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Abstract. This paper presents a GPU implementation of an asynchro-
nous iterative algorithm for computing incomplete factorizations. Asyn-
chronous algorithms, with their ability to tolerate memory latency, form
an important class of algorithms for modern computer architectures.
Our GPU implementation considers several non-traditional techniques
that can be important for asynchronous algorithms to optimize conver-
gence and data locality. These techniques include controlling the order
in which variables are updated by controlling the order of execution of
thread blocks, taking advantage of cache reuse between thread blocks,
and managing the amount of parallelism to control the convergence of
the algorithm.

1 Introduction

Asynchronous algorithms, with their ability to tolerate memory latency, form an
important class of algorithms for modern computer architectures. In this paper,
we develop a GPU implementation for a recently proposed asynchronous iterative
incomplete factorization algorithm [4]. In particular, we consider the following
techniques to enhance data locality and convergence that may be considered non-
traditional as they are not strictly allowed in standard GPU implementations.

— In an asynchronous iterative method, variables are updated using values of
other variables that are currently available, rather than waiting for the most
updated values of these other variables (this will be made more precise later).
The rate of convergence of the method may depend on the order in which
variables are updated. In traditional GPU computations, there is no defined
ordering in which thread blocks are executed, making it impossible to control
the update order. For the NVIDIA K40c GPU, however, we were able to
determine the order in which thread blocks are executed, thereby allowing us
to control the order of the updates of the variables.

— Efficient GPU performance requires that GPU thread blocks reuse data
brought into shared memory. Shared memory must be configured as cache
when the working set is large, otherwise few thread blocks can run in parallel.
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However, without control over the order in which thread blocks are executed,
temporal locality cannot be properly exploited. Since we are able to control
the execution order of thread blocks on the K40c GPU, we can assure that
data in cache is efficiently used. As mentioned, traditionally this order is not
known.

— In GPU computing, the amount of parallelism is typically not controlled;
work is scheduled onto all multiprocessors. Using less parallelism and updating
fewer variables simultaneously in order to use more recently updated variables
may lead to faster convergence than using more parallelism. We investigate
this tradeoff by using the unconventional approach of controlling the occu-
pancy, or the fraction of the maximum number of threads executing simulta-
neously per multiprocessor.

There has been some past work on asynchronous algorithms on GPUs for lin-
ear iteration methods. See [1] for a comprehensive study on block-asynchronous
Jacobi iterations. Venkatasubramanian et al. [18] solve a 2D Poisson equation on
a structured grid using asynchronous stencil operations on a hybrid CPU/GPU
system. Contassot-Vivier et al. [5] investigated the impact of asynchronism when
solving an advection-diffusion problem with a GPU-accelerated PDE solver. The
work in this paper on investigating data locality and update order for asynchro-
nous algorithms on GPUs is new.

This paper is organized as follows. In Sect.2, we provide background on
incomplete factorizations and the recently proposed iterative ILU algorithm.
Then in Sect. 3, we discuss the implementation of the algorithm on GPUs and
consider how convergence and data locality are impacted by the order in which
computations are performed. Experimental tests with this implementation are
reported in Sect. 4, and we conclude in Sect. 5.

2 TIterative ILU Algorithm

Preconditioners are a critical part of solving large sparse linear systems via
iterative methods. A popular class of preconditioners is incomplete LU (ILU)
factorizations. These preconditioners are generally computed using a Gaussian
elimination process where small non-diagonal elements are dropped in some way.
The problem-independence of ILU preconditioners makes this class attractive for
a wide range of problems, particularly for optimization problems.

An ILU factorization is the approximate factorization of a nonsingular sparse
matrix A into the product of a sparse lower triangular matrix L and a sparse
upper triangular matrix U (A ~ LU), where nonzeros or fill-in are only permit-
ted in specified locations, (i, ) of L and U. Define the sparsity pattern S to be
the set of matrix locations where nonzeros are allowed, i.e., (i,7) € S implies
that entry /;; in matrix L is permitted to be nonzero (¢ > j), or that entry u;;
in matrix U is permitted to be nonzero (i < j). The set S always includes the
diagonal of the L and U factors so that these factors are nonsingular. The basic
algorithm, called ILU(0), approximates the LU factorization by allowing only
nonzero elements in L and U that are nonzero in A. To enhance the accuracy of
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the preconditioner, one can allow for additional fill-in in the incomplete factors.
The choice of S can be made either before the factorization, or may be made
dynamically, during elimination. The classical factorization algorithm, based on
Gaussian elimination, is inherently sequential, but some parallelism does exist, as
it is usually possible to find multiple rows that can be eliminated in parallel, i.e.,
those that only depend on rows that already have been eliminated; see [17] for an
overview. Parallelism is usually reduced when more fill-in is allowed. Multicolor-
ing and domain decomposition reordering can be used to enhance the available
parallelism [2,7,11,16]. However, these approaches generally have limited scala-
bility, as they are unable to exploit the computing performance of thousands of
light-weight cores that we expect in future HPC architectures [3].

