R(rk) uk =− f Bk (1)

Compute rk+1/2 = rk+
1
2 Δt uk (2)

Solve R(rk+1/2) uk+1/2 =− f Bk (3)

Compute rk+1 = rk+Δt uk+1/2 (4)

where k is a time index and uk represents the velocity vector
at time index k. The time step size Δt is chosen such that it is
larger than the Brownian relaxation time, but small enough
so that particles do not overlap. For our experiments, we use
a modification of the midpoint method which helps avoid
particle overlaps at the intermediate configuration [2]. The
most costly steps of this procedure are the solves with the
resistance matrices.

Another costly component of the SD method is the com-
putation of the Brownian force vector with the proper covari-
ance. This vector may be computed as f B = Lz (neglecting
proportionality constants) where z is a standard normal vector
and where L satisfies R = LLT . Since R is symmetric and
positive definite, the usual approach is to compute L as
the lower-triangular Cholesky factor of R. This approach,
however, is impractical or at least very costly for large
problems. An alternative is to compute S(R)z, where S(R) is a
shifted Chebyshev polynomial in the matrix R which approx-
imates the square root [13]. The matrix S(R) itself is never
computed, and each computation of a matrix polynomial
times a vector only requires matrix-vector product operations
with the matrix R. This is particularly advantageous when R
is sparse. We use the Chebyshev approach in our simulations.

A summary of the algorithm at each time step is shown
in Alg 1. In the following, let Rk denote R(rk), and let zk
denote the standard normal vector generated for step k.

Algorithm 1: SD Algorithm for one time step.

1 Construct Rk = μFI+Rlub(rk)
2 Compute f Bk = S(Rk)zk
3 Solve Rk uk =− f Bk
4 Compute rk+1/2 = rk+

1
2 Δt uk

5 Solve Rk+1/2 uk+1/2 =− f Bk
6 Update rk+1 = rk+Δt uk+1/2

Many SD implementations use a Cholesky factorization of
R for computing f B and for solving the systems in steps 3 and
5. An important advantage of this is because the Cholesky
factor computed for step 2 can be reused for step 3. A further
optimization which we have used, but which does not appear
to have been used elsewhere, is to solve the system in step
5 using the same Cholesky factor combined with a simple
iterative method, such as “iterative refinement.” Combined
with an initial guess which is the solution from step 3, only a
very small number of iterations are needed for convergence.
Thus only one Cholesky factorization, rather than two, is
needed per time step. Cholesky factorizations, however, are
not practical for very large problems. In the remainder of
this paper, we focus on the use of iterative methods and
thus sparse matrix-vector multiplications to carry out SD
simulations.

3838

III. EXPLOITING MULTIPLE RIGHT-HAND SIDES

The SD method requires the solution of a sequence of
related linear systems with matrices Rk which slowly evolve
in time as the particles slowly evolve in time. A number
of solution techniques for sequences of linear systems can
take advantage of the fact that the matrices are slowly
varying. The most obvious technique is to invest in con-
structing a preconditioner that can be reused for solving with
many matrices. As the matrices evolve, the preconditioner
is recomputed when the convergence rate has sufficiently
degraded. A second technique is to “recycle” components
of the Krylov subspace from one solve to the next [28] to
reduce the number of iterations required for convergence. A
third technique is to use the solution of the previous system
as the initial guess for the current system being solved. This
is applicable when the solution itself is a slowly varying
quantity as the sequence evolves.

At each SD time step, two linear systems must be solved
which have the same right-hand sides and which have matri-
ces that are slightly perturbed from each other. The simplest
technique for exploiting these properties is to use the solution
of the first linear system as the initial guess for the iterative
solution of the second linear system.

Different time steps, however, have completely different
right-hand sides. As already mentioned, these right-hand
sides are in fact random with a multivariate normal distribu-
tion. At first glance, it thus does not appear possible that an
initial guess is available to aid solving the first linear system
of each time step.

We now, in fact, present a way to construct initial guesses
for these systems in an efficient way. At two consecutive time
steps, k and k+1, the linear systems to be solved are

Rkuk = S(Rk)zk (5)

Rk+1uk+1 = S(Rk+1)zk+1 (6)

where an initial guess for the second system is desired. In our
approach, instead of solving the first system, the following
system, which augments the first system with an additional
right-hand side, is solved instead:

Rk
[
uk u

′
k+1

]
= S(Rk) [zk zk+1] (7)

This multiple right-hand side system is solved with a block
iterative method. The critical point is that this solve is
expected to cost little more than the solve of the original
system with a single right-hand side due to the use of
GSPMV operations. Since Rk+1 is close to Rk and S(Rk+1)
is close to S(Rk), the solution u′k+1 is an initial guess for the
second system (6). The hope is that the number of iterations
required to solve the second system is now reduced compared
to the extra cost of constructing and solving (7) with the
additional right-hand side.

The above procedure is of course extended to as many
right-hand sides as is profitable. Thus the solution of one
augmented system with m right-hand sides at the beginning
of m time steps produces the solution for the first of these
time steps and initial guesses for the following m− 1 time
steps. The parameter m may be larger or smaller depending
on how Rk evolves and on the incremental cost of GSPMV
for additional vectors. We refer to m as the number of right-

hand sides.
A summary of the algorithm for m time steps is shown in

Alg 2. In the following, we call this algorithm the Multiple
Right-Hand Sides (MRHS) algorithm. The algorithm requires
a vector of initial positions, r0. Let U = [u0, . . . ,um−1] and
Z = [z0, . . . ,zm−1]. In step 2, note that a GSPMV is also used
for constructing the right-hand sides, FB. We use k to denote
the index 0, . . . ,m−1.

Algorithm 2: MRHS Algorithm for m time steps.

