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Abstract—Hartree-Fock (HF) or self-consistent field (SCF)
calculations are widely used in quantum chemistry, and are
the starting point for accurate electronic correlation methods.
Existing algorithms and software, however, may fail to scale for
large numbers of cores of a distributed machine, particularly in
the simulation of moderately-sized molecules. In existing codes,
HF calculations are divided into tasks. Fine-grained tasks are
better for load balance, but coarse-grained tasks require less
communication. In this paper, we present a new parallelization
of HF calculations that addresses this trade-off: we use fine-
grained tasks to balance the computation among large numbers
of cores, but we also use a scheme to assign tasks to processes to
reduce communication. We specifically focus on the distributed
construction of the Fock matrix arising in the HF algorithm,
and describe the data access patterns in detail. For our test
molecules, our implementation shows better scalability than
NWChem for constructing the Fock matrix.

I. INTRODUCTION

The Hartree-Fock (HF) algorithm, also known as the self-
consistent field (SCF) algorithm, is widely used in quantum
chemistry [1], and is the starting point for accurate electronic
correlation methods including coupled cluster theory and
many-body perturbation theory [2]. Our long-term goal is
to develop HF methods suitable for a very large number
of cores. In this paper, we consider the problem of the
parallel distributed construction of the Fock matrix in the
HF algorithm. Fock matrices also arise in Density Functional
Theory (DFT) [3], another highly accurate and widely used
method for electronic structure computations.

Fock matrix construction presents two main difficulties
for parallelization. The first is load imbalance arising from
the irregularity of the independent tasks available in the
computation. The irregularity is due to the structure of
molecules and a “screening” procedure used to reduce com-
putational cost by neglecting the computation of insignifi-
cant quantities. The second difficultly is the potentially high
communication cost associated with the data access pattern
of Fock matrix construction. Recent proposals to use GPUs
and SIMD instructions for the most expensive computations
in Fock matrix construction [4], [5], [6], [7], [8], [9],
[10], [11] will further make communication efficiency an
important consideration in the construction of Fock matrices.

Load imbalance in HF was addressed in previous
work [12], [13] by partitioning the computation into a num-

ber of independent tasks and using a centralized dynamic
scheduler for scheduling them on the available processes.
Communication costs are reduced by defining tasks that
increase data reuse, which reduces communication volume,
and consequently communication cost. This approach suffers
from a few problems. First, because scheduling is completely
dynamic, the mapping of tasks to processes is not known
in advance, and data reuse suffers. Second, the centralized
dynamic scheduler itself could become a bottleneck when
scaling up to a large system [14]. Third, coarse tasks
which reduce communication volume may lead to poor load
balance when the ratio of tasks to processes is close to one.

We present a new scalable distributed parallel algorithm
for Fock matrix construction that has significantly lower
parallel overhead than other commonly used algorithms.
This is achieved through the introduction of a new initial
static partitioning scheme that both has reasonable load bal-
ance and increases data reuse. The scheme also enables the
use of a distributed work-stealing type, dynamic scheduling
algorithm for further tackling load balancing problems in a
scalable manner.

There has been much recent work in parallelizing higher
order approximation quantum chemistry methods, and these
algorithms have been demonstrated to scale to very large
numbers of cores [15], [16]. Also many tools have been
developed for solving the problems inherent in the devel-
opment of these types of algorithms, such as the Tensor
Contraction Engine [17] and Cyclops [15]. On the other
hand, the most well-known parallel algorithms for Fock
matrix construction and HF are from more than a decade
ago [12], [13]. Given the rapid increase in parallelism in
modern supercomputers, the time has come to revisit these
algorithms.

There exist many computational chemistry packages that
implement parallel Fock matrix construction and HF, in-
cluding NWChem [18], GAMESS [19], ACESIII [20] and
MPQC [21]. We compare our algorithm to the one imple-
mented in the NWChem, which has perhaps the most well-
demonstrated scalability to large numbers of cores. Our algo-
rithm was found to scale better, and have parallel overhead
an order of magnitude less than NWChem’s algorithm on
test problems that were chosen to accentuate the scalability
issues inherent in Fock matrix construction.



II. BACKGROUND

A. Hartree-Fock Method
The Hartree-Fock method [1] approximately solves the

Electronic Schrödinger equation for a molecule with a given
number of electrons,

ĤelecΨelec = EΨelec.

In this expression Ψelec is a called a wavefunction, E is the
energy of the wavefunction, and Ĥelec is a given differential
operator known as the electronic Hamiltonian. The quantum
mechanical information about the molecule is contained in
its wavefunction, which can be used to predict its chemical
and physical properties.

Ψelec can be expressed in terms of a set of functions ψi(r)
on R3, called molecular orbitals [1]. A molecule is said to
have closed shells if the electrons in it are all paired, i.e. the
number of electrons in the molecule, n, is even. The number
of occupied molecular orbitals associated with a closed shell
molecule is then n/2. We only consider the HF method for
closed shell molecules in this paper.

The Hartree Fock method is a variational method that
computes a finite basis approximation to the molecular
orbitals of a given molecule. This is an approximation of
the form

ψi(r) =
n f

∑
j=1

ci jϕ j(r), (1)

where the functions ϕ j(r) are functions on R3, called basis
functions, and are chosen to model the physical properties of
the molecule. Commonly, the set of basis functions chosen
for computing the molecular orbitals of a particular molecule
is divided into groups called shells. Each shell of basis
functions shares the same quantum angular momentum and
the same center. Typically, the centers of shells correspond
to the atomic coordinates of the atoms of the molecule. A
basis set can also be divided into sets of atoms, which are
sets of shells that have the same center. We note here that
the terms basis function, shell, and atom are also commonly
used to refer to the indices used to represent them in a
computer program. We adopt this convention throughout this
paper. In all cases, what we are referring to should be clear
from context.