For large amounts of parallelism, a new algorithm for computing ILU factor-
izations was recently proposed [4], and is the focus of this paper. This algorithm
uses the property of ILU factorizations that

(LU)ij = aij,  (i,§) €S (1)

where (LU);; denotes the (¢, j) entry of the product of the computed factors L
and U, and a;; is the corresponding entry in matrix A. For (7, j) € S, the iterative
ILU algorithm computes the unknowns l;; (for ¢ > j) and u,; (for i < j) using
the bilinear constraints

min(i,j)

> liwugj =ay, (i,5) €S (2)

k=1

which corresponds to enforcing the property (1). We use the normalization that
the diagonal of the lower triangular L is fixed to one. Thus we need to solve a
system of |S| equations in |S| unknowns.

To solve this system, Ref. [4] proposed writing

lij (am lek:uk]> y 1> ] = Q55 — lekuk}]7 1< j (3)

which has the form = G(x), where z is a vector containing the unknowns [;;
and u;; for (7,j) € S. The equations are then solved by using the fixed-point
iteration z(P+t1) = G(2®), for p = 0,1, .. ., starting with some initial 2(*). See [4]
for details on the convergence of this method. In brief, it can be proven that
the iteration is locally convergent for standard (synchronous) and asynchronous
iterations [9].

The iterative ILU algorithm, which solves the Eq. (2), is given in Algorithm 1.
The actual implementation that served as the basis for this study can be found
in the MAGMA open-source software library [10]. Each fixed-point iteration
updating all the unknowns is called a “sweep.” In this algorithm, an important
question is how to choose the initial values of the [;; and u,; variables (line 1).
In many applications, a natural initial guess is available; for example, in time-
dependent problems, the L and U computed at the previous time step may be an
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excellent initial guess for the current time step. In other cases, there may be no
natural initial guess. In [4], the matrix A is symmetrically scaled to have a unit
diagonal, and the initial guess for L and U are then chosen to be the lower and
upper parts of A, respectively. We also use this initial guess for the experiments
in this paper.

Algorithm 1. Fine-Grained Parallel Incomplete Factorization

1 Set unknowns /;; and u;; to initial values

2 for sweep = 1,2,... until convergence do
3 parallel for (i,5) € S do

4 if i > j then

5 lij = (aij - lz‘kukj) Juis
6 else

7 ij = Qij = D p_y likuk;

8 end

9 end

10 end

We conclude this section by pointing out several features of this algorithm
that make it different than existing methods, and relevant to parallel computing
on emerging architectures:

— The algorithm is fine-grained, allowing for scaling to very large core counts,
limited only by the number of nonzero elements in the factorization.

— The algorithm does not need to use reordering to enhance parallelism, and
thus reorderings that enhance the accuracy of the incomplete factorization
can be used.

— The algorithm can utilize an initial guess for the ILU factorization, which
cannot be exploited by conventional ILU factorization algorithms.

— The bilinear equations do not need to be solved very accurately since the ILU
factorization itself is only an approximation.

3 GPU Implementation

3.1 General Parallelization Strategy

When multiple processors are available, an iteration based on zP*1 = G(z®))
may be parallelized by assigning each processor to compute a subset of the
components of z(PT1) using values of (), such that each component is updated
by exactly one processor. This is called a synchronous iteration, as all values of
2 must generally be computed before the computation of z(®+1) may start. In
contrast, an asynchronous iteration is one where the computation of components
of z may use the latest components of x that are available. Convergence may
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be faster than the synchronous iteration because more updated values are used
(e.g., Gauss-Seidel type of iteration compared to Jacobi type) or may be slower
than synchronous iteration in the case that some components are rarely updated.
In general, there may be a tradeoff between parallelism and convergence: with
less parallel resources, the asynchronous iterations tend to use “fresher” data
when computing updates; with more parallel resources, the iterations tend to
use older data and thus converge more slowly.

