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We present an efficient implementation of the Obara–Saika

algorithm for the computation of electron repulsion integrals

that utilizes vector intrinsics to calculate several primitive inte-

grals concurrently in a SIMD vector. Initial benchmarks display

a 2–4 times speedup with AVX instructions over comparable

scalar code, depending on the basis set. Speedup over scalar

code is found to be sensitive to the level of contraction of the

basis set, and is best for ðlAlBjlC lDÞ quartets when lD 5 0 or

lB5lD50, which makes such a vectorization scheme particularly

suitable for density fitting. The basic Obara–Saika algorithm,

how it is vectorized, and the performance bottlenecks are ana-

lyzed and discussed. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24483

Introduction

In ab initio computational chemistry, the computation of elec-

tron repulsion integrals (ERI) is often a bottleneck of calcula-

tions. Computation of these integrals scales (formally) as the

fourth power of the number of basis functions, although this

cost is ameliorated somewhat by screening and eightfold per-

mutational symmetry. Because of the expense of calculating

these integrals, there has been much interest in the develop-

ment of fast and efficient methods to calculate ERI, and this

interest has spanned several decades. Different algorithms have

been developed, such as the McMurchie–Davidson scheme,[1]

variations of the Obara–Saika (OS) scheme,[2–7] Rys quadra-

ture,[8–10] and the Accompanying Coordinate Expansion meth-

od.[11] In addition, improvements in computer hardware have

led to specialized implementations, for example on GPUs.[12–16]

Many modern processor architectures and microarchitec-

tures have single-instruction, multiple-data (SIMD) instructions,

which are capable of operating on several data words simulta-

neously. Utilization of these instructions can result in speedups

of 2-4x (or higher), depending on the size of the SIMD vectors.

Previous work on vectorizing the Rys quadrature method[8–10]

has been carried out by Sun,[17] who vectorized an expensive

inner product in Rys quadrature. The LIBINT library, which uti-

lizes OS recurrences, also contains experimental support for

vectorization.[18] Some work has been performed in vectorizing

existing codebases;[19,20] however, this retrofitting usually

results in speedups that are less than would be expected from

a new library that is written from scratch with vectorization in

mind.

One scheme of vectorization algorithms is to first sort ERI

into classes based on a selection criteria; commonly, just the

angular momentum of the four shells would be used; however.

the degree of contraction may also be included.[21–23] For

example, all ðppjpsÞ integrals would be batched together.[21]

This type of approach is sometimes called horizontal vectoriza-

tion. As the code path taken for any particular class is identi-

cal, code for a class could be vectorized such that several

integrals could be computed concurrently using SIMD.

Investigations into issues relating to sorting ERI have taken

place over many years,[21–26] although not much information

can be found with respect to actual implementations of hori-

zontally vectorized integral algorithms.

Here, we present a method by which efficient calculation of

ERI may be achieved by utilizing horizontal SIMD vectorization

of the OS algorithm at several points. Specifically, calculation

of primitive integrals is vectorized manually via the use of

compiler intrinsics, with other parts of the integral calculation

vectorized automatically by the compiler. Code for a specific

class is created for a given microarchitecture via a generator.

The generated code also allows for additional efficiency by

consecutively computing primitive integrals for several con-

tracted shells, resulting in better vector utilization, particularly

for uncontracted shells. We first present the main features of

the OS algorithm, followed by a discussion of the scheme by

which OS may be vectorized. Benchmarks are given showing

the speedup due to vectorization. Bottlenecks preventing effi-

cient vectorization of some parts of the OS algorithm are

analyzed.

OS Algorithm for ERI

For calculation of ERI, our new code, SIMINT, follows the typical

OS method. What follows is a brief overview – we direct the

reader to the literature for a more thorough discussion.[2–7]