1 Construct R0 = μFI+Rlub(r0)
2 Compute FB = S(R0)Z
3 Solve augmented system R0U = FB

4 Compute r1/2 = r0 +
1
2 Δt u0

5 Solve R1/2 u1/2 =− f B0 using solution u0 from step 3 as
initial guess

6 Update r1 = r0 +Δt u1/2
7 for k← 1 to m−1 do
8 Construct Rk = μFI+Rlub(rk)
9 Compute f Bk = S(Rk)zk

10 Solve Rk uk =− f Bk using uk from step 3 as initial
guess

11 Compute rk+1/2 = rk+
1
2 Δt uk

12 Solve Rk+1/2 uk+1/2 =− f Bk using solution from step
10 as initial guess

13 Update rk+1 = rk+Δt uk+1/2
14 end

IV. GENERALIZED SPARSE MATRIX-VECTOR PRODUCTS

WITH MULTIPLE VECTORS

In order to fully understand the performance potential of
algorithms using multiple vectors (or multiple right-hand
sides), we need to better understand the performance of
GSPMV. In this section we study this performance exper-
imentally and with a simple analytical model. It is important
to study optimized implementations of GSPMV because it
would be these that are used in practice. We use standard
performance optimizations for this purpose, but producing
a general, highly-optimized implementation of GSPMV is
outside the scope of this paper. In particular, we do not exploit
any symmetry in the matrices.

A. Performance Optimizations for GSPMV

1) Single-Node Optimizations: There is a substantial liter-
ature exploring numerous optimization techniques for SPMV,
i.e., the single-vector case. Vuduc [37] provides a good
overview of these techniques. More recently, the performance
of various SPMV algorithms has been evaluated by several
groups [38], [3]. They cover a wide range of matrices,
different storage formats, and various types of hardware.
There also exist optimized GSPMV implementations. The
approaches of these implementations are generally extensions
of existing methods used for SPMV or SPMM (sparse matrix-
matrix multiply). For instance, Im [18] extended register
blocking and cache blocking methods to handle multiple
vectors in GSPMV. Lee et al. [25] improved GSPMV by
reducing its memory traffic. The method they used is an

3939

extension of the vector blocking method, which was first used
in SPMM.

We applied several well-known SPMV optimizations to
GSPMV, including thread blocking and the use of SIMD.
We also implemented TLB and cache blocking optimizations
[26]. However, use of large pages made TLB blocking un-
necessary for all but unrealistically large number of vectors.
We have not used register blocking [18] due to the fact that
our matrices already have natural 3× 3 block structure. We
store the m vectors in row-major format to take advantage of
spatial locality.

While there exist a variety of sparse storage formats, in this
work we focus on the widely-used Block Compressed Row
Storage (BCRS) format, due to the known block structure
of our matrices. Similar to the CSR format, BCRS requires
three arrays: an array of non-zero blocks stored row-wise,
a column-index array which stores the column index of
each non-zero block, and a row pointer array, which stores
beginning of each block row.

We have developed a code generator which, for a given
number of vectors m, produces a fully-unrolled SIMD kernel,
which we call the basic kernel. This kernel multiplies a small
3×3 block by a 3×m block. Multiplication of each matrix
element is unrolled by m. The nine elements of a 3× 3
block are stored packed in SIMD registers and SIMD shuffle
operations are used to extract and replicate required values.
It is also possible to use vector blocking for multiple vectors,
as this was shown to result in improved register allocation
and cache performance [25], [18]. However, for our datasets,
increasing m resulted in at most a commensurate run-time
increase. As a result, vector blocking would not be effective
for realistic values of m.
2) Multi-Node Optimizations: Similar to single-node

SPMV, multi-node SPMV has been well-studied in the
past, for example, see [32], [6]. Our multi-node GSPMV
implementation is similar to multi-node implementations of
SPMV, except that it operates on a block of vectors. For
a given matrix partitioning, communication volume scales
proportionately with the number of vectors, m.

Strong scaling performance of GSPMV is generally limited
by two factors: load imbalance and communication overhead.
To address load imbalance, we used a simple, coordinate-
based row-partitioning scheme. This partitioning bins each
particle using a 3D grid and attempts to balance the number
of non-zeros in each partition. The entire operation is inex-
pensive, and can be done during neighbor list construction
to further amortize its overhead over several time steps.
Coordinate-based partitioning resulted in communication vol-
ume and load balance comparable to that of a METIS [22]
partitioning.

To reduce communication overhead, we overlap computa-
tion with communication, using nonblocking communication
MPI calls. We also overlap the gather of the elements to
be communicated with the multiply by the local part of the
matrix. We use a small subset of threads to perform the
communication and gather operations, while the remaining
threads perform the compute.

B. Performance Model

1) Single-Node Bound: Gropp et al. [16] analyzed the
benefits of multiplying a sparse matrix by multiple vectors.
However, only the bandwidth-bound case was analyzed. We
also analyze the compute-bound case, which can arise for
large-enough m. We also slightly extend the performance
model to block-structured matrices which arise in many
applications including SD simulation.

We now define some quantities used frequently in this
paper. For the GSPMV operation Y = RX , let n denote the
number of rows and let nb denote the number of block rows
in the matrix R (for 3×3 blocks, nb = n/3). Further, let nnz
denote the number of stored scalar non-zeros in the matrix
and let nnzb denote the number of block non-zeros in the
matrix. Let sa be the size, in bytes, of a matrix block (for
3× 3 blocks, sa = 72 in double precision). Let sx be the
size, in bytes, of a scalar entry of the (dense) vectors to be
multiplied.

The total amount of memory traffic in bytes incurred by a
GSPMV operation is

Mtr(m) = mnb(3+ k(m))sx+4nb+nnzb(4+ sa)

Memory traffic due to non-zeros as well BCRS indexing
structures, is represented by the second and third terms in
the expression. The first term represents memory traffic due
to accessing X and Y : 1 read of X , 1 read of Y , one write
to Y , plus k(m) additional memory accesses to each element
of X . The function k(m) depends on matrix structure as well
as machine characteristics, such as cache size. The function
k(m) also depends on m: as the number of vectors increases,
the working set also increases and will put additional pressure
on the last level cache. In this case, k(m) will also increase.
Cache blocking and matrix reordering techniques will reduce
the value of k(m). Note k(m) can also be negative, which
can happen for example, when both X and Y fit into last
level cache and are retained there between multiple calls
to GSPMV. For the matrices that are typical in our SD
simulation, k(m) is only a weak function of m. For example,
for a typical SD matrix with 25 non-zero blocks per block
row, k(m) is ∼3 for m between 1 and 42.