For GPU computing, subsets of the components of = are assigned to GPU
thread blocks. Each thread block updates the components of x assigned to it.
The thread blocks are scheduled onto GPU multiprocessors. Within each thread
block, the components of x are updated simultaneously (in Jacobi-like fashion).
As there are generally more thread blocks than multiprocessors, some thread
blocks are processed before others, and thus update their components of x before
others. Thus some thread blocks within one fixed-point sweep may use newer
data than others (in Gauss-Seidel-like fashion). However, there is no guarantee
of the order in which thread blocks are scheduled onto multiprocessors. Overall,
the iteration may be considered to be “block-asynchronous” [1].

3.2 Component Update Order

The convergence rate of an asynchronous fixed-point iteration for the system of
equations = G(z) may depend on the order in which the components of z are
updated, particularly if some equations have more dependencies on components
of x than others. Specifically, for the computations (3) that are performed in
the new ILU formulation, there is a tree of dependencies between the variables
(components) being updated. Thus convergence will be faster if the asynchronous
updates of the variables are ordered roughly following these dependencies. Such
orderings are called “Gaussian elimination orderings” in [4].

On GPUs, each thread block is responsible for updating a given set of vari-
ables. Unfortunately, there is no guarantee of thread block execution order for
current generation GPU programs. Using a simple kernel that records the order
in which thread blocks are executed, we observed on the NVIDIA K40c GPU that
block indices are always assigned in order of execution of the thread blocks. (On
some earlier GPU models, we observed that the order of execution appears ran-
dom.) Using this result, we can explicitly set a component update order that will
be approximately followed by the asynchronous iterations (approximate because
the iterations are asynchronous). In Sect. 4, we will test the effect of component
update order on convergence rate.

3.3 Data Locality and Cache Reuse

GPU access of data in global memory (off-chip DRAM) is expensive, and the
performance of any GPU code depends on how efficiently memory is reused after
it has been brought into cache or shared memory. In this section, we consider
how to partition the computational work into thread blocks in order to maximize
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data reuse. We note that such partitionings also affect component update order
and thus convergence.

Each thread is associated with an element (7, j) € S. Each thread thus com-
putes either [;; or u;; in Eq. (3). This computation requires reading row ¢ of
L and column j of U. This row and column may be reused to compute other
elements in S. Thus we have the problem of partitioning the (i, j) € S among a
given number of thread blocks such that threads in the thread block require, in
aggregate, as few rows of L or columns of U as possible. (In the above, only part
of the row or column is needed by each thread, due to the upper limit on the
summations in (3), but this will only affect our analysis by a constant factor.)

Another way to view this problem is to maximize the number of times each
row of L and each column of U is reused by a thread block. We define the reuse
factor of thread block [ as

Fronsoll) 1= (|Sl| N ISzI>

2\ my ny

where |S;| is the number of elements of S assigned to thread block I, and where
my and n; are the number of rows of L and columns of U, respectively, required
by thread block [. The first term in the brackets is the average number of times
that the rows are reused, while the second is the average number of times that the
columns are reused. If the elements of S are assigned arbitrarily to the thread
blocks, then the reuse factor is 1in the worst case. For simplicity, we assume
below that m; = n;, since m; and n; approximately equal will give higher reuse
factors than m; and n; being very different.

We first consider a matrix corresponding to a 2D mesh problem using a
5-point stencil. Figure 1 (middle) shows the sparsity pattern of the matrix corre-
sponding to a 6 x 6 mesh (left). The mesh has been partitioned into 9 subdomains
of size 2 x 2, and the rows and columns of the matrix are ordered such that the
rows and columns corresponding to the same subdomain are ordered together.
Horizontal and vertical lines are used to separate the rows and columns corre-
sponding to subdomains.

Now, assuming the ILU(0) case, each nonzero in the matrix corresponds to an
element of S to assigned to a thread block. If we use the partitioning of the mesh
into subdomains just described, then thread block [ is assigned the nonzeros a;;
corresponding to edges (7, j) in the mesh within and emanating from subdomain
l. For one subdomain, these correspond to the nonzeros marked as red squares
in Fig. 1 (middle). For a partitioning of the mesh into subdomains of size b x b,
each thread block is assigned 5b2 edges (b% nodes in the subdomain and 5 edges
per node). A typical thread block (corresponding to an interior subdomain) also
requires (b + 1)2 — 1 rows of L and the same number of columns of U to be

read. Thus the reuse factor is freuse(l) := % in this case. The limit of the
maximum size of the reuse factor is 5, for large values of b. Note that b x b is a
blocking of the mesh, while m; x m; used above is a blocking of the matrix.