The goal is to calculate the ERI of a quartet of contracted

Gaussian basis functions /
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where /A represents a linear combination of primitive Gauss-

ian functions v centered on A5ðAx ;Ay ;AzÞ
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and with identical equations for /B; /C, and /D. The resulting

contracted ERI is then rewritten as a fourfold summation over

primitive ERI
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X
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cAlcBmcCkcDr vAlvBmjvCkvDr
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(3)

where parentheses denote contracted quartets and square

brackets represent primitive quartets. Primitives vA, vB, vC, and

vD represent Gaussian basis functions (centered on A; B, C,

and D, respectively), defined as

vA5ðrx2AxÞix ðry2AyÞiy ðrz2AzÞiz e2ar2

(4)

vB5ðrx2BxÞjx ðry2ByÞjy ðrz2BzÞjz e2br2

(5)

vC5ðrx2CxÞkx ðry2CyÞky ðrz2CzÞkz e2cr2

(6)

vD5ðrx2DxÞlx ðry2DyÞly ðrz2DzÞlz e2dr2

(7)

with exponents a, b, c, d and with total angular momentum

quantum numbers lA5ix1iy1iz , etc. Often, the bracket nota-

tion is recycled to refer to the angular momentum instead.

That is, ½lAlBjlC lD� and ðlAlBjlC lDÞ would refer to “generic” primi-

tive and contracted integrals, respectively, of a particular angu-

lar momentum class.

The first step of the OS algorithm is to generate auxiliary

primitive integrals ½00j00�ðmÞ for integers 0 � m � L and with

total angular momentum L5lA1lB1lC1lD. These integrals can

be computed via evaluation of the Boys function, defined as

FmðxÞ5
ð1

0

t2me2xt2

dt (8)

with the ½00j00�ðmÞ integrals being calculated as

½00j00�ðmÞ5 2p
5
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The various parameters depend on the coordinates and expo-

nents given by the four basis functions
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Next, primitive auxiliary integrals of the form ½ðlA1lBÞ 0j00�ðmÞ

and then ½ðlA1lBÞ 0 j ðlC1lDÞ 0�ðmÞ are formed through use of

the vertical recurrence relations (VRR). For simplification, we

shall adopt the notation used by Helgaker et al.[2] An auxiliary

integral (primitive or contracted) can be written as

HðNÞix ;jx ;kx ;lx :iy ;jy ;ky ;ly :iz ;jz ;kz ;lz
5 vAlvBmjvCkvDr

� �ðNÞ
(16)

with N 5 0 referring to the actual target integrals. A single

recurrence is generally concerned with increasing or decreas-

ing the angular momentum of a single Cartesian component,

and this notation is shortened to HðNÞijkl with the Cartesian index

(x, y, z) inferred from the context. The VRR for incrementing ix

(with j5l50) is given as
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where XPA5Px2Ax and the reduced exponent a5pq=ðp1qÞ.
Identical equations for incrementing iy or iz can be obtained

by replacing XPA with YPA or ZPA, respectively. In addition, incre-

ments of kx can be obtained (again with j5l50) via
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with XQC5Qx2Cx . Again, similar equations can be derived for

incrementing ky and kz in the same manner. Incrementing jx

and lx can be achieved by replacing XPA with XPB and XQC with

XQD, respectively, leaving the rest of the right-hand sides of

eqs. (17) and (18) the same.

Alternatively, an electron transfer (ET) step may be used instead

to generate ½ðlA1lBÞ 0 j ðlC1lDÞ 0� from ½ðlA1lB1lC1lDÞ 0 j00�,
rather than the method outlined above. While performance was

satisfactory, it was found that there exists an inherent loss of pre-

cision in the ET equations, where a subtraction exists between

two floating point numbers of similar magnitude (see Supporting

Information). Overcoming this would be very difficult, particularly

in vectorized code. Therefore, eq. (18) was used instead.

Final integrals ½lAlBjlC lD� or ðlAlBjlC lDÞ are then generated by

the horizontal recurrence relations (HRR)

HðNÞi;j11;k;l5HðNÞi11;j;k;l1XABH
ðNÞ
i;j;k;l (19)

HðNÞi;j;k;l115HðNÞi;j;k11;l1XCDHðNÞi;j;k;l (20)

with XAB5Ax2Bx and XCD5Cx2Dx (and similarly for y and z).

Note that reversing the direction of the relation involves only

changing the sign on XAB and XCD. Calculation of the final inte-

grals via HRR can proceed via several different paths; we have

chosen the simple algorithm given by Makowski, which seeks

to minimize the number of intermediates required to be calcu-

lated and stored.[27]

There are a few important features of this algorithm to keep

in mind. As the HRR steps do not depend on any variables

specific to primitives, the HRR can occur outside of the
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primitive loop. The penalty for doing so, however, is the con-

traction of not only ½ðlA1lBÞ0jðlC1lDÞ0� but also of any inter-

mediates required by eqs. (19) and (20). For highly contracted

basis sets, this is generally beneficial as the gain in efficiency

of performing the HRR outside the primitive loop is more than

that lost by having to perform several contractions, although

this depends on the level of contraction of the basis set.