B. Hartree-Fock Algorithm
The Hartree-Fock algorithm is an iterative method for

computing the coefficients ci j in equation (1). It takes, as its
input, the coordinates, in R3, of the atoms of the molecule,
the atomic numbers of the atoms, a basis set type, and an
initial guess. As its output, it produces three matrices, a Fock
matrix F , a density matrix D, and a coefficient matrix C. The
coefficients ci j in equation (1) are the elements of C. The
basis set type is nothing but a rule that, along with the other
inputs, forms a complete specification of the basis functions
ϕ j in equation (1).

Each iteration k of the HF algorithm has two main
computational steps, the formation of the kth approximation
to the Fock matrix F , using the (k− 1)th density matrix
D, and the diagonalization of this matrix to obtain the kth
approximation to D. The iteration is usually stopped when
the magnitude of the difference in values between the current
density matrix and the previous density matrix has fallen
below a certain, pre-chosen, convergence threshold. This is
the origin of the term “self-consistent field.”

Algorithm 1: HF Algorithm
1 Guess D
2 Compute Hcore

3 Diagonalize S =UsUT

4 Form X =Us1/2

5 repeat
6 Construct F
7 Form F ′ = XT FX
8 Diagonalize F ′ =C′εC′T
9 C = XC′

10 Form D = 2CoccCT
occ

11 until converged

The HF algorithm is presented in Algorithm 1. Here, Cocc
is the portion of the C matrix corresponding to the smallest
n/2 eigenvalues of F ′, where n is the number of electrons
of the molecule. The matrix S is called the overlap matrix,
X is a basis transformation matrix computed using S, and
Hcore is a matrix called the core Hamiltonian. The matrices
S,X , and Hcore do not change from one iteration to the next
and are usually precomputed and stored.

C. Fock Matrix Construction

We focus on the formation of F in line 6 of Algorithm 1,
and the data access pattern required. This step involves a
four dimensional array of numbers, each of whose entries
is denoted by (i j|kl) where the indices i, j,k, l run from 0
to n f −1, where n f is the number of basis functions used.
Each (i j|kl) is a six dimensional integral, called an electron
repulsion integral (ERI), given by

(i j|kl) =
∫

ϕi(x1)ϕ j(x1)r−1
12 ϕk(x2)ϕl(x2)dx1dx2, (2)

where the x1 and x2 are coordinates in R3, the ϕ’s are basis
functions, r12 = ∥x1 − x2∥, and the integral is over all of
R3×R3. In terms of these quantities and the density matrix
D, the expression for an element of the Fock matrix is

Fi j = Hcore
i j +∑

kl
Dkl (2(kl|i j)− (ik| jl)) . (3)

The ERIs possess permutational symmetries, given by

(i j|kl) = ( ji|kl) = (i j|lk) = ( ji|lk) = (kl|i j). (4)

Hence, the number of unique ERIs is ≈ n4
f /8. It is pro-

hibitively expensive to precompute and store the ERIs in



memory for all but the smallest of molecules; they must be
recomputed each time a Fock matrix is constructed, which
is once per iteration of the HF algorithm. ERI computation
is expensive, making Fock matrix construction a significant
portion of the runtime of the HF algorithm.

An important optimization in the computation of ERIs is
to reuse intermediate quantities shared by basis functions
in a shell. Thus, almost all algorithms for ERI computation
compute ERIs in batches called shell quartets, defined as

(MN|PQ) = {(i j|kl) s.t. i ∈ shell M, j ∈ shell N,

k ∈ shell P, l ∈ shell Q}.

These batches are 4-dimensional arrays of different sizes and
shapes. The fact that these irregular batches are the minimal
units of work is the main reason for the great complexity of
efficient parallel HF codes.

Referring to equation (3), we introduce the Coulomb and
exchange matrices, J and K,

Ji j = ∑
kl

Dkl(kl|i j),

Ki j = ∑
kl

Dkl(ki|l j).

In terms of these, equation (3) becomes

F = Hcore +2J−K.

We defined J and K to emphasize the fact that they require
different parts of the array of ERIs. Using Matlab-like
indexing notation, Ji j requires (i j| :, :), and Ki j requires
(i, : | j, :). Thus, if we want to exploit the symmetry of the
ERIs and only compute unique ERIs, we need to phrase
the construction of F in terms of the computation of the
integrals (i j|kl) rather than each Fi j.

In practice, as each shell quartet of integrals is computed,
the corresponding blocks of F are updated. These are in
different locations for the contributions arising through J,
and K, resulting in a highly irregular pattern of accesses to
D and F . For a shell quartet, (MN|PQ), the blocks of F that
need to be updated are FMN and FPQ for J, and FMP, FNQ,
FMQ and FNP for K. Further, these updates require blocks
DPQ, DNQ, DMN , DMP, DNP, and DMQ of D. Thus, for each
shell quartet of integrals computed, six shell blocks of D
need to be read and six shell blocks of F are updated. Note
here that we use shell indices to denote the blocks of F
and D corresponding to the basis function indices of the
basis functions in the shells. This is common practice since
indexing is arbitrary, and basis functions are usually indexed
such that all the basis functions associated with a given shell
are consecutively numbered. Thus, FMN is nothing but the
block,

FMN = {Fi j s.t. i ∈ shell M, j ∈ shell N}.

D. Screening

It turns out that many of the n4
f /8 ERIs are zero or

negligibly small. This is a consequence of the fact that the
integral in equation (2) is small if the centers of the pair
of the ϕ to the left or right of r12 are centered at points in
space that are physically far from each other. More exactly,
we have the relation [22]

(i j|kl)≤
√
(i j|i j)(kl|kl).

Thus, if we have determined a drop tolerance τ for (i j|kl)
that yields the required accuracy of the computed F and D
from the HF algorithm, we can neglect the computation of
the integrals (i j|kl) for which√

(i j|i j)(kl|kl)< τ. (5)

The use of relation (5) to drop integrals is a procedure called
Cauchy-Schwarz screening, and it can be shown that the
number of integrals remaining after applying it is signifi-
cantly less than n4

f /8, especially for large molecules [22].
Thus, for computational efficiency, it is essential to utilize
screening.