In general, if a regular mesh is partitioned into subdomains of size b x b and

an s-point stencil is used, then there are s-b? matrix entries corresponding to the
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Fig.1. A 6 x 6 mesh using a 5-point stencil partitioned into 9 subdomains of size
2 x 2 (left). The corresponding matrix (middle) orders rows and columns subdomain
by subdomain. The bold edges in the mesh correspond to the nonzeros in the matrix
marked with squares, and identify the elements assigned to one of the thread blocks.
The right side shows the partitioning of the matrix after applying reverse Cuthill-
McKee (RCM) and using 12 partitions.

subdomain, and the number of rows needed by the subdomain is b (highest order
term). The reuse factor therefore approaches s for large block sizes, showing that
a larger stencil gives rise to a larger reuse factor.

In the 3D case, if a regular mesh is partitioned into subdomains of size bxbxb
and an s-point stencil is used, then there are s - b3 matrix entries corresponding
to the subdomain, and the number of rows needed by the subdomain is b* (high-
est order term). The reuse factor again approaches s for large block sizes. As
apparent from this analysis, 3D problems do not inherently have a larger reuse
factor than 2D problems, except for generally using larger stencils. We note that
in the sparse case, the maximum reuse factors are bounded independent of the
partitioning, whereas for the dense case, the reuse factors increase with the size
of the partitioning, may however be limited by the size of the shared memory.

3.4 Cache Reuse Between Thread Blocks

The working set of rows of L and columns of U needed by each thread block
can be large, especially for large values of the blocking parameter b. However,
if this working set can be shared between thread blocks by using the shared
L2 cache [13], the communication volume from global memory can be reduced,
compared to the case where each thread block uses its own scratchpad memory.
To this end, in this section, we explore the idea of sharing the cache between
thread blocks, i.e., one thread block using data brought into the L2 cache by
another thread block. This idea is non-traditional because GPU programs gen-
erally assume that thread blocks that are not communicating through global
memory are completely independent. This is because there is no guarantee of
the order in which thread blocks are executed.

By using our previous observation in Sect. 3.2 that thread blocks are assigned
indices in order of execution, we were able to verify through a simple performance
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test that thread blocks can indeed reuse data brought into the multiprocessor
cache by an earlier thread block. Thus we can assign work to thread blocks such
that reuse of cache between thread blocks is high. The right side of Fig. 1 shows
a simple example for the matrix corresponding to the 6 x 6 mesh on the left. The
matrix has been reordered to reduce its bandwidth using reverse Cuthill-McKee
(RCM) ordering. Horizontal lines show a partitioning of the elements of S, and
assume that the partitions are assigned to thread blocks such that the partitions
are executed from top to bottom. From the figure, it can be observed that each
partition requires different rows of L; these rows are reused within a thread block
but not across thread blocks. We also observe that partitions numbered nearby
use a very similar set of columns of U. These columns of U may be shared across
thread blocks using cache. Experiments are reported in Sect. 4 to test the cache
behavior of this partitioning of S and this ordering of the thread blocks.

3.5 Parallelism Vs Convergence

The convergence rate of an asynchronous iteration depends on the amount of
parallelism used in the iteration, with more parallelism usually resulting in a
reduced convergence rate. We aim to control the amount of parallelism in order
to investigate the tradeoff between parallelism and convergence. NVIDIA pro-
vides no interface for direct manipulation of parallelism; thus we will control the
amount of parallelism indirectly.

To quantify the parallelism of a code running on GPUs, we may use the
concept of “occupancy.” While occupancy is defined as the ratio between the
number of threads (grouped in thread blocks) that are scheduled in parallel
and the hardware-imposed thread limit (threads per streaming multiprocessor,
tpsm), certain algorithms may benefit from using less than the maximum occu-
pancy [19]. A metric for quantifying the actual parallelism is the number of
executed instructions per cycle (IPC), which reflects not only the number of
active threads, but also stalls due to communication bottlenecks.