Lastly, for basis sets without general contractions (or if gen-

eral contractions are not implemented), contraction coeffi-

cients [c from eq. (2)] may be introduced early (typically

immediately after computation of the Boys function). Doing so

reduces the cost of contractions later.

Optimization

Loop structure and shell pairs

Figure 1 shows two possible ways to structure the loops with-

in an ERI calculation. Figure 1a shows a typical, straightforward

loop structure, with loops over all four shell indicies occurring

before loops over primitives within the shell. As vectorization

is, as a general rule, best implemented on the innermost loop,

this structure was considered a poor candidate as the inner-

most loop (over the number of primitives in a single shell,

indexed by l) would often be too short to obtain meaningful

improvements with vectorization. The structure in Figure 1b is

considered more conducive to vectorization than Figure 1a.

The innermost loop is now a flattened loop over all possible

combinations of primitives from shells C and D. This flattening

increases the number of iterations within this innermost loop,

allowing for better vectorization performance. As a further

optimization, values that can be computed from just a pair of

shells (such as p, P; XPA, etc.), can be precomputed and stored

ahead of time. This data is often referred to as “shell pair”

data. In addition, a prefactor for the shell pair can be calculat-

ed that includes the product of the contraction coefficients as

well as some pieces of the prefactor in eq. (9), slightly reduc-

ing the expense for ERI with very low L. The loop structure in

Figure 1b was implemented in SIMINT, with the innermost loop

as the target of vectorization.

Despite flattening, it is not uncommon for the primitive kl

loop to still have only one iteration, as would occur with basis

sets that contain uncontracted shells. As these shells often

have higher values of L (therefore, requiring lots of work in

this loop), the resulting unfilled vectors may seriously reduce

the benefits of vectorization. The solution to this, implemented

in SIMINT, is to allow for the ERI function to compute multiple

shell quartets (of the same class) consecutively in one function

call, and flatten the shell pair data of multiple shell pairs into a

single structure. In that case, the shell pair information is best

laid out in what is often referred to as a “structure of arrays”

(SOA) style (Fig. 2). The data held within this structure is still

calculated prior to entering the ERI function; however, when

laid out in this fashion the innermost loop will often have

more iterations than before.

Figure 1. Different possible loop structures for calculating ERI. The calculation of q within the primitive loop is shown as an example. a) shows a traditional

fourfold loop, first over shells then over primitives of those shells. b) flattens the fourfold loops over shells and primitives into twofold loops over pairs of

shells and pairs of primitives. The values within the shell pair data structures are calculated prior to entering the ERI code. exp represents the exponents

of the basis functions on the centers, and expsum represents the sum of exponents of two Gaussian basis functions.
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Vectorization

There are a few different methods by which the OS algorithm

may be vectorized. A simple replacement of the scalar arith-

metic types with vector types, with no change to the interface

or algorithm, results in a calculation that is vectorized in such

a way that each lane of a SIMD vector register computes a sin-

gle contracted integral (Fig. 3). While straightforward to imple-

ment, this method is inefficient as different contracted shell

quartets may contain very different numbers of primitive inte-

grals, resulting in incompletely filled vectors within the primi-

tive loop. This would be an increasing concern as the vector

length increases, as the number of stored SIMD words must

effectively be the maximum number of primitives of all con-

tracted quartets in the vector.

In SIMINT, another approach was taken. Here, the loop over

primitives was the (main) target of vectorization, as many mod-

ern basis sets utilize at least moderate levels of contraction in

shells with low to moderate angular momentum. Under this

scheme, the entire primitive loop (except for the Boys func-

tion) is completely vectorized, with lanes within a SIMD vector

corresponding to primitive integrals of any contracted shell

quartet (see Fig. 4). The algorithm uses the fourfold loop struc-

ture outlined in Figure 1b; the pseudocode for the vectorized

version is listed in Figure 5. The first loop is a straightforward

loop over individual (precomputed) contracted shell pairs from

the bra side of the requested ERI. The second is a similar loop

over the shell pairs of the ket side, the difference being that

this second loop combines several of these contracted ket

shell pairs into a batch of a preset size. In this case, a vector in

Figure 4 may contain primitives from different contracted shell

quartets. This allows for efficient computation of uncontracted

or lightly contracted quartets, with the batch size controlling

the memory required to store contracted intermediates.