The time for performing GSPMV with m vectors, if the
operation is bandwidth-bound, is Tbw(m) =Mtr(m)/B, where
B is the achievable machine bandwidth. The time in the
compute-bound case is Tcomp(m) = famnnzb/F , where fa is
number of flops required to multiply a block element of R by
a block element of X . For example, fa is 18 for the case of a
3×3 block. The quantity F is the achievable compute-bound
performance of the basic kernel.

We approximate the performance of GSPMV by the max-
imum determined by the compute and bandwidth bounds,
T (m) = max(Tbw(m), Tcomp(m)). The relative time, r(m), is
defined as the ratio of the time it takes to multiply by m
vectors to the time it takes to multiply by one vector. Hence
r(m) = T (m)/T (1). Since we assume that T (1) is bandwidth-
bound, r(m) = T (m)/Tbw(1). We can divide both numerator
and denominator by nb and note that nnzb/nb is an average
number of non-zero blocks per block row of the matrix. The
relative time becomes

4040

r(m) =
max [m(3+ k(m))sx+4+(nnzb/nb)(4+ sa), mfa(nnzb/nb)(B/F)]

(3+ k(1))sx+4+(nnzb/nb)(4+ sa)
(8)

For small values of m, the relative time is generally
determined by the bandwidth bound. For larger m, it is
possible that the compute-bound may start dominating the
performance. This would be the case for large enough values
of byte to flop ratio, B/F , and a large number of blocks per
block row, nnzb/nb, in the matrix. It is also possible that if
nnzb/nb is too low or k(m) is too high, the bandwidth-bound
will continue dominating the performance for all values of
m. As an example of this, consider a very large diagonal
matrix which does not fit into the last level of cache. Clearly,
GSPMV is bandwidth-bound in this case for any value of m,
since there is no reuse of any vector elements.

n
nzb

/n
b

B
/F

6 12 18 24 30 36 42 48 54 60 66 72 78 84

0.02
0.06

0.1

0.2

0.3

0.4

0.5

0.6

10

20

30

40

50

60

Fig. 1: Number of vectors that can be multiplied in 2 times the
time needed to multiply by a single vector as a function of nnzb/nb
(x-axis) and B/F (y-axis).

Using the above model, Figure 1 shows a profile of the
number of vectors which can be computed in 2 times the
time needed to multiply by one vector as nnzb/nb varies
between 6 and 84 and as B/F varies between 0.02 and 0.6.
For simplicity, k(m) is optimistically assumed to be 0. The
figure shows the trends, but in reality, k(m) is greater than 0
and this will restrict the growth of the number of vectors that
can be multiplied in a fixed amount of time. For example, as
shown later in Section IV-D, for the same values of nnzb/nb
and B/F , the experimentally obtained values of the number
of vectors are somewhat smaller than those shown in this
profile.
2) Multi-Node Bound: We now extend the definition of

relative time to the multi-node case. For p nodes, the relative
time r(m, p) is the ratio of time to compute with m vectors
on p nodes to the time to compute with a single vector
on the same number of nodes. On a single-node GSPMV
performance may be bound by bandwidth or computation;
on multiple nodes, GSPMV performance can be also bound
by communication, which will increase with p.

C. Experimental Setup

In this section we briefly describe the experimental setup
for evaluating our GSPMV implementations. We introduce
relevant hardware characteristics of the evaluated systems and
present an overview of the test matrices.

1) Single-Node Systems: We performed single-node ex-
periments on two modern multi-core processors: Intel R⃝

Xeon R⃝ Processor X5680, which is based on Intel R⃝ CoreTM

i7, and Intel R⃝ Xeon R⃝ Processor E5-2670, which is based on
Sandy Bridge. In the rest of the paper, we abbreviate the first
architecture as WSM (for Westmere) and the second as SNB
(for Sandy Bridge).

WSM is a x86-based multi-core architecture which pro-
vides six cores on the same die running at 3.3 GHz. It
features a super-scalar out-of-order micro-architecture sup-
porting 2-way hyper-threading. In addition to scalar units,
this architecture has 4-wide SIMD units that support a wide
range of SIMD instructions called SSE4 [20]. Together, the
six cores can deliver a peak performance of 79 Gflop/s of
double-precision arithmetic. All cores share a large 12 MiB
last level L3 cache. The system has three channels of DDR3
memory running at 1333 MHz, which can deliver 32 GB/s
of peak bandwidth.

SNB is the latest x86-based architecture. It provides 8
cores on the same die running at 2.6 GHz. It has a 8-wide
SIMD instruction set based on AVX [19]. Together, the 8
cores deliver 166 Gflops of double-precision arithmetic. All
cores share a large 20 MiB last level L3 cache. The system
has four channels of DDR3 which can deliver 43 GB/s of
peak bandwidth.

We see that compared to WSM, SNB has 2.1 times
higher compute throughput but only 1.3 times higher memory
bandwidth. Effectively, compared to WSM, SNB can perform
1.6 times more operations per byte of data transferred from
memory.

2) Multi-Node Systems: We performed multi-node exper-
iments on a 64-node cluster. Each node consists of a dual-
socket CPU with the same configuration as WSM, described
in the previous section, except it runs at the lower frequency
of 2.9 GHz. The nodes are connected via an InfiniBand
interconnect that supports a one-way latency of 1.5 usecs
for 4 bytes, a uni-directional bandwidth of up to 3380 MiB/s
and bi-directional bandwidth of up to 6474 MiB/s. Note that
in our experiments we have only used a single socket on each
node.

