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Abstract. Many algebraic multilevel methods for solving linear systems assume that the slow-
to-converge, or algebraically smooth error is locally constant. This assumption is often not true and
can lead to poor performance of the method. Other multilevel methods require a description of the
algebraically smooth error via knowledge of the near-nullspace of the operator, but this information
may not always be available. This paper presents an aggregation multilevel method for problems
where the near-nullspace of the operator is not known. The method uses samples of low-energy error
vectors to construct its interpolation operator. The basis vectors for an aggregate are computed via
a singular value decomposition of the sample vectors locally over that aggregate. Compared to many
other methods that automatically adjust to the near-nullspace, this method does not require that
the element stiffness matrices are available.
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1. Introduction. Algebraic multilevel methods use complementary smoothing
and coarse-grid correction processes for solving linear systems from discretized par-
tial differential equations. In these methods, slow-to-converge error, or algebraically

smooth error, is the error that remains after the smoother has been applied and that
must be reduced at the next level. The interpolation or prolongation operator, P ,
must be able to represent this algebraically smooth error on the coarser level, i.e., P

must be constructed such that the algebraically smooth error is in the range of P .
To accomplish this, multilevel methods traditionally must make assumptions about
the nature of the algebraically smooth error. In standard algebraic multigrid (AMG),
algebraically smooth error is assumed to be locally constant or slowly varying along
strong couplings [21].

In aggregation multilevel methods for elliptic PDEs, the near-nullspace of the
discrete operator is assumed to locally form an approximate basis for the algebraically
smooth error. For second- and fourth-order PDEs, these near-nullspace vectors are
constants and linear functions [23]; for linear elasticity, these vectors are rigid body
modes [9]. If it is known that the solution is physically smooth, then along with
the constant vector, the geometric coordinate vectors of the grid points, x, y, and z,
and monomial functions of these may locally represent the algebraically smooth error.
Similarly, for p-version finite elements, appropriate basis vectors are also known [18].

Algebraic multilevel methods often fail because the above assumptions do not
hold. For example, a scaling of the matrix on the right by a non-constant diagonal
matrix (different values along the diagonal) will change the near-nullspace. (See [6] for
other examples.) In other cases, the near-nullspace and the nature of the algebraically
smooth error are simply not known. Further, for aggregation methods, it may be
desirable for some problems to use other low-energy vectors in addition to the near-
nullspace vectors. A procedure is then needed to compute and incorporate these
additional vectors.
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Multilevel methods have been developed that are designed to be more robust and
more general by not making assumptions about the algebraically smooth error for
a given problem. The earliest methods constructed interpolation to fit global low-
energy eigenvectors, which were computed approximately, or approximate solutions
to the homogeneous error equation, Ae = 0. These methods date back to some of the
original AMG papers [20, 21, 19] (see also [6] for additional early references).

Recently developed methods generally fall into two categories: 1) those that at-
tempt to reduce some measure of the interpolation error and usually involve eigenvec-
tor calculations for aggregate matrices (also called element agglomerate matrices), and
2) adaptive methods based on approximately solving the homogeneous error equation.

The interpolation operator, P , may be constructed by minimizing a measure of
the interpolation error [2, 1, 4],

min
P

(

max
u

min
v

‖u− Pv‖2

‖u‖A

)

, ∀u 6= 0,(1.1)

where it is assumed that A is scaled to have a unit diagonal. A better minimum leads
to a better convergence rate for a two-level method. However, to be practical, the
minimization (1.1) must be localized over an aggregate of elements or grid points. In
an element-based AMG method [4], the interpolation weights are determined essen-
tially by fitting the eigenvectors of the aggregate matrices (which sum to the global
matrix, without boundary conditions). For aggregation multilevel methods, a local
basis for the algebraically smooth error for an aggregate is formed by the low-energy
eigenvectors of the aggregate matrix [13, 7, 4, 10]. Additional basis vectors can be
used to improve the convergence rate [7, 10]. The above approaches, however, are
designed for finite element discretizations and require access to the element stiffness
matrices. (See, however, approaches that avoid the explicit use of element stiffness
matrices [14].)