Figure 6 shows the layout of a shell pair structure contain-

ing data from multiple contracted shells and its use in vector-

ized SIMINT. The third loop in Figure 5 runs over single primitive

shell pairs (combining primitives from the first and second

center), which are then broadcast within a SIMD word. The

fourth loop will read in a SIMD word from the ket shell pair.

Vectorization is enhanced when a shell pair structure contains

information from multiple contracted shell pairs in the SOA

format (Loop structure and shell pairs section). In this manner,

the VRR steps are performed in SIMD fashion, with all variables

in eqs. (17) and (18) substituted with vectors with each lane

representing a single primitive quartet (as in Fig. 4).

As many shell quartets may be performed within a single

function call, memory management becomes important. To

reduce memory usage and increase the likelihood of data

being in the processor cache, contracted integrals are comput-

ed in batches (the second loop), such that intermediates for

only a few contracted integrals required for HRR need to be

held at any point. Primitive integrals are computed, and then

contracted into this intermediate workspace. To facilitate this,

padding is inserted between each batch within the shell pair

structure to allow for aligned loading beginning at the start of

the fourth loop.

Contraction

To obtain the best SIMD vector utilization (by reduction of the

number of unfilled vectors), a single vector may contain

Figure 4. Example of primitive vectorization in SIMINT. A single SIMD vector stores primitive integrals from any contracted shell quartet as it moves left to

right. In memory, the index of the primitive integral is the fastest index. Only one vector (4 primitives) for each integral need to be stored at one time

within the primitive loop. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. Example of the simple approach to vectorizing ERI. A SIMD lane rep-

resents a primitive from a single contracted shell quartet or contracted integral

(for example, the first lane always maps to the first contracted integral). In this

figure, the number of primitives differs for each contracted integral, resulting

in unfilled vectors as the SIMD vector moves downward. In memory, the index

of the contracted integral is the fastest index. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Storage of shell pair information within SIMINT. A single structure

holds data from multiple pairs of shells sequentially within an array. In this

example, shell s1 contains two primitives p1 and p2. Shell s2 contains four

primitives p1–p4.
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primitives from more than one contracted shell quartet. Vecto-

rizing the primitive loop in this way will also have benefits for

uncontracted quartets, as the single primitive from multiple

contracted quartets may occupy the same vector. Due to this

requirement, however, contraction at the end of the primitive

loop becomes relatively complex and inefficient, as it requires

logic to handle cases where contracted shell boundaries occur

within a SIMD vector (see Fig. 7). In some cases, a somewhat

efficient algorithm involving SIMD swizzle operations can be

used. In particular, if the vector contains primitives from a sin-

gle contracted shell quartet, a combination of horizontal addi-

tion instructions may be used to alleviate some of the

expense of breaking the vector into individual elements and

summing them.

For the most part, however, this accumulation is relatively

expensive, particularly for high values of L. This is exacerbated

by the need to contract all of the intermediates required by

HRR. This is expected to scale poorly with respect to both the

value of L and the length of the SIMD vector. Despite this,

benchmarks (Benchmark Results section) show that it is still

beneficial to perform the calculations within the primitive loop

in SIMD fashion.

Horizontal recurrence

The HRR steps are performed outside of the primitive loop. As

currently implemented, the ordering of the contracted inte-

grals (Fig. 7) is not conducive to vectorization of the horizontal

recurrence step in manner similar to that of the primitive loop.

That is, horizontal vectorization of the HRR (one contracted

shell per SIMD lane) would require the index of the contracted

shell quartet be the fastest index. Implementation of this is

possible, but would require permutation of the “final” integrals

to the more commonly accepted ordering, where the shell

quartet is the slowest index.