As mentioned in Section II-C, integrals are computed in
batches called shell quartets. We require a few definitions
to illustrate how screening is applied to shell quartets. The
shell pair value of a pair of shells is

(MN) = max
i,k∈M j,l∈N

(i j|kl).

In practice, the shell pair values are usually computed and
stored. Then, we can skip computation of a shell quartet
(MN|PQ) if

√
(MN)(PQ)< τ. There is also the associated

concept of significance. A shell pair MN is significant if

(MN)≥ τ/m∗

where, for a basis set B , m∗ is defined as

m∗ = max
M,N∈B

(MN).

It is also a common practice to compute integrals in
larger batches called atom quartets. Recalling that an atom
corresponds to a set of shells with the same center, an atom
quartet (IatJat |KatLat), where Iat ,Jat ,Kat ,Lat are atoms, is
defined as

(MatNat |PatQat) = {(MN|PQ) s.t. M ∈Mat , N ∈ Nat ,

P ∈ Pat , Q ∈ Qat}.

Screening can also be applied to atom quartets of integrals
by an obvious extension of the procedure for shell quartets.
Also, the concepts of significance and pair values extend to
atom pairs trivially.

E. Notes on Parallelization

In Section I we mentioned that the two main difficulties
of parallel Fock matrix construction are load imbalance,



due to the irregularity of the independent tasks of the
computation, and the high communication cost associated
with the irregular data access pattern.

The computationally expensive part of Fock matrix con-
struction is the computation of the ERIs. These can only be
computed in batches of shell quartets, which may not be of
the same size for different shells. Further, for large problems,
many shell quartets are dropped by screening. In addition,
even different shell quartets of ERIs with the same number
of elements may take different times to compute. These
factors make it hard to obtain an initial balanced partitioning
of the computational volume of Fock matrix construction.

Further, to tackle large problems we need to distribute
the D and F matrices among the processors of a distributed
system. The irregular pattern of access to this data, arising
from the updates that need to be made as each shell quartet
of ERIs is computed, generates communication. Thus, in
order to reduce communications costs, it is desirable to have
algorithms that maximize the reuse of data that is local or
has already been transferred to a given process.

F. Previous Work

The NWChem computational chemistry package [12]
distributes the matrices F and D in block row fashion among
the available processes. The indices of the basis set are
grouped by atoms, and if there are natoms atoms then process
i owns the block rows of F and D corresponding to atom
indices ranging from (i ·natoms/p) to ((i+1) ·natoms/p)−1,
where p is the total number of processes used. Note that in
the above, we have assumed that p divides natoms.

Further, a task-based computational model is used in
order to utilize the full permutational symmetry of the
integrals. Each task is defined as the computation of 5
atom quartets of integrals, the communication of the parts
of D corresponding to these blocks of integrals, and the
updating of the corresponding parts of F . The choice of
atom quartets as minimal computational units is made in
order to increase data locality and reduce communication
volume. Using Matlab-like notation, the task definition used
in [12] is (IatJat |Kat ,Lat : Lat +4), where the Iat ,Jat ,Kat ,Lat
are atom indices. This choice is a compromise between fine
task granularity and low communication volume through
data reuse [12], [13].

For load balancing, the tasks are dynamically scheduled
on processes using a simple centralized dynamic scheduling
algorithm. Processes extract tasks from a centralized task
queue and execute them. Screening and symmetry consider-
ation are incorporated into the task execution process, and
only the unique significant shell quartets of integrals are
computed.

This approach suffers from three problems. Firstly, the use
of 5 atom quartets as a minimal unit of work does not allow
for fine enough granularity when large numbers of processes
are used, and as a result, load balancing suffers. It would

seem at this point that a choice of a smaller unit of work
could solve this problem, however the communication vol-
ume, and consequently the communication cost is also likely
to increase if this is done. Secondly, the task scheduling is
completely dynamic, with no guarantee of which tasks get
executed on which processes, so it is not possible to prefetch
all the blocks of D required by a processes in a single step,
before starting integral computation. Lastly the centralized
dynamic scheduler is likely to become a bottleneck in cases
when large numbers of cores are used.

The precise details of the algorithm are presented in
Algorithm 2.

Algorithm 2: FockBuild
1 On process p do
2 task = GetTask() /*Global task queue access*/
3 id = 0
4 for Unique triplets Iat ,Jat ,Kat do
5 if (IatJat) is significant then
6 lhi = Kat
7 if Kat = Iat then
8 lhi = Jat
9 end

10 for llo from 1 to lhi stride 5 do
11 if id = task then
12 for Lat from llo to min(llo +4, lhi) do
13 if (IatJat)(KatLat)> τ2 then
14 Fetch blocks of D
15 Compute (IatJat |KatLat)
16 Update blocks of F
17 end
18 id = id +1
19 end
20 task = GetTask()
21 end
22 end
23 end
24 end

III. NEW ALGORITHM FOR PARALLEL FOCK MATRIX
CONSTRUCTION

A. Overview

Our algorithm reduces communication costs while simul-
taneously tackling the problem of load balance by using an
initial static task partitioning scheme along with a work-
stealing distributed dynamic scheduling algorithm. The re-
duced communication, along with the better scalability of
work-stealing type scheduling algorithms [14], gives it better
scalability than existing approaches.

We first specify an initial static task partitioning scheme
that has reasonable load balance. The initial static partition-
ing allows us to know approximately on which processes
tasks are likely to get executed, which in turn, allows us
to perform all the communication for each process in a few
steps. We also reorder shells in a basis set to increase overlap
in the data that needs to be communicated by the tasks



initially assigned to each process, which leads to a reduction
in communication volume and hence communication cost.