To indirectly control the number of thread blocks that are simultaneously
scheduled onto a multiprocessor, note that the available shared memory, reg-
isters, the number of individual threads and thread blocks are limited for each
streaming multiprocessor, which bounds the total number of thread blocks being
executed in parallel. Thus we can artificially reduce parallelism by explicitly allo-
cating scratchpad memory that we do not use in the kernel execution.

The multiprocessor’s local memory is partitioned between scratchpad mem-
ory and L1 cache. We have configured shared memory to maximize cache and
minimize scratchpad memory. The minimum amount of shared memory that can
be configured is 16,384 bytes per multiprocessor on the K40X architecture [13].
In compute capability 3.5, the value of tpsm is 2048. Therefore, requesting 1,024
bytes or less of scratchpad memory for each thread block consisting of 128 threads
results in 16 thread blocks running in parallel and 100 % multiprocessor occu-
pancy, while doubling the allocated scratchpad memory reduces the number of
active blocks to 8, and decreases the occupancy to 50 %. In Sect. 4.6, we use this
technique to control parallelism and observe its affect on the convergence rate
and performance of the asynchronous iterations.
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3.6 Implementation Issues

Our CUDA kernel is designed to perform one sweep of the iterative ILU algo-
rithm (Algorithm 1) for computing the factorization A ~ LU. Additional sweeps
are performed by launching this kernel multiple times. The input to the kernel
are arrays corresponding to matrices A, L, and U. The arrays for L and U,
stored in CSR and CSC format, respectively, contain an initial guess on input
and the approximate factorizations on output.

The matrix A, stored in coordinate (COO) format, can be regarded as a
“task list.” The thread with global thread index tid is assigned to update the
variable corresponding to element tid in the COO array. Effectively, thread
block 0 is assigned the first blockDim elements in the COO array, thread block
1 is assigned the next blockDim elements, etc., (where blockDim is the number
of threads in a thread block). By changing the order in which the elements are
stored in the COQ array, the order of the updates can be controlled. Note that
changing this order does not change the ordering of the rows and columns of the
matrix A.

Reads of the arrays corresponding to matrix A are coalesced. However, each
thread in general reads different rows of L and columns of U that are not coa-
lesced, so that we rely on this data being read into cache and reused as much as
possible, as described above.

Significant thread divergence will occur if the partial sum (lines 5 and 7 of
Algorithm 1) computed by a thread contains a different number of addends than
for other threads in the same warp. Thus, to minimize the cost of divergence,
the partial sums for the updates handled by threads in the same warp should
be of similar length. This, however, conflicts with optimizing component assign-
ment for cache reuse, and we experimentally identified that data locality is more
important.

To end this section, we summarize the parameters that affect the convergence
behavior and data locality of the kernel.

— Task list ordering: the ordering of the elements of S in the task list. Except
when specified otherwise, the default task list ordering is as follows: the ele-
ments of S are ordered such that if the elements were placed in a matrix, the
elements are ordered row by row, from left to right within a row. This is a
Gaussian elimination ordering. The order in which variables are updated can
be changed by changing the task list ordering.

— Thread block order: the order of execution of the thread blocks. Except when
specified otherwise, the thread blocks are ordered by increasing thread block
index, i.e., the first thread block is assigned the first chunk of the task list, etc.
We can also order the thread blocks in reverse order or in a random, arbitrary
order.

— Matrix ordering: the ordering of the rows and columns of the matrix. Chang-
ing the matrix ordering changes the problem. We use the symmetric RCM
ordering of the matrix, except for the finite difference discretizations of the
Laplace problem 12D and L3D, for which the natural ordering can be used.
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The RCM and natural orderings are good choices for computing accurate
incomplete factorization preconditioners [8].

4 Experimental Results

4.1 Experimental Setup

Our experimental setup is an NVIDIA Tesla K40c GPU (Rpeak 1,682 GFLOP/s)
with a two socket Intel Xeon E5-2670 (Sandy Bridge) host. The iterative incom-
plete factorization GPU kernels were implemented in CUDA version 6.0 [15] and
use a default thread block size of 128. The conjugate gradient linear solver and
the iterative incomplete factorization routine are taken from the MAGMA open-
source software library [10]. The sparse triangular solve routines are from the
NVIDIA cuSPARSE library [14]. The results below used double precision com-
putations for the iterative ILU code; timings were 20—40 percent slower than for
single precision computations.