TABLE I: Three matrices from SD.

Matrix n nb nnz nnzb nnzb/nb
mat1 0.9M 300K 15.3M 1.7M 5.6
mat2 1.2M 395K 81M 9M 24.9
mat3 1.2M 395K 162M 18M 45.3

3) Matrix Datasets: To study GSPMV, we used three
matrices generated by our SD simulator, mat1, mat2 and
mat3. Table I summarizes their main characteristics. We
changed the cutoff radius in the SD simulator to construct
matrices with different values nnzb/nb.

D. Experimental Results

1) Compute and Bandwidth Bounds: The performance
model described in Section IV-B requires B/F , which is
the ratio of STREAM bandwidth to the achievable floating-

4141

point performance of the basic kernel. Running STREAM1

to obtain B on both architectures shows that WSM achieves
23 GB/s, while SNB achieves 33 GB/s, which is a factor of
1.5 improvement over WSM, due to the additional memory
channel. To obtain F , we constructed a simple benchmark
that repeatedly computed with the same block of memory.
We ran this benchmark for various values of m between 1 and
64. If we exclude m= 1, which achieves low performance on
both architectures due to low SIMD parallelism, on average
this benchmark achieved 45 Gflops on WSM and 90 Gflops
on SNB. The standard deviation from this average is ∼11%
for both architectures, the maximum deviation is 13% for
WSM and 17% on SNB. The factor of 2 speedup of SNB
over WSM is commensurate with their peak floating-point
performance ratios. Note also our kernel achieved close
to 70% floating-point efficiency on both architectures. The
corresponding values of B/F are 0.55 and 0.37 for WSM
and SNB, respectively.

TABLE II: Performance and bandwidth usage of SPMV (m= 1).

mat1, WSM mat2, WSM mat3, SNB
GB/s 17.8 18.3 32.0
Gflops 3.6 4.2 7.4

2) Single-Node Results: Table II shows performance and
bandwidth utilization of single-vector SPMV on both archi-
tectures and three matrices. It serves as our baseline. We
can see our single vector performance is within 20% of
achievable bandwidth on WSM and within 3% on SNB. The
reason for such high bandwidth efficiency on SNB is its
large 20 MiB last level cache which retains a large part of
the X and Y vectors (example of negative k(m) discussed in
Section IV-B1). Note that we ran mat1 and mat2 matrices on
WSM, while to capture the cumulative effects of increased
nnzb/nb and B/F on GSPMV performance, we ran mat3 on
SNB.

Figure 2(a) shows the achieved (red solid curve) versus
predicted (green solid curve) relative time, r, for mat2 on
WSM, as m varies from 1 to 42. As described in Section IV-A
achieved performance is the maximum of compute and
bandwidth bounds. These two bounds are represented by
dotted and dashed curves in the figure. The results show
that our predicted relative time closely matches the trend in
achieved relative time. A similar match between predicted
and achieved relative times was observed for the other two
matrices (not shown here for brevity).

Figure 2(b) shows the relative time as a function of m for
all three test matrices. The red curve at the top represents the
relative time for mat1 on WSM. We see that for this matrix,
we can compute 8 vectors in 2 times the time of a single
vector. The is the smallest number of vectors, compared to
the other two matrices, when run on the same hardware. This
is not surprising because, as Table I shows, mat1 has very
small nnzb/nb. As a result, it is bandwidth-bound for any
number of vectors. The blue curve in the middle shows the
relative time for matrix mat2 on WSM. We see that for this

1Nontemporal stores have been suppressed in the STREAM measurements
and the bandwidth numbers reported have been scaled appropriately by 4/3
to account for the write-allocate transfer.

(a)

(b)

Fig. 2: Relative time, r, as a function of m. (a) correlation between
performance model and achieved performance for mat2 on WSM,
(b) r(m) for three matrices.

matrix, we can multiply as many as 12 vectors in 2 times
the time needed to multiply a single vector: 4 more vectors
compared to mat1. This is due to the fact that mat2 has
larger nnzb/nb, compared to mat1. Finally, the bottom green
curve shows relative time for matrix mat3 on SNB. Note
this matrix has the highest nnzb/nb, compared to the other
two matrices, mat1 and mat2. Moreover, SNB has higher
B/F , compared to WSM. As a result, we see that in this
configuration we can multiply as many as 16 vectors in 2
times the time needed to multiply one vector.
3) Multi-Node Results: We describe the performance of

GSPMV on multiple nodes using two matrices mat1 and
mat2. Figure 3 shows the relative time as m varies from 1
to 32 and number of the nodes is increased from 1 to 64.
As defined earlier, for a given number of nodes, the relative
time is the ratio of time required to multiply by m vectors to
the time required to multiply by a single vector on the same
number of nodes.

For small numbers of nodes, e. g., 4 and 16, the relative
time curves are somewhat higher but similar to the case for
a single node. The slight increase may be attributed to the

4242

TABLE III: GSPMV communication time fractions for mat1 matrix.
The communication time is significantly higher than the computa-
tion time for 32 and 64 nodes. This is not surprising given mat1’s
low nnzb/nb of only 5.6.

Number of vectors, m
1 8 32

32 nodes 88% 76% 52%
64 nodes 97% 90% 67%

cost of gathering remote vector values. For large numbers of
nodes, e. g., 64, the relative time curves are lower than for
the single node case. This is because communication costs
dominate for the case of large numbers of nodes (as shown in
Table III). Therefore, the additional compute required as the
number of vectors increases does not significantly affect the
overall time of GSPMV. In addition, the communication time
of GSPMV on large numbers of nodes is mainly consumed
by message-passing latency. For a given number of nodes,
the time increases very slowly with increasing numbers of
vectors. This leads to lower values of relative time for large
numbers of nodes.

(a) Matrix mat1

(b) Matrix mat2

Fig. 3: Relative time for GSPMV using matrix (a) mat1 and (b)
mat2 as a function of m for various number of nodes up to 64.