Related to minimizing a measure of the interpolation error is the energy mini-
mization technique [24]. Here, P is constructed by directly optimizing a constant in
the subspace correction framework [25], thus improving the convergence rate. The
stability and approximation inequalities are satisfied, guaranteeing mesh-independent
convergence.

In the category of adaptive methods are techniques that avoid element stiffness
matrices and eigenvectors altogether. In these strategies, a few iterations of the
“current” method are applied to the homogeneous problem, Ae = 0, to reveal the
components of the error that are slow to converge. These components can then be
used to update the current method. Versions based on both smoothed aggregation [6]
and AMG [3, 16, 5] have been developed. In Bootstrap AMG [3], the interpolation
weights are constructed via a least-squares fit of a block of algebraically smooth error
vectors. The method is currently being extended to high-order PDEs [15]. In αAMG
[16, 5], an interpolation formula involving an algebraically smooth error vector is
used. Adaptive AMG methods can also be defined when AMG is accelerated by a
Krylov subspace method. For example, in a conjugate gradient iteration, the Ritz
vectors corresponding to the smallest eigenvalues can be used to update the multigrid
method’s interpolation operator [17].

In this paper, we present a new method of utilizing samples of algebraically
smooth error to build an interpolation operator for the smoothed aggregation method.
Like Bootstrap AMG, the interpolation operator is built by fitting a block of alge-
braically smooth error vectors simultaneously. However, the smoothed aggregation
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framework which we use requires only one minimization per aggregate, rather than
one minimization per fine grid-point. The basis vectors for the aggregates are com-
puted via a truncated singular value decomposition of the sample vectors locally over
each aggregate. The method can be made adaptive by approximately solving Ae = 0
and updating the set of algebraically smooth error vectors, like the adaptive methods
described above.

In Section 2, the new interpolation operator is described. The interpolation is
matrix dependent; anisotropies and physical jumps in the PDE problem are reflected
in the interpolation operator. The number of sample vectors and the number of
basis vectors per aggregate are also discussed. Section 3 presents numerical results
on isotropic and anisotropic diffusion problems and a plane strain problem, showing
detailed results with different parameters. The section also illustrates the use of
a Lanczos process to generate the algebraically smooth sample vectors. Section 4
concludes this paper.

2. Interpolation using algebraically smooth error vectors.

2.1. New interpolation operator. In this section, we describe an interpola-
tion operator based on aggregating variables or grid points that is constructed from
samples of low-energy vectors, rather than eigenvectors of aggregate matrices. Here,
we assume that disjoint aggregates are given. We also suppose that the coefficient
matrix, A, at each grid level has been reordered such that the rows and columns of
A for an aggregate are ordered together and consecutively by aggregates. This will
simplify the notation in this paper. Finally, we will discuss the two-level case, and
defer the extension to multiple levels to Section 2.5.

For aggregate i, let ni denote the number of variables that are aggregated. Each
aggregate will be represented by ki variables on the coarser level, with ki ≤ ni, and
each variable corresponding to a basis vector used to interpolate the error over that
aggregate.

As in smoothed aggregation [22, 23], we will smooth the tentative interpolation
operator in order to reduce the energy of the basis functions. Thus, we begin by
seeking a rectangular tentative interpolation operator of the form

P̃ =

















P̃1

. . .

P̃i

. . .

P̃J

















for J aggregates, where P̃i is composed of the ki tentative basis vectors for aggregate
i. The matrix P̃ is block diagonal because the grid-point aggregates are disjoint.

Let S = [s1, . . . , sm] be a block of m algebraically smooth error vectors. These
vectors may be generated by applying the smoother (to be used in the multigrid
solution process) to the homogeneous equations,

Asi = 0, i = 1, . . . , m,

(or AS = 0 in block form) with a random initial guess for each si. The components
of the random initial guesses are chosen uniformly from (-1,1). Choosing positive
components is very advantageous for some problems, but is less general. (Another
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method for generating S will be discussed in Section 3.3.) When the near-nullspace of
A is known, then S should be composed of these near-nullspace vectors. In this case,
method will be the same as the smoothed aggregation method [23] if all ki equal the
number of near-nullspace vectors. The samples, S, may be partitioned as

S =

















S1

...
Si

...
SJ

















corresponding to the partitioning of P̃ .
Given Si, the portion of the sample vectors corresponding to aggregate i, we seek