The test matrices were selected from Tim Davis’s sparse matrix collection [6]
and include the problems used by NVIDIA for testing the ILU factorization code
in cuSPARSE [12]. We have reordered these test matrices using RCM reordering.
Additionally, we use test matrices arising from a finite difference discretization of
the Laplace operator in 2D and 3D with Dirichlet boundary conditions. For the
2D case, a 5-point stencil was used on a 1024 x 1024 mesh, and for the 3D case, a
27-point stencil was used on a 64 x 64 x 64 mesh. All test matrices (Table 1) are
symmetric positive definite and we used the symmetric, or incomplete Cholesky
(IC) version of the iterative ILU algorithm [4]. However, we still refer to the
algorithm as the terative ILU algorithm for generality.

Table 1. Test matrices.

Name Abbrev. Nonzeros n. Size n Name Abbrev. Nonzeros n. Size n
APACHE2 APA 4,817,870 715,176 PARABOLIC_FEM  PAR 3,674,625 525,825
ECOLOGY2 ECO 4,995,991 999,999 THERMAL2 THM 8,580,313 1,228,045
G3_CIRCUIT [eX} 7,660,826 1,585,478 LAPLACE2D L2D 5,238,784 1,048,576
OFFSHORE OFF 4,242,673 259,789 LAPLACE3D L3D 6,859,000 262,144

4.2 Convergence Metrics

For an incomplete Cholesky factorization, A ~ LL”, we measure how well the
factorization works as a preconditioner for the preconditioned conjugate gradi-
ent (PCG) method for solving linear systems. Thus we will report PCG solver
iteration counts. Linear systems were constructed using a right-hand side of all
ones. The iterations start with a zero initial guess, and the iterations are stopped
when the residual norm relative to the initial residual norm has been reduced
beyond 1076,
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We also measure the nonlinear residual norm |(A — LLT)g|/F, where
the Frobenius norm is taken only over the elements in S. The expression
(A~ LLT)s = 0 corresponds to the nonlinear equations being solved by the
fixed-point sweeps of the asynchronous iterative algorithm. Finally, we can also
measure the ILU residual norm ||A— LL" ||, which has been shown to correlate
well with the number of PCG iterations in the SPD case [8]. This quantity is
relatively expensive to compute since all elements of LLT are required, but it
can be useful for diagnostic purposes. Note that this quantity is not zero for an
incomplete factorization.

We show how the above quantities change for matrices L computed using
different numbers of asynchronous fixed-point sweeps, beginning with an initial
guess for L (corresponding to sweep 0). In this paper, the level 0 factorizations
are computed, although any sparsity pattern S can be used in the GPU kernel.
We use the notation “IC” to indicate results for an incomplete factorization
computed “exactly” using the conventional Gaussian elimination process.

4.3 Preconditioner Quality and Timings

We begin by demonstrating the convergence and performance of the iterative
ILU algorithm using our GPU implementation. Figure 2 shows the convergence
of the nonlinear residual norm (left) and ILU residual norm (right) as a function
of the number of nonlinear sweeps, for several test matrices. The results show
that the nonlinear residual norm converges very steadily. Also, the ILU residual
norm converges very rapidly, i.e., after a small number of steps, to the ILU
residual norm of the conventional ILU factorization (which is necessarily nonzero
because the factorization is approximate). This suggests that the factorization
computed by the new algorithm after a small number of steps may be comparable
to the factorization computed by the conventional algorithm.

—o—apa

—o—eco

G3

—— off

O T 4 6 & 10 A2 4| Ppad 0 1 2 3 4 5 6
Number of sweeps therm Number of sweeps

Relative nonlinear residual norm

Fig. 2. Relative nonlinear residual norm (left) and relative ILU residual norm (right)
for different numbers of sweeps.

This is indeed the case, as shown on the left side in Table 2, which shows the
PCG solver iteration counts when the incomplete factors are used as a precondi-
tioner. The iteration counts indicate that only a few sweeps are usually sufficient



12 E. Chow et al.

to generate a preconditioner similar in quality to the preconditioner computed
conventionally. This is consistent with the ILU residual norm typically having
converged after the first 5 iterations. It is thus not necessary to fully converge
the nonlinear residual.

The right side of Table2 shows the timings for IC computed using the
NVIDIA cuSPARSE library, and for the 5 sweeps of the new algorithm. Sig-
nificant speedups are seen over the cuSPARSE implementation, which uses level
scheduling to exploit parallelism.