B. Task Description

To describe the computation associated with tasks in our
algorithm, we need the concept of what we call the signif-
icant set of a shell. Recalling the definition of significance
from Section II-D, we define the significant set of a shell
M to be the set of all the shells N such that the pair MN is
significant. More formally, this is the set

Φ(M) = {P s.t. (MP)≥ τ/m∗},

where τ and m∗ retain their definitions from Section II-D.
Also, we define the set (M, : |N, :) corresponding to the

shells M and N in the basis set, denoted by B to be,

(M, : |N, :) = {(MP|NQ) s.t. P ∈ B, Q ∈ B}.

Now, a task is defined as the computation of the integrals
(M, : |N, :), and the updating of the corresponding blocks
of the F matrix using the appropriate blocks of D. One
can simply see that, after screening, (M, : |N, :) contains
|Φ(M)||Φ(N)| significant shell quartets. That is,

(M, : |N, :) = {(MP|NQ) s.t. P ∈Φ(M), Q ∈Φ(N)}.

From equation (3), the parts of D that need to be read, and
the parts of the Fock matrix F that need to be updated are
the shell blocks (M,Φ(M)),(N,Φ(N)),(Φ(M),Φ(N)). It can
be seen that the six blocks of F and D associated with the
computation of each shell quartet in a task are all contained
within these parts of F and D. Further, for this definition of a
task, the maximum number of tasks available for a problem
with nshells shells is n2

shells.
Whether or not a pair of shells M and N is significant as

defined in Section II-D is related to the distance between
their centers, i.e., the distance between the atomic coordi-
nates of the atoms that they are associated with. This, in
a certain sense, implies that for a molecule whose atomic
coordinates are distributed more or less uniformly in a
contiguous region of space, the variation in |Φ(M)|, for
different shells M, should not be too large. This in turn
implies that, for different shell pairs MN, the variation in
|Φ(M)||Φ(N)| should not be too large either. Thus, the
amount of integral computation associated with different
tasks should not vary widely.

C. Initial Static Partitioning

The tasks are initially equally distributed among process-
es. If we have a prow × pcol rectangular virtual process
grid, for a problem with nshells shells in the basis set,
tasks are initially assigned to processes in blocks of size
nbr × nbc, where nbr = nshells/prow, and nbc = nshells/pcol .
That is, the process pi j is initially assigned the block of
tasks corresponding to the computation of the set of shell
quartets (i ·nbr : (i+1) ·nbr−1, : | j ·nbc : ( j+1) ·nbc−1, :).

For simplicity, we have again assumed that prow and pcol
divide nshells. From the comment at the end of the previous
section, we expect that the time for integral computation for
each task is approximately the same.

Having this initial static partitioning, each process can
now prefetch the parts of D associated with the tasks
assigned to it, and store them in a local buffer Dlocal . Also,
a local buffer to hold the updates to F , Flocal , is initialized
before beginning the execution of integral computation.
Subsequently, as shell quartets of integrals are computed,
the process uses data in Dlocal to update Flocal .

On the surface it would seem that we do not consider
the permutational symmetry of the ERIs as per equation
(4). However, with our task description we can enforce
computation of only the unique integrals by computing a
shell quartet only if certain relationships between its indices
are satisfied. Consider a subroutine SymmetryCheck(M,N)
for integers M, N, that returns true if either of the conditions,
“(M > N) and (M+N)” or “(M ≤N) and (M+N) is odd”,
is satisfied, and returns false otherwise. Computation of only
unique shell quartets can be enforced using this on pairs
of indices. Now we can give a complete specification of
the operations performed in a task. This is presented in
Algorithm 3.

Algorithm 3: doTask (M, : |N, :)
1 for Q from 0 to nshells−1 do
2 for P from 0 to nshells−1 do
3 if SymmetryCheck(M,N) and SymmetryCheck(M,P)

and SymmetryCheck(N,Q) and (MN)(PQ)> τ then
4 Compute (MP|NQ)
5 Update blocks of Flocal , using Dlocal
6 end
7 end
8 end

Note that in the above τ is the tolerance chosen for
screening. Once computation is finished, the local F buffers
can then be used to update the distributed F matrix.

D. Shell Reordering

The parts of D that need to be read, and F
that need to be updated by a task that computes
the integrals (M, : |N, :) are given by the index sets
(M,Φ(M)),(N,Φ(N)),(Φ(M),Φ(N)). As explained in the
previous section, these parts corresponding to a block of
tasks assigned to a process are prefetched.

Naturally, in order to reduce latency costs associated with
this prefetching, we would like these regions of F and D to
be as close in shape as possible to contiguous blocks. This
would happen if Φ(M) and Φ(N) are such that the difference
between the maximum and minimum shell indices in these
sets is small. This can be achieved if pairs of shells that
are significant have indices that are close together. Since



the indexing of shells is arbitrary, and a shell pair is more
likely to be significant if the distance between the centers
of the pair is small, we could achieve this approximately
by choosing an indexing scheme that numbers shells, whose
centers are in close spatial proximity, similarly.

In our algorithm we utilize an initial shell ordering that
does this to a certain extent. First, we define a three dimen-
sional cubical region that contains the atomic coordinates of
the molecule under consideration. This region is then divided
into small cubical cells, which are indexed using a natural
ordering. Then shells are ordered with those appearing in
consecutively numbered cells being numbered consecutively,
with the numbering within a cell being arbitrary. The basis
function numbering is chosen so that basis functions within
a shell are consecutively numbered, and the basis functions
in two consecutively numbered shells form a contiguous list
of integers.