P̃i, a rank ki approximate basis for Si. Formally, we seek

min
P̃i,W

‖Si − P̃iW‖2

for a given ki, with ki ≤ m. The minimum is achieved when

P̃iW = Uki
Σki

V T
ki

,

where Uki
Σki

V T
ki

is the rank ki truncated singular value decomposition of Si. By

matching variables, P̃i is defined to be Uki
, the first ki left singular vectors. We note

that the computations are small, dense SVD computations.
This technique exploits the fact that a local portion (over an aggregate) of an

algebraically smooth sample vector may have larger or smaller local energy than
the same portion of other algebraically smooth sample vectors. The truncated SVD
reduces the effect of the higher-energy portions, while capturing the desirable low-
energy components which are more typical. By using more sample vectors than ki

(the minimum required), the constructed bases are generally improved, as will be
shown in Section 3.

Recalling (1.1), samples with lower energy must be better approximated by the
basis vectors than samples with higher energy, i.e., we wish to have a smaller approx-
imation residual corresponding to samples with smaller energy. This can be accom-
plished, although imprecisely, by scaling each sample vector, sj , by (sT

j Asj)
−1 before

computing the singular value decomposition. (Empirically this scaling was more effec-
tive than (sT

j Asj)
−1/2.) This is particularly important if the sample vectors have very

different energy norms. Ideally, we would like to scale the local portion of the sample
vectors by their local energy norms. However, this would require the construction of
aggregate matrices.

Finally, to reduce the energy of the basis functions, P̃ is smoothed one step by a
Jacobi smoother to construct the final P . The Jacobi smoother is

I −
4

3ρ
D−1A,(2.1)

where D is the diagonal of A, and ρ is the spectral radius of D−1A estimated by a
few steps of a Lanczos or Arnoldi method. This smoothing preserves the null vectors
of A.
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Fig. 2.1. Local energy of samples and singular vectors vs. number of sample vectors. The
energy of the first singular vector generally decreases when more samples are used, but decreases
very slowly after a moderate number of samples. Note the decrease in the energy of the first singular
vector when low-energy samples are generated at steps 4, 9, and 15.

2.2. Number of sample vectors. The number of sample vectors is a parameter
of this method. A larger number of sample vectors will improve the convergence rate,
but this must be balanced with the cost of generating these sample vectors and the
cost of larger SVD computations.

Figure 2.1 plots the local energy of each of 20 sample vectors for a 9-node aggregate
of a 1-D isotropic diffusion operator. The sample vectors were generated by 3 steps
of symmetric Gauss-Seidel (SGS) applied to the homogeneous error equation with
random initial guesses. The figure also plots the local energies of the first, second,
and third singular vectors as the number of sample vectors increases. It is evident
that the first singular vector has the least energy compared to the second and third,
and that the energy of the first vector generally decreases when more sample vectors
are used. Interestingly, the energy of this singular vector appears to decrease when
a new sample vector with very low energy is generated. High-energy sample vectors
do not dramatically affect the energy of the first few singular vectors. However, after
a moderate number of sample vectors, the energy of the first singular vector then
decreases very slowly. Thus, using a very large number of sample vectors is not
efficient, and should be balanced with the number of smoothing steps applied to each
sample vector. This will also be reflected in the numerical tests of the convergence
rate. We note that in these examples, the local energy of each sample is plotted. In
practice, these local energies cannot be computed if the local aggregate matrices are
not known.

2.3. Example. Figure 2.2 shows a sample of algebraically smooth error and
three basis vectors produced for an anisotropic diffusion problem with Dirichlet bound-
ary conditions on a 32 × 32 grid. The direction of anisotropy is 45o (bottom left to
top right). The aggregates, shown by the lighter boundary lines, are 4×4 grid points.
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The value at each grid point is indicated by the gray-level of the grid point. For the
illustration to be clear, 20 sample vectors were used, with 20 SGS smoothing steps
for each vector.

As expected, in Figure 2.2(b), the first basis vector contains nearly locally con-
stant values over each aggregate. Some aggregates have positive values and others
negative, which explains the two different gray-levels predominant for this basis vec-
tor. It is also noticeable in the figure that at the Dirichlet boundaries there is a decay
of the basis vectors toward zero. This problem-dependent behavior is a feature of this
method.