Table 2. PCG solver iteration counts using preconditioners constructed with up to 5
sweeps, and timings for 5 sweeps. IC denotes the exact factorization computed using
the NVIDIA cuSPARSE library. Speedup shown is that of 5 sweeps relative to IC.

Solver iteration counts for given number of sweeps|Timings [ms]

IC |0 1 2 3 4 5 IC |5 swps|speedup
APA | 958/1430/1363/1038| 965| 960| 958 61.] 8.8 6.9
ECO [1705|2014|1765/1719|1708/1707,1706 107.) 6.7 |16.0
a3 | 997|1254| 961 968| 993| 997| 997 110./12.1 9.1
OFF | 330| 428| 556| 373| 396| 357| 332 219./125.1 8.7
PAR | 393| 763| 636| 541| 494| 454| 435 131., 6.1 |21.6
THM |1398/1913/1613|1483/1341/1411|1403 454.115.7 |28.9
L2D | 550| 653| 703| 664| 621 554 551 112.) 7.4 |15.2
L3p | 35 43| 37 35 35 35 35 94.147.5 2.0

4.4 Thread Block Ordering and Convergence

We now show the effect that thread block ordering has on the convergence of
the iterative ILU algorithm. First, the ordering of the tasks follows a Gaussian
elimination ordering, which is beneficial for convergence. This task list is linearly
partitioned into thread blocks. We tested three thread block orderings: (1) a
forward ordering of the thread blocks, i.e., the first thread block is associated
with the first chunk of the task list, etc., (2) a backward ordering of the thread
blocks, and (3) a random ordering of the thread blocks. For the random ordering,
the results have been averaged over several trials.

Table 3 reports the time and the relative nonlinear residual norm after 5
sweeps for various problems. The forward ordering leads to the best convergence
rate and the backward ordering leads to the worst convergence rate. The random
ordering, corresponding to the convergence behavior of an unpredictable GPU
thread block scheduling gives results in between these two. Note that there is no
significant difference between the timings using the three different orderings.
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Table 3. Comparison of different thread block orderings, showing time and relative
nonlinear residual norm after 5 sweeps of the iterative ILU algorithm. Forward ordering
gives the fastest convergence rate, and timings are not impacted.

Order Time [s] Res. norm Order Time [s] Res. norm

Forward 9.04e-03 2.23e-04 Forward 5.90e-03 1.54e-02
Backward 8.84e-03 1.03e-02 Backward 5.97e-03 2.83e-02
Random 8.68e-03 4.46e-03 Random 6.06e-03 2.32e-02

Forward 6.62e-03 9.36e-04 Forward 1.54e-02 7.25e-03

APA
PAR

S Backward  6.61e-03 6.23e-03 E Backward ~ 1.53e-02 1.44e-02
= Random 6.77e-03 3.82e-03 e Random 1.64e-02 1.04e-02
Forward 1.20e-02 6.31e-04 Forward 7.38e-03 1.58e-04
3 Backward 1.19e-02 6.98e-03 a Backward  7.36e-03 2.30e-03
Random 1.30e-02 5.09e-03 = Random 7.35e-03 1.27e-03
Forward 2.49e-02 1.16e-02 Forward 4.73e-02 1.35e-03
% Backward  2.46e-02 7.21e-02 8  Backward  4.71e-02 7.17e-03
=

Random 2.50e-02 5.93e-01 Random 4.73e-02 3.25e-03

4.5 Data Locality

In this section we show the effect of the ordering of the task list, which affects
data locality. In Sect. 3.3, orderings of the task list were proposed for problems
that are discretized on regular meshes. These are based on partitioning the graph
corresponding to the matrix (using b x b blockings of the 2D regular mesh was
the prototypical example). In Sect. 3.4, it was proposed to enhance cache reuse
between thread blocks by using a RCM reordering of the matrix combined with
the default task list ordering.

Results are shown along with metrics from NVIDIA’s NVPROF profiler in
Table4 for the L3D problem. We used a randomly permuted task list as an
extreme case of disordered memory access and b x b x b blockings of the mesh.

The results show that large block sizes give better performance. RCM order-
ing also gives good performance. The random case is the slowest, due to low L2
hit rate and low global load throughput, resulting in low executed instructions
per cycle. For the blockings, the high L2 hit rate indicates that most data is
already present in local memory, and only small amounts must be reloaded from
DRAM. Luckily, we also find that orderings that have better memory access
locality also lead to better convergence rates.