This reordering has another very desirable consequence.
In the initial partitioning scheme that we use, each process
is assigned tasks that correspond to a block of shell pairs.
As a result of this, once our shell ordering has been applied
there is considerable overlap in the elements of F and D
that need to be communicated by the tasks assigned to a
process. This is illustrated by Figure 1 of which part (a)
shows the parts of the density matrix D, and the number of
elements, required by (300, : |600, :), and (b) shows the parts
required by the task block (300 : 350, : |600 : 650, :) for the
molecule C100H202 which has, with the cc-pVDZ basis set,
1206 shells and 2410 basis functions. The number of tasks
in the latter block is 2500, however, the number of elements
of D required is only about 80 times greater than that for
the former single task.
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(a) (300, : |600, :)
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(b) (300 : 350, : |600 : 650, :)

Figure 1: Map of elements of D required by (a) (300, : |600, :) and
(b) (300 : 350, : |600 : 650, :).

E. Algorithm

Our algorithm assumes that both D and F are stored
in distributed fashion, using a 2D blocked format. This
is necessary when nshells is large. The process pi j in the
process grid owns the shell blocks of F and D corresponding
to the shell pair indices (i · nbr : (i + 1) · nbr − 1, j · nbc :

( j + 1) · nbc− 1), where the definitions of nbr and nbc are
the same as those in Section III-C.

At the beginning of execution, each process populates
a local task queue with the tasks assigned to it according
to the static partition described in Section III-C. It then
prefetches all the blocks of D required by its tasks from
the distributed D matrix and stores them in a contiguous
buffer in local memory. A local buffer of appropriate size
to hold updates to F for the tasks assigned to the process
is also initialized. Subsequently, each task is extracted from
the queue and executed. As explained in Section III-B, this
involves the computation of the shell quartets assigned to
it, and the updating of the corresponding shell blocks of
F using blocks of D. Because data has been prefetched,
updates are performed to the local contiguous buffers. Once
all the tasks are complete, the local F buffers are used
to update the distributed F matrix. This is presented as
Algorithm 4.

Algorithm 4: FockBuild for process pi j

1 Initialize task queue Q
2 Populate task queue with tasks
(i ·nbr : (i+1) ·nbr−1, : | j ·nbc : ( j+1) ·nbc−1, :)

3 Fetch and store required D blocks in Dlocal
4 Initialize Flocal
5 while NotEmpty(Q) do
6 (M, : |N, :)← ExtractTask(Q)
7 doTask (M, : |N, :)
8 end
9 Update F using Flocal

In practice, all communication operations are performed
using the Global Arrays framework [23], which provides
one-sided message passing operations, and is used to phrase
communication in a manner similar to data access operations
in shared memory.

F. Work-Stealing Scheduler

In spite of the fact that our initial partitioning scheme
assigns blocks of tasks that have similar computational
costs to process, it is not perfectly balanced. Dynamic load-
balancing is required, which we achieve through the use
of a simple work-stealing distributed dynamic scheduling
algorithm [24]. This is implemented using Global Arrays.

When the task queue on a process becomes empty, it scans
the processes in the process grid in a row-wise manner,
starting from its row, until it encounters one with a non-
empty task queue. Then it steals a block of tasks from this
victim processor’s task queue and adds it to its own queue,
updating the victim’s queue during this process. After this,
it copies the local D buffer of the victim to its local memory
and initializes a local buffer for updates to F corresponding
to this, and updates these buffers during the execution of
the stolen tasks. When a process steals from a new victim



the current stolen F buffer is accumulated to Flocal of the
previous victim.

G. Performance Model and Analysis

In order to develop a model for the average running
time of our algorithm, we have to make a few simplifying
assumptions and define a few terms. The average time taken
to compute an ERI is denoted by tint . A square process grid is
assumed with prow = pcol =

√
p, p being the total number of

processes used. It is also assumed that p divides nshells. The
average number of basis functions associated with a shell is
denoted by A, and the average number of shells in the set
Φ(M), for a shell M, is denoted by B. The average number
of elements in Φ(M)∩Φ(M+1) for shell M is q. We also
assume that the average number of processors from which
tasks are stolen by a given process, using the algorithm
described in Section III-F, is s. Lastly, the bandwidth of the
communication network of the distributed system is taken
to be β.

The computation cost of Fock matrix construction is the
cost of computing the ERIs. The number of shell quartets in
(M, : |N, :) after screening is |Φ(M)||Φ(N)|, which has aver-
age value B2. Thus, the number of shell quartets associated
with the block of tasks assigned to each processor under the
initial static partitioning scheme described in Section III-C is
n2

shellsB
2/p. Further, we only compute unique shell quartets

of integrals. Thus, the number of shell quartets assigned to
a process becomes n2

shellsB
2/8p. Now, using A and tint , the

expression for average compute time is

Tcomp(p) =
tintB2A2n2

shells
8p

. (6)

We recall from Section III-B that the task associated with
the integrals (M, : |N, :) needs to communicate shell blocks
of F and D with shell pair indices (M,Φ(M)), (N,Φ(M))
and (Φ(M),Φ(N)). Each process pi j under the initial static
partitioning owns the task block corresponding to the inte-
grals (i ·nb : (i+1) ·nb−1, : | j ·nb : ( j+1) ·nb−1, :), where
nb = nshells/

√
p. Thus, the average communication volume

for a process arising from the need to communicate blocks
of F and D, corresponding to the blocks (M,Φ(M)) and
(N,Φ(N)), for shells M and N in (i ·nb : (i+1) ·nb−1) and
( j ·nb : ( j+1) ·nb−1), respectively, is

v1(p) = 4A2Bn2
shells/p. (7)

The communication volume associated with the blocks
(Φ(M),Φ(N)) is a little more tricky to obtain since we
have to take into consideration the overlap in these sets
for the tasks associated with a process, as explained in
Section III-D. If Φ(M) and Φ(M + 1) have q elements in
common, and the average value of |Φ(M)| is B, then the
average number of elements in Φ(M+1)∪Φ(M)−Φ(M)∩
Φ(M +1) is 2(B−q). Thus, |Φ(M)∪Φ(M +1)| should be
q+2(B−q). This can be extended to nshells/