Figure 2.2(c) shows that the second basis vector over each aggregate varies slowly
in the direction of anisotropy, like the algebraically smooth error, and varies sharply
in the cross direction, again like the smooth error. Figure 2.2(d) shows that the third
basis vector is oscillatory in the cross direction, which is very helpful in representing
the algebraically smooth error in this example. This quadratic-like function would
not normally be chosen by other methods; the standard choice of three basis vectors
for this example is composed of the constant and the x and y coordinate vectors.

2.4. Number of basis vectors per aggregate. In the smoothed aggregation
method [23], the number of basis vectors is chosen beforehand, with each vector being
a near-nullspace vector that is known for the problem. In spectral AMGe [10] and
the method in [7], the number of basis vectors may be different for each aggregate,
and may be chosen such that (1.1) is bounded. In the method presented here, the
number of basis vectors may also be different for each aggregate, but no bound on
(1.1) is possible.

For aggregate i, the number of basis vectors, ki, may be chosen based on the
singular values from the singular value decomposition of Si. More basis vectors will
improve interpolation for the given aggregate, but increase the cost of the method.
One strategy for selecting ki is to choose the singular vectors that correspond to
singular values that are larger than δ times the largest singular value, with 0 ≤ δ < 1.
A sharp decay of the singular values indicates that only a few singular vectors suffice
to accurately represent the sample vectors.

To illustrate this, consider two anisotropic diffusion problems on a 32 × 32 grid
using 4 × 4 aggregates. The two problems have different angles of anisotropy, 0o and
45o. Figures 2.3(a) and 2.3(b) plot the first seven singular values for every aggregate
for these two problems. Each curve represents an aggregate, with the singular values
scaled such that the largest one for each aggregate is unity. For an angle of anisotropy
of 0o, it is natural to use four basis vectors since there are four lines of grid points in
each aggregate, and this is reflected in the singular values. For an angle of anisotropy
of 45o, a smaller number of basis vectors for many aggregates appears adequate.

2.5. Extension to multiple levels. Once P has been defined for an operator
A, the operator at the next coarser level may be defined by the Galerkin coarse-grid
operator, Ac = P T AP . The method can be extended to multiple levels by applying
the method recursively to solve the coarse-grid correction equations involving Ac.

To apply the method to Ac, a set of algebraically smooth error vectors for Ac is
needed. These vectors may be generated from scratch, but the following procedure is
more effective.

Recall that S denotes m low-energy vectors for A. We seek T , which denotes m

low-energy vectors for Ac. If T is constructed such that

S = PT,
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(a) Sample of algebraically smooth
error

(b) First basis vector

(c) Second basis vector (d) Third basis vector

Fig. 2.2. An anisotropic diffusion problem with Dirichlet boundary conditions. The first basis
vectors (b) are nearly constant over each aggregate. The second (c) and third (d) basis vectors
vary slowly in the direction of anisotropy, and sharply in the cross direction, like the sample of
algebraically smooth error (a).

then AcT = P T AS ≈ 0 and the vectors in T have small energy. Assuming that
P ≈ P̃ , then aggregate-wise we have

Si ≈ P̃iTi,(2.2)

where Ti is the portion of T corresponding to aggregate i. From the SVD of Si already
computed,

Si = UiΣiV
T
i(2.3)

≈ P̃iΣki
V T

ki
,(2.4)
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(a) anisotropy angle = 0o
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(b) anisotropy angle = 45o

Fig. 2.3. First seven singular values for each aggregate (each curve represents an aggregate),
scaled such that the first singular value equals unity. The plot suggests using four and three basis
vectors for (a) and (b), respectively.

and, by matching variables in (2.2) and (2.4), we define

Ti = Σki
V T

ki
.(2.5)

Once T is formed, it generally is not smooth enough due to the approximations
made and the fact that this is a representation of a smooth vector on a coarser grid.
The energy of the vectors in T can be further reduced by applying a few steps of a
relaxation procedure to AcT = 0 using T as an initial guess. We have found that for
small problems, only a small number of steps is needed, and additional steps do not
significantly improve the convergence rate. For large problems, additional steps can
be advantageous. After some experimentation, we used two steps of SGS relaxation,
which is a compromise between small and large problems.