We have not explicitly vectorized the HRR steps as it can be

mostly vectorized automatically by the compiler. Specifically,

HRR in the bra part of the quartet [eq. (19)] may be automati-

cally vectorized. To see this, consider the indexing of the Car-

tesian components. For a quartet ðlAlBjlC lDÞ, with angular

momentum lA containing NA5ðlA11ÞðlA12Þ=2 Cartesian com-

ponents (and similarly for lB, lC, and lD), the index for a specific

Cartesian ERI ðijjklÞ, with i; j; k; l being indicies of the Cartesian

component of a shell, is calculated as

idx5iNBNC ND1jNC ND1kND1l (21)

or, combining the indicies within the bra and ket

idx5INket1K (22)

Nket5NC ND (23)

I5iNB1j (24)

K5kND1l (25)

Given that the ket is identical for all terms in eq. (19), one par-

ticularly efficient way to perform the bra HRR is to carry out

all required steps within a loop over the combined ket index K

over the range ½0;NketÞ. As the integrals are stored with k (and

therefore K) effectively being the fastest index, the compiler

may efficiently vectorize the loop, performing the bra HRR for

several values of K at once. There does not appear to be such

a beneficial layout for ket HRR, however.

Figure 6. Storage and loading of shell pair information within SIMINT. Single

values are taken from shell pair AB and broadcast within a vector. Multiple

values are taken from CD. Intermediate values are then created from these

vectors, with each lane representing a primitive integral (shell quartet). At

the bottom is an example of how two vectors (containing exponents) are

combined to form q in eq. (11). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 5. Basic pseudocode and loop structure for OS with a vectorized primitive loop, as implemented in SIMINT. Intermediates required for HRR are

stored in contwork. The index CDbatch counts the batches of contracted integrals being done consecutively in the primitive loop, and li; lj; lk, and ll are

the angular momentum of the four centers. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Code Structure

SIMINT consists of a flexible generator written in C11 which is

used to generate pure C source code. The generator will cre-

ate a function and source file per quartet class ðlAlBjlC lDÞ that

utilizes intrinsics based on the given CPU flags of the target

processor or microarchitecture. Generally, the functions are

generated for lA � lB; lC � lD, and lA1lB � lC1lD. An experi-

mental feature is available where the generator will create

source files without restriction to the order of the angular

momentum. The integrals in this case are generated directly

via VRR and HRR as before; in that case, SIMINT does not per-

mute the basis functions and the final integrals. The Cartesian

ordering on output follows the default order of LIBINT.

Currently, SIMINT supports only the SSE and AVX instruction

sets, and must be compiled with the Intel compiler (2015 and

above). Support for other compilers and instruction sets is

planned and should be straightforward to implement.

Benchmark Results

Benchmarks were performed on a machine containing an Intel

Xeon E5-2698 v3 @ 2.30GHz (Haswell) processor. These pro-

cessors are capable of AVX instructions; therefore, 256-bit

intrinsics were used when possible. The thread affinity was set

to “scatter” via the KMP_AFFINITY environment variable. See

the Supporting Information for the compiler flags used. The

benchmarks were performed on benzene (C6H6, experimental

structure[28,29]) with the aug-cc-pVTZ[30] and the triple-zeta

atomic natural orbital (ANO-TZ) basis sets. Basis functions were

sorted into their respective classes prior to benchmarking; this

sorting is not included in the timings.

Sections of code were timed by counting processor ticks via

the rdtsc processor instruction. Reported timings are the num-

ber of processor ticks required to compute all integrals of the

given quartet for the given molecule and basis set.

Comparisons were made to two common ERI libraries:

LIBINT
[18] (v2.0.5) and LIBERD.[31]

LIBINT and LIBERD were compiled

with AVX flags, allowing for compiler-generated vectorization;

explicit vectorization was not enabled in LIBINT.† Comparisons

were also made to a scalar version of SIMINT, which was gener-

ated without intrinsics and with explicit disabling of compiler

vectorization. Validation of accuracy of computed integrals

was carried out by comparing the values for contracted ERI

across all libraries, and by comparison with values generated

via the validation functionality distributed with LIBINT.

Both SIMINT and LIBINT were developed to take advantage of

fused multiply-add instructions, and LIBINT was compiled with

this functionality enabled. Benchmarks for SIMINT utilize FMA

when compiled with vectorization, but not when compiled in

scalar mode. LIBINT is neither responsible for evaluating the Boys

function nor for calculating many of the prerequisite values [i.e.,

eqs. (10–15)] required for ERI calculation. The benchmark results

for LIBINT include the time to compute the Boys function via the

same method used by SIMINT (interpolation via Taylor series or

utilization of the long range approximation); therefore, care

must be taken in interpreting the results for quartets with very

low L, where evaluating these prerequisites is expected to be a

significant portion of the overall computation time. In particular,

the ðssjssÞ quartet does not require calling any LIBINT code at all.