√
p shells, giv-

ing the expression (q+(nshells/
√

p)(B−q)) for the average
number of elements in the union of the Φ sets corresponding
to these shells. Thus, the average communication volume
arising from these sets for a process is

v2(p) = 2
(

nshells√
p

(B−q)+q
)2

A2. (8)

The average communication volume, including the commu-
nication for D and F buffers for steals, is

V (p) = (1+ s)(v1(p)+ v2(p)) . (9)

Now, an expression for the communication time is

Tcomm(p) =
1
β

V (p). (10)

With equations (6) and (10), we are now in a position to
arrive at an expression for the efficiency of the new parallel
algorithm. Efficiency is given by

E(p) =
T ∗

pT (p)
,

where T ∗ is the running time of the fastest sequential
algorithm for solving the same problem as the parallel
algorithm. In our case, since we utilize screening, and
only compute unique ERIs, we make the assumption that
T ∗ = Tcomp(1). Also, pTcomp(p) = Tcomp(1), and we assume
no overlap in computation and communication, so T (p) =
Tcomp(p)+Tcomm(p), yielding

E(p) =
1

1+Tcomm(p)/Tcomp(p)
.

Thus efficiency depends on the ratio Tcomm(p)/Tcomp(p),
which we denote by L(p). Using equations (7), (8), (9), (10)
and (6) and some trivial algebraic manipulations we get

L(p) =
16(1+ s)
tintB2β

((
(B−q)+q

√
p

nshells

)2

+2B

)
. (11)

Expression (11) tells us several things, the first being the
isoefficiency function of our algorithm, which is defined as
the rate at which the problem size must vary in terms of the
number of processes, in order to keep efficiency constant.
Efficiency is constant in our case if L is constant and L
is constant if

√
p/nshells is constant, assuming that s does

not vary with p. This gives us an isoefficiency function of
nshells = O(

√
p). Hence, in order for us to have constant

efficiency, the problem size, specified in terms of the number
of shells, must grow at least as fast as

√
p.

In the above analysis we have assumed s to be a constant.
This is expected to be true if both p and nshells (and hence
the amount of computational work) are increasing.

Equation (11) also gives us some other qualitative in-
formation. Substituting p = n2

shells, the maximum available



parallelism, we obtain

L(n2
shells) =

16(1+ s)
tintβ

(
1+

2
B

)
. (12)

Now, with increasing number of processes, the algorithm
will only reach a point at which communication starts to
dominate if this is greater than 1. This is likely to happen
sooner as tint goes down, with improvements in integral
calculation algorithms and technology. Further, for highly
heterogeneous problems with many widely varying atom
types that are irregularly distributed in space, we expect that
our initial task partitioning will be less balanced, implying
that the number s is likely to go up, making communication
dominate sooner.

The presence of the term 2/B tells us about the effect
that the structure of the molecule has on the running time.
B is the average value of |Φ(M)|, which is the number of
shells that have a significant interaction with M, and this
number is expected to be very large for a molecule, that
has atoms centered at points that are densely distributed in
three dimensional space. This larger value indicates, from
expression (12), that computation dominates for such a
problem, as expected.

Expression (12) can be used to determine how much s-
maller tint needs to be for there to exist a point at which com-
munication costs start to dominate. Consider the molecule
C96H24. With the cc-pVDZ basis set it was observed that,
using 3888 cores on a test machine (described in Section
IV), the average value for s for our Fock matrix construction
algorithm was 3.8. For simplicity we assume that, B is large
so that 2/B ≈ 0 for this problem. Also, the bandwidth of
the interconnect of the test machine was 5 GB/s. Using
tint = 4.76µs from Table V in Section IV and expression (12)
we can arrive at the conclusion that integral computation
has to be approximately 50 times faster for there to exist
a point at which communication starts to dominate. This is
supported by the results in Figure 2, which indicate that
this case is still heavily dominated by computation with
3888 cores. In contrast to this, for NWChem’s algorithm
described in Section II-F, the parallel overhead time, of
which communication cost is a component, actually becomes
greater than the computation time at p ≈ 3000 (refer to
Figure 2).

In all the analysis in this section, we have made no
mention of the latency costs associated with communication.
We do this for simplicity. All that can be said is that the
latency costs will add to the communication time, increasing
L(p) and reducing the critical number of processes at which
communication costs surpass computation costs.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Tests were conducted on Lonestar [25] located at the
Texas Advanced Computing Center. Table I shows the

configuration of the machine.

Table I: Machine parameters for each node of Lonestar.

Component Value

CPU Intel X5680
Freq. (GHz) 3.33
Sockets/Cores/Threads 2/12/12
Cache L1/L2/L3 (KB) 64/256/12288
GFlop/s (DP) 160
Memory (GB) 24

The nodes are connected by an InfiniBand Mellanox
switch with a bandwidth of 5 GB/s. The normal queue was
used which allows a maximum number of 4104 cores (342
nodes) to be requested.

The implementation of our algorithm, which we refer to
as GTFock, was compared to the distributed Fock matrix
construction algorithm implemented in NWChem version
6.3 [13], [12]. Our implementation uses Global Arrays [23]
version 5.2.2, which is the same version used by NWChem
6.3. We also use the MPICH2 version 2.1.6 implementation
of MPI-2. For ERI computation, the ERD integrals pack-
age [26] is used. This is distributed as part of the ACES
III computational chemistry package [20]. Intel compilers
ifort version 11.1 and icc version 11.1 were used to compile
both NWChem and GTFock, and both were linked against
the Intel MKL version 11.1 libraries.

Our implementation uses OpenMP multithreading to par-
allelize the computations associated with a task, given in
Algorithm 3. Consequently, we ran GTFock with one MPI
process per node. NWChem does not use multithreading,
and one MPI process per core was used in this case.