For efficiency, it is possible to perform these smoothing steps along with the
spectral radius estimation required by the prolongation smoother (2.1) by performing
matrix-vector products with a block of vectors simultaneously.

3. Numerical Tests. In this section, we test smooth-vector interpolation in a
multigrid-preconditioned Krylov method. For the multigrid method, restriction is
defined to be the transpose of interpolation, the coarse-grid operator is the Galerkin
coarse-grid operator, and V(1,1) cycles are used, with symmetric Gauss-Seidel smooth-
ing. Unstructured aggregation of the grid points was performed using the algorithm of
the smoothed aggregation method [23], with a strength threshold of 0.08. For coarser
levels and non-scalar problems, the degrees of freedom corresponding to a grid point
are always aggregated together. We denote this multigrid method by SVMG.

The test problems are discretizations of 2-D unstructured isotropic and anisotropic
diffusion equations,

auxx + buyy = f in Ω = (0, 1)2

u = 0 on ∂Ω

where a = b = 1 for the isotropic problems and a = 1 and b = 1000 for the anisotropic
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problems. Random right-hand sides were used. The discretization was linear triangu-
lar finite elements. Most of the tests were performed with the largest test problems,
UNI7 and ANI7 (isotropic and anisotropic, respectively), which have 205,761 equa-
tions and 1,436,481 nonzeros. Smaller test problems were also used. In addition, one
test with a plane strain problem was performed and will be described later.

Conjugate gradient acceleration was used with a zero initial guess. The iterations
were stopped when the preconditioned residual norm was decreased by 8 orders of
magnitude. The experiments were run on a Linux 1.5 GHz Intel Xeon computer with
256 kbytes of cache memory and 512 Mbytes of main memory. Due to the use of
randomness in the interpolation, the iteration counts vary by a few steps from test to
test.

3.1. Comparison with smoothed aggregation. The smoothed aggregation
(SA) method is a powerful method when the near-nullspace of the problem is known.
For scalar problems, the practice is to use a single basis vector, the vector of all
ones. For UNI7, the PCG-SA method converges in 18 iterations. ANI7 is a much
more difficult problem, due to the strong anisotropy on an unstructured grid. Here
PCG-SA method converges in 118 iterations.

The new method, SVMG, is designed for the case where the near-nullspace of the
operator is not known. When the near-nullspace is known, the smoothed aggregation
method using this near-nullspace will perform better. To illustrate this point, we use
the UNI7 problem along with a scaled version. Given the original problem matrix,
A, the scaled problem is DAD, with D = diag(10d1 , 10d2 , . . .) and with the real
numbers, di, selected randomly from (0, 6). This scaling changes the near-nullspace
and is discarded and not known to the SVMG method.

Table 3.1 shows results for UNI7 and its scaled version using SA and SVMG.
The table shows PCG iteration counts as well as the time to construct the multigrid
preconditioner (“Setup”) and the time for the PCG iterations (“Solve”). Five levels
were used by the methods. Smoothed aggregation used 3 basis vectors: the constant
and the x and y coordinate vectors. SVMG also used 3 basis vectors, constructed
from 6 sample vectors, which were themselves generated by 6 SGS relaxation steps.
Three basis vectors were used because a single vector might not be adequate when
the exact near-nullspace is not known. This, of course, depends on the accuracy of
the basis vectors (see also [6], where a single vector is used).

As expected, the results show that for the scaled problem, SVMG performs better
than SA. However, for the given parameters, the performance of SVMG on the scaled
problem does not match the performance of SVMG or SA on the original, unscaled
problem.

The standard basis vectors used in SA for the scaled problem leads to a coarse-
grid matrix with sharply varying coefficients. This leads the aggregation procedure
to generate many small aggregates at the coarse levels. This in turn leads to very full
coarse matrices on subsequent levels and explains the very high setup time for SA on
the scaled problem.