Therefore, the timing for ðssjssÞ should be roughly equivalent to

that of the scalar version of SIMINT.

The time required to compute shell pair information was

measured and was found to be negligible (generally less than

0.1% of the total time for a given quartet class). Nevertheless,

this time is included in the timings for SIMINT and LIBINT. The

same shell pair routines from SIMINT were used to calculate the

prerequisite data for LIBINT, although the data required copying

from the SIMINT format to the LIBINT structures. The time required

for this copy is not included in the timings for LIBINT.

Figure 7. Example of contraction of vectors at the end of the primitive loop. On the left, all lanes of the SIMD vector belong to the same contracted inte-

gral. On the right, the last lane belongs to a different contracted integral than the others. Note the memory layout of the contracted integrals versus the

vectorized primitive integrals. In the labels, C is the contracted quartet index, P is the primitive quartet index within the contracted quartet. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

†Some initial benchmarks were obtained with explicit vectorization in

LIBINT; however, as this functionality is still considered experimental, results

are not included here. LIBINT utilizes the simplified vectorization scheme

(Fig. 3), and therefore, performance is expected to be poor.
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Any required permutation or spherical transformation of the

basis functions or final integrals (as would be needed in pro-

duction computational chemistry software) are not included in

any benchmark. Permutational symmetry within individual

shell quartets was also not taken into account, and screening

was not performed. Any general contractions within the basis

set were converted to additional segmented shells.

Speedup with the aug-cc-pVTZ basis

Speedup is calculated as the ratio of time for the baseline cal-

culation versus the time for the optimized calculation. Figure

8 shows the speedup of vectorized SIMINT over its scalar coun-

terpart with the aug-cc-pVTZ basis. The speedup over scalar is

generally in the range of 1.5 to 3.0, with quartets of type

ðfsjfs) performing the best. The worst performing quartets are

ðssjssÞ and several quartets of high L, which are only slightly

faster with vectorized code than with scalar code. Only 13

quartet types have speedup below 1.5, and all are at least as

fast as the scalar code. In general, quartets in which most

computation is performed in the primitive loop display the

best speedup. These are generally any quartets in which eq.

(17) must be evaluated with lA; lC 6¼ 0. Quartets that contain

HRR computation only in the bra of the quartet (i.e.,

lA; lB; lC 6¼ 0) or where very little HRR is required in the ket part

(lD 5 1) also tend to have very good speedup over the scalar

code. This advantage comes from the fact that there is a lot of

work performed in the primitive loop in forming the inter-

mediates required for HRR, and from the fact that the HRR is

effectively auto-vectorized by the compiler in these cases (see

Horizontal recurrence section). This auto-vectorization was

explicitly disabled for the scalar code.

Quartets with the highest values of total angular momen-

tum L demonstrate a speedup of between 1.0 and 1.5, and

have especially poor speedup when lD 6¼ 0. For example,

speedups are measured as 2.7, 2.0, and 1.3 for

ðddjdsÞ; ðddjdpÞ, and ðddjddÞ, respectively. One reason for this

that the increasing amount of computation being performed

in the unvectorized ket HRR loops. Another factor for the

poorer speedup is the expense of the contraction step at the

end of the primitive loop. This is worst with quartets of high L

value, where many intermediates must be contracted before

exiting the primitive loop. For example, contractions are much

more expensive for ðddjddÞ than for ðdsjdsÞ; as there is no

HRR required for ðdsjdsÞ, only primitive ½dsjds� integrals must

be contracted. The HRR for ðddjddÞ requires contraction

of ½dsjds�; ½dsjfs�; ½dsjgs�; ½fsjds�; ½fsjfs�; ½fsjgs�; ½gsjds�; ½gsjfs�, and

½gsjgs� primitives (all of which are obtained via VRR). Inefficien-

cy in contraction due to vectors containing primitive integrals

from multiple contracted quartets (which requires accessing

individual elements of the vector) becomes exacerbated due

to the need to contract all these different quartets. Therefore,

for the aug-cc-pVTZ basis, the expense of the contractions is

worsened by the uncontracted nature of the d and f quartets

in benzene. For entirely uncontracted shell quartets, each lane

within a vector is from a different contracted quartet, which is

particularly slow. How to efficiently handle these cases is this

scheme still an open question, and may involve logic to deter-

mine when it is more efficient to perform the HRR within the

primitive loop rather than performing the expensive contrac-

tion, similar to the PRISM algorithm.[32]