Fig. 4: Relative time for GSPMV as a function of number of nodes.

In summary, Figure 4 shows the trend in relative time as a
function of the number of nodes. As explained above, the rel-
ative time increases slightly and then decreases. These results
show preliminarily that the use of GSPMV is particularly
effective when using large numbers of nodes. Further exper-
iments, however, are needed to test other types of matrices
and other partitioning schemes, as well as potentially other
implementations.

V. STOKESIAN DYNAMICS RESULTS

In this section, we test the performance of the multiple
right-hand side algorithm (Algorithm 2) in a SD application.
Indeed, our motivation to improve the performance of SD led
to the approach proposed in this paper. Demonstrating the
algorithm in the context of an actual application is important
because we are then using a sequence of matrices with
an application-determined variation, rather than an artificial
sequence of matrices which may be parameterized to vary
faster or slower.

A. Simulation Setup

Our test system is a collection of 300,000 spheres of
various radii in a simulation box with periodic boundary
conditions. The spheres represent proteins in a distribution
of sizes that matches the distribution of sizes of proteins
in the cytoplasm of E. coli [1] (see Table IV). The volume
occupancy of molecules in the E. coli cytoplasm may be as
high as 40 percent. Volume occupancy significantly affects
the convergence behavior of the iterative algorithms used in
SD. Systems with high volume occupancies tend to have pairs
of particles which are extremely close to each other, resulting
in ill-conditioning of the resistance matrix. Since convergence
behavior is a critical factor in the performance of the MRHS
algorithm, we test a range of volume occupancies: 10%, 30%
and 50%.

The time step length for the simulations is 2 ps. This is
the maximum time step size that can be used while avoiding
particle overlaps in the simulation. Use of a smaller time
step decreases the overall simulation rate. For computing
the Brownian forces to a given accuracy, we have set the
maximum order of the Chebyshev polynomial to 30 (i.e., 30

4343

TABLE IV: Distribution of particle radii.

Particle radius (Å) Distribution (%)
115.24 2.43
85.23 3.16
66.49 6.55
49.16 0.97
45.43 0.49
43.06 3.64
42.48 2.91
39.16 2.67
36.76 8.01
35.94 8.01
31.71 10.92
27.77 25.97
25.75 8.25
24.01 9.95
21.42 6.07

sparse matrix-vector multiplies to compute the Chebyshev
polynomial of a matrix times a vector).

Our SD code was written in standard C99, and was
compiled with Intel ICC 11.0 using –O3 optimization. All
the experiments were carried out on a dual-socket quad-core
(Intel Xeon E5530) server with 12 GB RAM using OpenMP
or multicore BLAS parallelization. We do not currently have
a distributed memory SD simulation code. Such a code would
be very complex, needing new algorithms for parallelization
and load balancing which we are also developing. In any
case, the performance results for GSPMV on shared memory
and distributed systems, as was shown in Section IV, are
qualitatively similar, and thus we expect similar conclusions
for distributed memory machines.

B. Experimental Results

1) Accuracy of the Initial Guesses: As described in Sec-
tion III, the MRHS algorithm processes chunks of m time
steps together. At the beginning of every m time steps,
one augmented system with m right-hand sides is solved
to provide the solution for the first time step and initial
guesses for the following m−1 time steps. The effectiveness
of these initial guesses depend critically on how quickly the
resistance matrix R changes as the time steps progress. To
obtain some quantitative insight, Figure 5 shows the norm
of the difference between the solution and the initial guess
for several time steps. An important observation is that the
discrepancy between the initial guesses and the solutions
appear to increase as the square root of time. This result
is consistent with the fact that the particle configurations
due to Brownian motion also diverge as the square root of
time. This is a very positive result because it implies that
changes in the matrix R with respect to an instance at a given
point in time actually slow down over time. This suggests the
possibility that using a large number of right-hand sides may
be profitable in the MRHS algorithm.

It is, of course, more relevant to measure the actual number
of iterations required for convergence as the number of time
steps increases, while using initial guesses constructed using
the system at the first time step. The results are shown in
Figure 6, where indeed, the number of iterations appear to
grow slowly over time. In these tests, the conjugate gradient
(CG) method was used and the iterations were stopped when

Fig. 5: The relative error ∣∣(uk − u′k)∣∣2/∣∣uk∣∣2, where uk and u′k
are the solution and initial guess at time step k, respectively. The
system at the first time step is used for generating the initial
guesses. The plot shows a square-root-like behavior which mimics
the displacement of a Brownian system over time (the constant of
proportionality of relative time divided by the square root of the time
step number is approximately 0.006). This result is for a system with
3,000 particles and 50% volume occupancy.

Fig. 6: Number of iterations for convergence vs. time step, with
initial guesses. The volume occupancy is 50% for the 3 simulation
systems.

the residual norm became less than 10−6 times the norm of
the right-hand side.

Table V shows the number of iterations required for
convergence for particle systems with different volume oc-
cupancies. For higher volume fractions, the degradation in
performance is faster than for lower volume fractions. The
table also shows that the number of iterations is reduced by
30% to 40% when initial guesses are used.

2) Simulation Timings: We now turn to timings of the SD
simulation itself. Tables VII and VI show average timings
for one time step for SD using the MRHS algorithm and for
SD using the original algorithm without initial guesses. The
MRHS algorithm used 16 right-hand sides. The tables show
the compute time for major components of the simulations.
These are: computing Brownian forces with using Chebyshev
polynomial approximations using multiple vectors (Cheb
vectors, step 2 in Algorithm 2); solving the auxiliary system
for the initial guesses (Calc guesses, step 3 in Algorithm 2),

4444

TABLE V: Number of iterations with and without initial guesses.
The table shows the results for 300,000 particle systems with 10%,
30% and 50% volume occupancy.