4.6 Parallelism Vs Convergence

Increased parallelism may result in slower convergence because variables being
updated at the same time use “older” rather than “refreshed” values in their
update formulas. As described in Sect. 3.6, the amount of parallelism can be
controlled explicitly by allocating different amounts of scratchpad memory (that
will not be used) in the kernel code. Table 5 shows several kernel configurations,
for different amounts of requested scratchpad memory, and the result of running
these configurations for the L3D problem. As can be observed, the theoretical
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Table 4. Comparison of strategies for enhancing data locality for the L3D problem.
The time and relative nonlinear residual norm are for 5 nonlinear sweeps. RCM and
orderings for large block sizes m X m X m give best results in terms of both timing and
convergence.

Task list ordering Random|2 4 8 16 32 64 RCM
Time x1072 [s] 20.0 5.54| 537 b5.15| 4.96| 4.89| 4.78 4.92
Rel. nonlin. res. norm x10~3 2.66 3.08/ 4.35| 4.86| 4.63| 1.87| 1.35| 1.58

Global load throughput [GB/s] | 83.35 237.34|247.71|249.45|251.38/253.00|258.00|252.97
DRAM read throughput [GB/s]|119.00 16.70| 15.93| 16.43| 17.13| 16.62| 22.10| 20.02
L2 read throughput [GB/s] 83.35 |237.34|247.71|249.45|251.38|253.00|258.00|252.97
L2 hit rate (L1 reads) [%)] 19.02 96.68| 96.97| 96.91| 96.79| 96.93| 95.88| 96.02
Global store throughput [GB/s]| 1.08 3.70| 3.79| 3.88| 3.98/ 4.05| 3.86] 3.74
Ex. instructions per cycle (IPC)| 0.21 0.75| 0.78 0.81| 0.85 0.85| 0.87| 0.86

and observed occupancy decreases with increasing requested memory. For our
algorithm, the IPC also generally decreases with increasing requested memory,
but the relation is not exact. For example, config_1 has the highest occupancy but
not the highest IPC. As expected, reducing the parallelism slightly improves the
convergence rate, but at the same time, the time scales almost linearly with the
inverse of parallelism quantified by IPC. Figure 3 graphs the relative nonlinear
residual norm as a function of time, for different configurations. The results show
that the degradation in convergence due to additional parallelism is small, and
the penalty is more than compensated by the additional parallelism.

Table 5. Several configurations of the kernel code to control parallelism, and the
corresponding runtime and relative nonlinear residual norm for 5 sweeps. Results are
for the L3D problem.

config_1 |config_2 |config_3 |config_4 |config_5 |config_6
Requested scratchpad mem. [B] 1024 2048 3072 4096 6144 9216

Active thread blocks 16 8 5 4 2 1

Active threads 2048 1024 640 512 256 128
Theoretical occupancy [%)] 100.0 |50.0 31.3 25.0 12.5 6.3
Reported occupancy [%] 98.7 49.6 31.0 24.8 12.4 6.2

Global load throughput [GB/s] |258.00 [269.34 [209.70 |175.00 [92.32 |46.34
DRAM read throughput [GB/s](22.10 [23.23 |18.06 |15.07 |7.98 4.01

L2 read throughput [GB/s] 258.00 |269.34 |209.70 [175.00 |92.32 |46.34
Global store throughput [GB/s]|3.86 4.04 3.15 2.62 1.38 0.69
IPC 0.8572 [0.91184 |0.7120 |0.5941 |0.3134 0.1598
5 sweeps| Time: 4.88e-02]4.57e-02{5.89e-02|7.01e-02|1.33e-012.62e-01

Rel. nonlin. res. norm: |1.35e-03/1.22e-03/1.16e-03|1.14e-03|9.84e-04|8.00e-04
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Fig. 3. Relationship between runtime and nonlinear residual norm for different amounts
of parallelism, for the L3D problem.

5 Conclusions

A GPU implementation of an asynchronous iterative algorithm for computing
incomplete factorizations has been presented. Significant speedups over the level
scheduling implementation of the cuSPARSE library were reported. Several tech-
niques were discussed for controlling the order of the asynchronous computations
to enhance convergence and data locality. These techniques may be applied in
general to other asynchronous iterative algorithms.
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