Some quartets with very small L, such as ðssjssÞ and ðpsjssÞ,
also have somewhat low speedup. These quartets spend much

of their time in calculation of the Boys function, which con-

tains poorly vectorized table lookups. In addition, calculation

of divisions and square roots, also needed in evaluation of the

Boys function but also for the prefactor in eq. (9), are also a

greater fraction of the computational expense for these quar-

tet types. On the Haswell microarchitecture, these instructions

execute on the same port, are not pipelined, and are not fully

vectorized.[33] As L increases, the square root and division

become a smaller fraction of the expense, and as expected

the speedup of the vectorized code over the scalar code

increases.

Figure 9 shows the speedup of SIMINT over LIBINT (compiled

with vectorization applied automatically by the compiler).

Overall, the speedup is generally slightly better (around 1.5 to

3.5) than over scalar SIMINT; this is greater than the speedup

over scalar SIMINT, indicating that the generated scalar code is

somewhat faster than LIBINT as well. Quartets with high L and

requiring much work in the HRR portion of the code again

perform the worst. Quartets that perform particularly well

when compared to LIBINT are also those that perform well

against scalar SIMINT, namely the ðfsjfsÞ; ðff jfsÞ, and ðfdjssÞ

Figure 8. Speedup of SIMINT compared to scalar SIMINT. Benchmarks performed with benzene with the aug-cc-pVTZ basis.
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quartets. This is expected, as LIBINT also uses OS recurrence rela-

tions in calculation of its integrals. (It should be noted again

that LIBINT is not responsible for calculation of the Boys func-

tion.) In addition, for quartets with very low L, a relatively large

portion of time is spent in the preparation stage prior to call-

ing LIBINT. At this stage, several factors are calculated without

explicit vectorization.‡

Figure 10 shows the comparison of LIBERD with SIMINT. With

this molecule and basis set, SIMINT is often much faster than LIB-

ERD. For very low angular momentum, SIMINT has a speedup of

only 2.0 to 5.0, again likely due to the bottleneck in divisions,

square roots, and the Boys function. For high angular momen-

tum, LIBERD performance improves, likely as the efficiency of

Rys quadrature in this regime begins to take over. For the

moderate values of angular momentum, SIMINT displays a

speedup of between 4.0 and 11.0, particularly for quartets

where HRR is not performed in the ket part (lD 5 0). Once

again, SIMINT performs relatively poorly for quartets such as

ðddjddÞ due to the required contractions and the unvectorized

ket HRR sections taking a larger amount of time.

Speedup with the ANO-TZ basis

As seen in the previous section, the speedup of SIMINT has a

dependence on the amount of contraction needed to be per-

formed at the end of the primitive loop. The efficiency of this

step depends on whether or not the vectors contain primitive

quartets from more than one contracted shell—as mentioned

in Contraction section, it is more efficient to perform the con-

tractions if the vector contains primitive quartets from only

one contracted shell. It is also expected that the speedup

would also depend on the relative amount of work performed

in the (vectorized) primitive loop versus outside the loop (i.e.,

HRR). Taking these into account, the uncontracted nature of

several of the shells in aug-cc-pVTZ provide a worst-case sce-

nario for SIMINT, and the code is expected to perform better

with a more highly contracted basis set.

Figure 11 shows the speedup of SIMINT over the correspond-

ing scalar SIMINT code when using the ANO-TZ basis set. This

basis set has the same number of contracted integrals as aug-

cc-pVTZ; however, it contains a much greater level of contrac-

tion and therfore a much greater number of primitive inte-

grals. In this case, SIMINT exhibits a speedup of between 2.0 and

4.0, with 23 quartets having a speedup greater than 3. This is

substantially better than with the aug-cc-pVTZ basis, as pre-

dicted. Once again, quartets with lD 5 0 (or even lD51Þ per-

form much better than other quartets with similar L, and the

worst-performing quartets tend to have relatively little compu-

tation done within the vectorized primitive loop. Figure 12

shows the speedup of vectorized SIMINT over LIBINT, where SIMINT

shows a similar or better speedup over LIBINT than over scalar

SIMINT, with 19 quartets showing a speedup of between 2 and

3, and 31 having a speedup greater than 3.0. The patterns

seen in Figure 11 with regards to the efficiency of quartets

with lD 5 0 is still evident in Figure 12. The advantage of SIMINT

over LIBINT is similar for both the ANO-TZ and aug-cc-pVTZ

bases.