Step with guesses without guesses
0.1 0.3 0.5 0.1 0.3 0.5

2 8 12 80 16 30 162
4 8 13 83 16 30 161
6 8 13 83 16 30 162
8 9 14 84 16 30 163

10 9 14 84 16 30 162
12 9 14 84 16 30 162
14 9 14 85 16 30 163
16 9 14 85 16 30 163
18 9 14 85 16 30 162
20 9 14 89 16 30 163
22 9 14 88 16 30 163
24 9 15 89 16 30 163

TABLE VI: Breakdown of timings (in seconds) for one time step
for simulations with varying problem sizes. The volume occupancy
of systems is 50%. Note that Chebyshev with multiple vectors and
solves with multiple right-hand sides are amortized over many time
steps and are not required in the original algorithm (marked by −).

MRHS algorithm Original algorithm
3000 30000 300000 3000 30000 300000

Cheb vectors 0.025 0.20 1.75 − − −
Calc guesses 0.076 0.71 9.66 − − −
Cheb single 0.005 0.08 0.84 0.005 0.08 0.84
1st solve 0.007 0.15 2.34 0.014 0.30 4.62
2nd solve 0.003 0.08 1.80 0.004 0.11 2.24
Average 0.021 0.36 5.46 0.023 0.49 7.70

which is only required in the MRHS algorithm; and the two
solves with single right-hand sides (1st solve and 2nd solve,
steps 10 and 12 in Algorithm 2); as well as Chebyshev with
single vector (Cheb single, step 9 in Algorithm 2), which are
used in both the MRHS algorithm and the original algorithm.
Note that in both algorithms, in each timestep, the solution
of the first solve is used as the initial guess for the second
solve.

The results show that, for most cases, the operations for
Chebyshev with multiple vectors and the solves with multiple
right-hand sides are very efficient. The operations with a
block of 16 vectors, for example, are efficient because they
are implemented with GSPMV. On the other hand, very large
m can be used due to the slow degradation of convergence
using these initial guesses. The average simulation time per
time step is presented in the last row of Table VI and
Table VII, which show that the simulations with the MRHS
algorithm are 10% to 30% faster than those with the original
algorithm.
3) Analytic Model and Discussions: An important ques-

tion for the MRHS algorithm is how many right-hand sides
should be used to minimize the average time for one sim-
ulation step. It can be shown that the best performance
is achieved roughly when GSPMV switches from being
bandwidth-bound to being compute-bound. The details are
as follows.

As seen in Figure 6 and Table V, the number of iterations
increases slowly over time. We assume it is constant in the
following analysis. Let N denote the number of iterations for
the 1st solve without an initial guess. Let N1 and N2 denote
that number for the 1st solve and the 2nd solve respectively,
both with an initial guess. Typically, N > N1 > N2.

TABLE VII: Breakdown of timings (in seconds) for one time step
for simulations with varying volume occupancy. The results are for
systems with 300,000 particles. Note that Chebyshev with multiple
vectors and solves with multiple right-hand sides are amortized
over many time steps and are not required in the original algorithm
(marked by −).

MRHS algorithm Original algorithm
0.1 0.3 0.5 0.1 0.3 0.5

Cheb vectors 1.09 1.34 1.75 − − −
Calc guesses 0.58 1.47 9.66 − − −
Cheb single 0.40 0.56 0.84 0.40 0.56 0.84
1st solve 0.12 0.25 2.34 0.22 0.61 4.62
2nd solve 0.08 0.15 1.80 0.08 0.15 2.24
Average 0.66 1.07 5.46 0.70 1.32 7.70

Supposing m right-hand sides are used, the average time
for one simulation step with the MRHS algorithm can be
expressed as

Tmrhs(m) =
1
m

[
N T (m)︸ ︷︷ ︸

Calc guesses

+ Cmax T (m)︸ ︷︷ ︸
Cheb vectors

+ (m−1) N1 T (1)︸ ︷︷ ︸
1st solve with an initial guess

+m N2 T (1)︸ ︷︷ ︸
2nd solve

+(m−1)Cmax T (1)︸ ︷︷ ︸
Cheb single

]
(9)

where T (m) is the time for GSPMV with m vectors, T (1) is
the time for SPMV (with a single vector), and Cmax is the
maximum order of the Chebyshev polynomial. The purpose
of our analysis is to find the value of m which minimizes
Tmrhs. We denote this value by moptimal .

Recall the analysis in Section IV, where the performance
of GSPMV is modeled as T (m) = max(Tbw(m), Tcomp(m)).
For small values of m, GSPMV is bandwidth-bound, where
T (m) is equal to Tbw(m). As m increases, there are two cases:
if k(m) is very large or (nnzb/nb) is small, the bandwidth
bound will continue to dominate, and T (m) is still determined
by Tbw(m); otherwise, the compute bound starts to dominate,
and at some value of m (denoted by ms), GSPMV switches
from being bandwidth-bound to being compute-bound. In this
case, T (m) is equal to Tcomp(m).

In our SD simulations, most systems are in the second
case, thus T (1) and T (m) can be expressed as

T (1) =
(
nb (3+ k(1)) sx+4nb+nnzb (4+ sa)

)
/B

T (m) =

⎧⎨
⎩

(
m nb (3+ k(m)) sx+4nb

+nnzb (4+ sa)
)
/B if m< ms

fa m nnzb/F if m≥ ms

(10)

Expanding T (1) and T (m) in equation (9), when m< ms,
Tmrhs can be expressed as a function of k(m) and m

Tmrhs(m< ms) = (3+ k(m))P+
1
m

Q+R (11)

4545

TABLE VIII: ms and moptimal for different systems.

Problem size Volume occupancy ms moptimal
3,000 50% 5 4

30,000 50% 12 10
300,000 10% 15 12
300,000 30% 13 10
300,000 50% 12 10

where P, Q and R are all constants,

P=
(N+N2 +Cmax) sx nb

B

Q=
N−N1

B

[
(4 nb+nnzb (4+ sa))

− (N1 +N2 +Cmax) (3+ k(1)) sx nb
]

R=
N1 +N2 +Cmax

B

[
nb (3+ k(1)) sx+4nb+nnzb (4+ sa)

]
Typically in SD, nnzb is large, and hence Q> 0. When k(m)
is small and changes very slowly with m, which is our case
as mentioned earlier, the expression (11) is a decreasing
function of m.