We used four test molecules with the Dunning cc-pVDZ
basis set [27]. The test cases along with their properties are
presented in Table II. The first two molecules have a 2D
planar structure similar to the carbon allotrope, graphene.
The latter two are linear alkanes, which have a 1D chain-like
structure. A screening tolerance of τ = 10−10 was used for
all tests, for both our implementation and for NWChem, and
for a fair comparison, optimizations related to symmetries
in molecular geometry were disabled in NWChem.

Table II: Test molecules.

Molecule Atoms Shells Functions Unique Shell Quartets

C96H24 120 648 1464 1.19×109

C150H30 180 990 2250 3.12×109

C100H202 302 1206 2410 1.68×109

C144H290 434 1734 3466 3.52×109

B. Performance of Fock Matrix Construction

Table III compares the running time for Fock matrix
construction for NWChem and GTFock for the test cases
just described. Although NWChem is faster for smaller core
counts, GTFock is faster for larger core counts. Table IV



Table III: Fock matrix construction time (in seconds) for GTFock and NWChem on four test cases. Although NWChem is faster for
smaller core counts, GTFock is faster for larger core counts.

Cores C96H24 C150H30 C100H202 C144H290

GTFock NWChem GTFock NWChem GTFock NWChem GTFock NWChem

12 673.07 649.00 1765.92 1710.00 619.15 406.00 1290.58 845.00
108 75.17 75.00 196.95 198.00 68.32 48.00 140.14 97.00
192 42.53 42.00 111.02 115.00 38.58 27.00 78.92 57.00
768 10.78 12.00 28.03 29.00 9.72 7.40 19.91 15.00

1728 4.93 5.30 12.57 13.00 4.37 4.80 9.03 7.30
3072 2.91 4.10 7.21 8.50 2.50 5.10 5.11 5.30
3888 2.32 4.50 5.80 6.70 2.02 5.80 4.06 9.00

Table IV: Speedup in Fock matrix construction for GTFock and NWChem on four test cases, using the data in the previous table. Speedup
for both GTFock and NWChem is computed using the fastest 12-core running time, which is from NWChem. GTFock has better speedup
at 3888 cores.

Cores C96H24 C150H30 C100H202 C144H290

GTFock NWChem GTFock NWChem GTFock NWChem GTFock NWChem

12 11.57 12.00 11.62 12.00 7.87 12.00 7.86 12.00
108 103.60 103.84 104.19 103.64 71.31 101.50 72.36 104.54
192 183.10 185.43 184.84 178.43 126.27 180.44 128.48 177.89
768 722.72 649.00 732.15 707.59 501.44 658.38 509.22 676.00

1728 1581.00 1469.43 1631.94 1578.46 1114.87 1015.00 1122.43 1389.04
3072 2678.13 1899.51 2847.23 2414.12 1949.58 955.29 1983.57 1913.21
3888 3354.01 1730.67 3540.98 3062.69 2415.47 840.00 2498.77 1126.67

Table V: Average time, tint , for computing each ERI for GTFock
(using the ERD library) and NWChem.

Mol. Atoms/Shells/Funcs tint GTFock tint NWChem

C24H12 36/180/396 4.759 µs 3.842 µs
C10H22 32/126/250 3.060 µs 2.400 µs

shows the corresponding speedups and shows that GTFock
has better scalability than NWChem up to 3888 cores.

We used the NWChem running time on a single node
to compute the speedup for both NWChem and GTFock,
since NWChem is faster on a single node. NWChem’s better
single-node performance is most likely due to its better
use of primitive pre-screening [26] to avoid computation of
negligible contributions to integrals. The results in Table V
compare the performance of the integral packages of both
implementations on a machine with similar characteristics
as one node of our test machine, for two molecules that are
representative, structurally, of the molecules that we used to
test Fock matrix construction. The difference for the alkane
case C10H22 is accentuated because primitive pre-screening
is likely to be more effective due to the spatial distribution
of atoms of this molecule.

To understand the above Fock matrix construction tim-
ing results, for each of GTFock and NWChem, we mea-
sured the average time per process, Tf ock, and the average
computation-only time per process, Tcomp. We assume that
the average parallel overhead is Tov = Tf ock−Tcomp. Figure 2
plots these quantities for different numbers of cores for our
four test molecules.

We note that, for all cases, the computation time for GT-

Fock is comparable to that of NWChem, with computation
in NWChem being slightly faster for reasons explained in
the previous paragraph. However, in every case, the parallel
overhead for GTFock is almost an order of magnitude lower
than that for NWChem. For cases in Figures 2(a), (c),
and (d), the overhead time for NWChem actually becomes
comparable or greater than the average computation time for
larger numbers of cores. This is due to the fact that there
is relatively less work for these cases. For the alkane cases,
there is less computational work because the molecules have
a linear structure and there are many more shell quartets
of integrals neglected due to screening. For the smaller
graphene case, this is due to the fact that the amount of
available computation is less. The increased proportion of
parallel overhead is the reason for the poorer scalability of
NWChem on these test cases, shown earlier in Table III and
Table IV.

C. Analysis of Parallel Overhead

The parallel overhead time Tov, illustrated in Figure 2,
has three main sources: communication cost, load imbalance,
and scheduler overhead from atomic accesses to task queues.
We provide evidence to show the reduced communication
cost of our algorithm versus that of NWChem. The cost of
communication on a distributed system is composed of a
latency term and a bandwidth term. The number of calls to
communication functions in Global Arrays and the number
of bytes transferred provide qualitative indicators of latency
and bandwidth, respectively. We measured these quantities
for NWChem and GTFock. These results are presented in
Table VI and Table VII. We see that our implementation



(a) C96H24 (b) C150H30

(c) C144H290 (d) C100H202

Figure 2: Comparison of average computation time Tcomp and average parallel overhead time Tov of Fock matrix construction for NWChem
and GTFock. The computation times for NWChem and GTFock are comparable, but GTFock has much lower parallel overhead.

has lower volumes and numbers of calls for all the cases,
indicating a lower communication cost, and explaining the
reduced parallel overhead. It should be noted here that
the volumes measured are total communication volumes,
including local transfers. This was done in order to have
a fair comparison between NWChem and GTFock since, as
mentioned previously, the number MPI processes per core
was different for each of them.