The speedup of SIMINT over LIBERD for the ANO-TZ basis (Fig.

13) is not as good as for the aug-cc-pVTZ basis, although it is

still substantial, with most quartets showing a speedup of at

least 3.0, and many showing a speedup greater than 5.0. For

very large L, SIMINT and LIBERD are once again on par, and it is

expected that LIBERD will become faster for L> 12, even with

the vectorization performed in SIMINT.

Conclusions and Future Work

We have presented a scheme whereby the primitive loop of the

calculation of ERI (via OS recurrence relations) is vectorized via

compiler intrinsics. Additionally, some calculations performed in

the HRR step are efficiently auto-vectorized by the compiler.

This scheme was implemented in a new code, SIMINT. Bench-

marks against other ERI codes show favorable results on the

Haswell microarchitecture, which is capable of AVX instructions.

In particular, SIMINT displays very good speedup over its scalar

counterparts when calculating quartets of the form ðlAlBjlC 0Þ,
due to the heavy computation done in the primitive loop and

the auto-vectorization of HRR. This efficiency may be very

advantageous when combined with density fitting,[34–37] as only

Figure 9. Speedup of SIMINT compared to LIBINT. Benchmarks performed with benzene with the aug-cc-pVTZ basis.

‡Also at this stage, data is copied from shell-pair data structures to LIBINT

internal data structures. This copying may be particularly expensive, as

the layout does not lend itself well to optimization or vectorization (by

the compiler) nor to simple memory operations (such as memcpy). The

timing of this copy, however, is not included in the timings here.

FULL PAPER WWW.C-CHEM.ORG

2544 Journal of Computational Chemistry 2016, 37, 2537–2546 WWW.CHEMISTRYVIEWS.COM



three-center and two-center integrals need to be computed,

which may be done via ðlAlBjlC 0Þ and ðlA0jlC 0Þ functionality,

respectively.

Vectorizing ERI for CPUs in the way outlined above has some

benefits over previous GPU implementations. One such advan-

tage is that data can be explicitly shared within the SIMINT

scheme, whereas data must be copied to separate thread

blocks in a GPU. Another is that the contracted integrals can be

computed only a few at a time and then accumulated, whereas

the implementation in Ref. 12 requires storage (at one point) of

all primitive integrals being calculated by the GPU, which can

be expensive for high angular momentum shell quartets.

Future work will focus on improving the vectorization effi-

ciency of the contraction and HRR steps which, as shown in

Benchmark Results section, are major sources of inefficiency.

One possibility is to generate separate functions for different

levels of contraction – this is essentially the idea behind the

PRISM algorithm.[32] This would allow for skipping the expen-

sive contractions and performing the HRR within the primitive

loop when the contraction level is low. As these uncontracted

Figure 10. Speedup of SIMINT compared to LIBERD. Benchmarks performed with benzene with the aug-cc-pVTZ basis.

Figure 11. Speedup of SIMINT compared to scalar SIMINT. Benchmarks performed with benzene with the ANO-TZ basis.

Figure 12. Speedup of SIMINT compared to LIBINT. Benchmarks performed with benzene with the ANO-TZ basis.
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shells are often of higher angular momentum, another possibili-

ty is the implementation of Rys quadrature[8–10] for those shells.

We are currently investigating how to best use SIMINT with

screening in such a way that calculation of some integrals may

be skipped. Screening is the responsibility of the calling pro-

gram; however, it may be needed to be performed differently

to pass multiple shell quartets to SIMINT.

It seems likely that this scheme will scale relatively well with

increasing vector lengths—work is proceeding on implement-

ing this scheme on hardware with longer vector widths. In

particular, investigations are being performed into utilizing the

scheme on the Intel Xeon Phi, which contains 512-bit vectors

capable of working with eight doubles.
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Figure 13. Speedup of SIMINT compared to LIBERD. Benchmarks performed with benzene with the ANO-TZ basis.
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