On the other hand, when m≥ ms,

Tmrhs(m≥ ms) = S+W − S
m

(12)

where

S= (N1 +N2 +Cmax) [nb (3+ k(1)) sx+4nb+nnzb (4+ sa)]

W =
fa nnzb (N+N2 +Cmax)

F
which is an increasing function of m (F is almost constant
when GSPMV is compute-bound).

Putting these expressions together, we conclude that the
best simulation performance is achieved when m is near ms,
i.e., when GSPMV switches from being bandwidth-bound to
being compute-bound.

We evaluate our analysis by running simulations on var-
ious test problems. For each simulation, experiments were
performed with different numbers of right-hand sides to
determine the values of moptimal . GSPMV was also run on
these test problems to determine ms.

Figure 7 displays the achieved (red solid curve) versus
predicted (green solid curve) average simulation time per
time step (Tmrhs) for a system with 300,000 particles and
50% volume occupancy. The predicted simulation time is
the maximum of the bandwidth-bound and compute-bound
estimates of Tmrhs. As seen in the figure, the achieved Tmrhs
first decreases as m increases and starts to increase when m
is equal to moptimal , which matches the trend of the predicted
simulation time. Table VIII compares moptimal and ms for 5
different simulations, showing that they are indeed very close.
The slight differences can be explained by the fact that N1 is
actually increasing in our simulations, although very slowly.
These results corroborate our analysis.

Finally, we show some results that investigate the speedup
of the MRHS algorithm as we increase the number of
threads in a shared-memory computation. Figure 8(a) shows
the computation time of GSPMV for different numbers of
threads. For 8 threads, the ratio B/F is smaller than for 2 or
4 threads. As a result, the speedup with 8 threads shown in

Fig. 7: Predicted and achieved average simulation time per time
step vs. m. The result is for a system with 300,000 particles and
50% volume occupancy. Equations (11) and (12) were used to
calculate the compute-bound and bandwidth-bound estimates with
the following parameters: N = 162, N1 = 80, N2 = 63, Cmax = 30,
B = 19.4GB/s (STREAM bandwidth). F and k(m) are measured
values.

Figure 8(b) is larger than that with fewer threads. This result
demonstrates the potential of using the MRHS algorithm with
large manycore nodes.

(a) (b)

Fig. 8: (a) Performance of GSPMV vs. number of threads. (b)
Speedup over the original algorithm vs. number of threads. The
results are for a system with 300,000 particles and 50% volume
occupancy.

VI. CONCLUSION

In this paper, we presented an algorithm for improving
the performance of Stokesian dynamics simulations. We
redesigned the existing algorithm which used SPMV with
single vectors to instead use the more efficient GSPMV.
The main idea of the new MRHS algorithm is to solve an
auxiliary system with multiple right-hand sides; the solution
to this auxiliary system helps solve the original systems by
providing good initial guesses. The approach of the algorithm
can be extended to other types of dynamical simulations.

We presented a performance model of GSPMV and used
it to explain GSPMV performance. We observe that for
matrices with very small numbers of non-zeros per row,
GSPMV performance is always bandwidth-bound, while for
matrices with larger numbers of non-zeros per row, typical
for SD and many other applications, GSPMV switches from
bandwidth-bound to compute-bound behavior with increasing

4646

numbers of vectors. In either case, it is typical to be able to
multiply a sparse matrix by 8 to 16 vectors simultaneously in
only twice the time required to multiply by a single vector.
Similar results hold for distributed memory computations. We
thus “update” the earlier result reported in [16].

We demonstrated how to exploit multiple right-hand sides
in SD simulations. By using the MRHS algorithm, we
measured a 30 percent speedup in performance. In addition,
we used a simple model to show that the best simulation per-
formance is achieved near the point where GSPMV switches
from being bandwidth-bound to being compute-bound.

The efficiency of the MRHS algorithm depends on proper-
ties of the system being simulated and also characteristics of
the hardware. With the ever-increasing gap between DRAM
and processor performance, we expect that the effort of
exploiting multiple right-hand sides will become even more
profitable in the future.

ACKNOWLEDGMENTS

The authors would like to thank Richard Vuduc and
Tadashi Ando for helpful discussions. This work was partially
supported by a grant from Intel Corporation.

REFERENCES

[1] T. Ando and J. Skolnick, “Crowding and hydrodynamic interactions
likely dominate in vivo macromolecular motion,” Proceedings of the
National Academy of Sciences, vol. 107, no. 43, pp. 18 457–18 462,
2010.

[2] A. J. Banchio and J. F. Brady, “Accelerated Stokesian dynamics:
Brownian motion,” The Journal of Chemical Physics, vol. 118, no. 22,
pp. 10 323–10 332, 2003.

[3] N. Bell and M. Garland, “Implementing sparse matrix-vector multi-
plication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, ser. SC ’09, 2009, pp. 18:1–18:11.

[4] G. Bossis and J. F. Brady, “Dynamic simulation of sheared suspensions.
I. General method,” The Journal of Chemical Physics, vol. 80, no. 10,
pp. 5141–5154, 1984.

[5] J. F. Brady and G. Bossis, “Stokesian Dynamics,” Annual Review of
Fluid Mechanics, vol. 20, no. 1, pp. 111–157, 1988.

[6] A. Buluc and J. Gilbert, “Challenges and Advances in Parallel Sparse
Matrix-Matrix Multiplication,” in Proc. ICPP, 2008.

[7] A. Buluc, S. W. Williams, L. Oliker, and J. Demmel, “Reduced-
bandwidth multithreaded algorithms for sparse-matrix vector multipli-
cation,” in Proc. IPDPS 2011, 2011.