Scheduler overhead for NWChem can be inferred indi-
rectly from the number of accesses to the task queue of its
centralized dynamic scheduler. The number of such accesses
for the case C100H202 with 3888 cores is 330091. Each of
these operations must be atomic and it is expected that a
serialization cost is incurred by them. In comparison, our
work-stealing scheduler only needs the execution of 349
atomic operations on each of the task queues of the nodes.
The serialization due to this is likely to be much less.

D. Load Balance
Our algorithm uses a work-stealing distributed dynamic

scheduling algorithm to tackle the problem of load imbal-

ance in Fock matrix construction. In this section we present
experimental results that demonstrate the effectiveness of
this approach to load balancing on our chosen test molecules.

Load balance can be expressed as the ratio of the longest
time taken to complete the operations of Fock matrix con-
struction for any process, to the average time. This is the
ratio l = Tf ock,max/Tf ock,avg. A computation is perfectly load
balanced if this ratio is exactly 1.

The ratios l for different numbers of processes, for the
test molecules considered, are presented in Table VIII. The
results indicate that in all the cases the computation is
very well balanced, and that our load balancing approach
is effective.

E. Performance of HF Iterations

The two major steps of the HF algorithm (Algorithm 1)
are constructing the Fock matrix and computing the density
matrix D. In this section we show that computing the density
matrix comprises only a small portion of the running time
of the HF algorithm for our largest test molecule.



Table VI: Average Global Arrays communication volume (MB) per MPI process for GTFock and NWChem.

Cores C96H24 C150H30 C100H202 C144H290

GTFock NWChem GTFock NWChem GTFock NWChem GTFock NWChem

12 15.00 291.30 35.37 1020.79 40.61 457.16 84.08 1046.94
48 8.70 50.24 17.67 143.29 10.01 66.26 3.34 136.11

192 11.77 18.27 16.80 83.41 7.40 40.13 2.70 79.11
768 10.44 16.58 18.20 38.21 4.05 18.48 1.84 30.46

1728 7.63 11.36 12.87 22.03 3.56 14.87 3.90 17.95
3072 7.36 7.40 11.40 15.51 2.43 10.48 3.11 15.72
3888 6.24 8.23 9.94 16.37 2.38 8.26 2.78 14.44

Table VII: Average number of calls to Global Arrays communication functions per MPI process for GTFock and NWChem.

Cores C96H24 C150H30 C100H202 C144H290

GTFock NWChem GTFock NWChem GTFock NWChem GTFock NWChem

12 11 3,204 11 10,758 11 9,590 11 19,898
48 33 678 71 1,401 28 1,379 29 2,587

192 59 610 81 822 28 955 33 1,510
768 65 602 103 840 28 988 38 1,023

1,728 127 711 123 758 32 1,386 35 950
3,072 129 533 148 637 30 1,253 32 1,189
3,888 147 1,091 170 1,008 30 989 31 1,357

Table VIII: Load balance ratio l = Tf ock,max/Tf ock,avg for four test
molecules. A value of 1.000 indicates perfect load balance.

Cores C96H24 C150H30 C100H202 C144H290

12 1.000 1.000 1.000 1.000
108 1.021 1.011 1.015 1.023
192 1.031 1.019 1.024 1.022
768 1.026 1.031 1.021 1.027

1728 1.042 1.037 1.025 1.021
3072 1.039 1.035 1.032 1.023
3888 1.065 1.035 1.030 1.021

We implemented a “diagonalization-free” method for cal-
culating the density matrix from the Fock matrix called
purification [28]. This is an iterative method, in which each
iteration involves two matrix multiply and trace operations.
We implemented the SUMMA algorithm [29] for performing
the matrix multiply operations in parallel.

Table IX shows results for the test case C150H30. The
table shows the time for Fock matrix construction, Tf ock, and
for purification, Tpur f , for the first HF iteration. Purification
consists of 1 to 15% of the running time of an HF iteration
for different numbers of cores. For this test case, purification
converged in approximately 45 iterations, and it is expected
that fewer iterations are required as the HF iteration itself
converges. Note that no data redistribution of the distributed
F and D matrices was needed after the Fock matrix con-
struction step and before the application of purification. The
distribution of F and D is exactly the distribution needed
for the SUMMA algorithm.

V. CONCLUSIONS

This paper presented a new scalable algorithm for Fock
matrix construction for the HF algorithm. We addressed two
issues: load balance and the reduction of communication
costs. Load balance was addressed by using fine-grained

Table IX: Percentage of time taken by purification in GTFock for
the C150H30 test case.

Cores Tf ock Tpur f %

12 1765.921 19.534 1.09
108 196.954 4.984 2.47
192 111.016 3.982 3.46
768 28.027 1.913 6.39

1728 12.574 1.385 9.92
3072 7.207 1.203 14.30
3888 5.795 0.974 14.39

tasks, an initial static task partitioning, and a work-stealing
dynamic scheduler. The initial static task partitioning, aug-
mented by a reordering scheme, promoted data reuse and
reduced communication costs. Our algorithm has measur-
ably lower parallel overhead than the algorithm used in N-
WChem for moderately-sized problems chosen to accentuate
scalability issues.

We expect that the technology for computing ERIs will
improve, and efficient full-fledged implementations of ERI
algorithms on GPUs will reduce computation time to a
fraction of its present cost. This will, in turn, increase the
significance of new algorithms such as ours that reduce
parallel overhead.

Several avenues are open for future research. The identifi-
cation of improved reordering schemes, and the use of new
“smart” distributed dynamic scheduling algorithms would
lead to improved performance.
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