[8] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks,” in Proceedings of the twenty-first
annual symposium on Parallelism in algorithms and architectures, ser.
SPAA ’09. New York, NY, USA: ACM, 2009, pp. 233–244.

[9] B. Cichocki, M. L. E. Jezewska, and E. Wajnryb, “Lubrication
corrections for three-particle contribution to short-time self-diffusion
coefficients in colloidal dispersions,” The Journal of Chemical Physics,
vol. 111, no. 7, pp. 3265–3273, 1999.

[10] L. Durlofsky, J. F. Brady, and G. Bossis, “Dynamic simulation of
hydrodynamically interacting particles,” Journal of Fluid Mechanics,
vol. 180, pp. 21–49, 1987.

[11] D. L. Ermak and J. A. McCammon, “Brownian dynamics with hy-
drodynamic interactions,” The Journal of Chemical Physics, vol. 69,
no. 4, pp. 1352–1360, 1978.

[12] M. Fixman, “Simulation of polymer dynamics. I. General theory,” The
Journal of Chemical Physics, vol. 69, no. 4, pp. 1527–1537, 1978.

[13] ——, “Construction of Langevin forces in the simulation of hydro-
dynamic interaction,” Macromolecules, vol. 19, no. 4, pp. 1204–1207,
1986.

[14] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” J. Supercomput., vol. 50, pp. 36–77, October
2009.

[15] P. S. Grassia, E. J. Hinch, and L. C. Nitsche, “Computer simulations of
Brownian motion of complex systems,” Journal of Fluid Mechanics,
vol. 282, pp. 373–403, 1995.

[16] W. Gropp, D. Kaushik, D. Keyes, and B. Smith, “Toward realistic
performance bounds for implicit CFD codes,” in Proceedings of
Parallel CFD’99, A. Ecer, Ed. Elsevier, 1999.

[17] E. K. Guckel, “Large scale simulation of particulate systems using
the PME method,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 1999.

[18] E.-J. Im, “Optimizing the performance of sparse matrix-vector multi-
plication,” Ph.D. dissertation, University of California, Berkeley, Jun
2000.

[19] “Intel Advanced Vector Extensions Programming Reference,” 2008,
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-
AVX-Programming-Reference-31943302.pdf.

[20] “Intel SSE4 programming reference,” 2007,
http://www.intel.com/design/processor/manuals/253667.pdf.

[21] D. J. Jeffrey and Y. Onishi, “Calculation of the resistance and mobility
functions for two unequal rigid spheres in low-Reynolds-number flow,”
Journal of Fluid Mechanics, vol. 139, pp. 261–290, 1984.

[22] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Comput-
ing, vol. 20, pp. 359–392, 1999.

[23] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected
Applications. Boston: Butterworth-Henemann, June 1991.

[24] M. Krotkiewski and M. Dabrowski, “Parallel symmetric sparse matrix-
vector product on scalar multi-core cpus,” Parallel Comput., vol. 36,
pp. 181–198, April 2010.

[25] B. C. Lee, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “Perfor-
mance models for evaluation and automatic tuning of symmetric sparse
matrix-vector multiply,” in Proceedings of the 2004 International
Conference on Parallel Processing, ser. ICPP ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 169–176.

[26] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “When
cache blocking of sparse matrix vector multiply works and why,” Appl.
Algebra Eng., Commun. Comput., vol. 18, pp. 297–311, May 2007.

[27] D. P. O’Leary, “The block conjugate gradient algorithm and related
methods,” Linear Algebra and Its Applications, vol. 29, pp. 293–322,
1980.

[28] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti,
“Recycling Krylov Subspaces for Sequences of Linear Systems,” SIAM
J. Sci. Comput., vol. 28, pp. 1651–1674, Sept. 2006.

[29] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proceedings of the 1999 ACM/IEEE confer-
ence on Supercomputing (CDROM), ser. Supercomputing ’99. New
York, NY, USA: ACM, 1999.

[30] J. Rotne and S. Prager, “Variational Treatment of Hydrodynamic
Interaction in Polymers,” Journal of Chemical Physics, vol. 50, no. 11,
pp. 4831–4837, June 1969.

[31] D. Saintillan, E. Darve, and E. S. G. Shaqfeh, “A smooth particle-mesh
Ewald algorithm for Stokes suspension simulations: The sedimentation
of fibers,” Physics of Fluids, vol. 17, no. 3, p. 033301, 2005.

[32] G. Schubert, G. Hager, H. Fehske, and G. Wellein, “Parallel Sparse
Matrix-Vector Multiplication as a Test Case for Hybrid MPI+OpenMP
Programming,” in IPDPS Workshops, 2011.

[33] A. Sierou and J. F. Brady, “Accelerated Stokesian Dynamics simula-
tions,” Journal of Fluid Mechanics, vol. 448, pp. 115–146, 2001.

[34] F. E. Torres and J. R. Gilbert, “Large-Scale Stokesian Dynamics
Simulations of Non-Brownian Suspensions,” Xerox Research Centre
of Canada, Tech. Rep. C9600004, 1996.

[35] M. N. Viera, “Large scale simulation of Brownian suspensions,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 2002.

[36] R. W. Vuduc and H.-J. Moon, “Fast sparse matrix-vector multiplication
by exploiting variable block structure,” in Proc. High-Performance
Computing and Communications Conf. (HPCC), vol. LNCS 3726.
Sorrento, Italy: Springer, September 2005, pp. 807–816.

[37] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,”
Ph.D. dissertation, University of California, Berkeley, 2003.

[38] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, ser. SC ’07. New York, NY, USA: ACM, 2007,
pp. 38:1–38:12.

[39] H. Yamakawa, “Transport Properties of Polymer Chains in Dilute
Solution: Hydrodynamic Interaction,” Journal of Chemical Physics,
vol. 53, no. 1, pp. 436–443, July 1970.

4747