3.2. Test results for isotropic and anisotropic problems. Tables 3.2 and
3.3 show SVMG test results with UNI7 and ANI7, respectively, with various numbers
of smooth sample vectors and various numbers of SGS smoothing steps per vector.
The top portion of each table shows results when a budget of 36 smoothing steps is
used to generate the smooth vectors, either using fewer vectors and more smoothing
steps per vector, or vice-versa. Three basis vectors were used for each aggregate. Five
levels were used in the method.
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UNI7 Scaled UNI7
Iterations Setup Solve Iterations Setup Solve

SA 12 8.51 3.25 422 117.38 146.28
SVMG 26 11.43 6.76 63 14.90 17.27

Table 3.1

PCG iteration counts and setup and solve timings (in seconds) with SA and with SVMG as the
preconditioner for the unscaled and scaled UNI7 problem.

Smooth Smoothing Iterations Time (s)
vectors steps Setup Solve Total

3 12 41 10.29 10.56 20.85
4 9 31 10.60 7.98 18.58
6 6 26 11.43 6.76 18.19
9 4 28 12.65 7.26 19.91
12 3 31 13.53 8.00 21.53
18 2 39 15.52 10.01 25.53
36 1 59 20.87 15.07 35.94
12 6 23 14.59 6.02 20.61
12 12 16 16.03 4.25 20.28
12 24 14 19.53 3.74 23.27
12 36 12 23.04 3.25 26.29

Table 3.2

PCG-SVMG iteration counts and timings for UNI7 with various numbers of smooth sample
vectors and smoothing steps per sample vector.

We express the storage used by the multilevel method in terms of the grid and
operator complexities. These terms are common in the AMG literature, e.g., [8].
Grid complexity is the total number of degrees of freedom, on all grids, divided by
the number of degrees of freedom on the finest grid. Operator complexity is the total
number of nonzero entries, in all coarse- and fine-grid matrices, divided by the number
of nonzero entries in the fine-grid matrix. For the results in Tables 3.2 and 3.3, the
grid and operator complexities were approximately 1.4 and 3.6, respectively. For
scalar problems, these complexities are considered to be high, since a single basis
vector is normally used, rather than three basis vectors as in our case. We use more
than one basis vector because multiple basis vectors are readily available (from the
SVD computation) and using multiple vectors generally improves the performance of
the method when the near-nullspace is only approximated. A study using a smaller
number of basis vectors will be given in Table 3.6.

Tables 3.2 and 3.3 show the main point of this paper: given a fixed budget of
smoothing steps, it can be worthwhile to use more vectors that are less smooth, than
to apply all the smoothing steps to a small number of vectors. When CG acceleration
is not used, the effect is much more pronounced. In any code, the improvement
depends on the portion of the preconditioner setup cost that is due to generating the
smooth vectors. The disadvantage of using too many smooth vectors is the increased
cost of the SVD calculations, and this is reflected in the setup timings.

Table 3.4 shows iteration counts for PCG-SVMG, varying the number of smooth-
ing steps applied to T , the block of smooth vectors constructed from (2.5) at each
coarse level. For UNI7 and ANI7, the results show no significant improvement if more
than 2 smoothing steps are taken. As mentioned, we used 2 steps in for the tests
in this paper. For these results, 6 smooth sample vectors and 6 smoothing steps per
sample vector were used.

Table 3.5 shows test results for increasing problem sizes, for both the isotropic and
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Smooth Smoothing Iterations Time (s)
vectors steps Setup Solve Total

3 12 221 13.77 58.91 72.68
4 9 187 14.15 49.92 64.07
6 6 164 14.88 43.72 58.60
9 4 158 16.25 42.25 58.50
12 3 156 17.61 41.89 59.50
18 2 165 19.82 44.47 64.29
36 1 198 25.85 53.68 79.53
12 6 126 17.81 33.71 51.52
12 12 109 19.55 29.07 48.62
12 24 97 22.82 25.96 48.78
12 36 86 26.31 23.01 49.32
12 48 80 29.80 21.41 51.21
12 60 76 33.23 20.35 53.58
12 72 68 37.02 18.27 55.29

Table 3.3

PCG-SVMG iteration counts and timings for ANI7 with various numbers of smooth sample
vectors and smoothing steps per sample vector.

Number of smoothing steps for T

0 1 2 3 4 5
UNI7 51 34 26 24 23 23
ANI7 193 169 164 163 157 153

Table 3.4

PCG-SVMG iteration counts for UNI7 and ANI7 when the number of smoothing steps for T

at the coarse levels is varied.

anisotropic problems. Again, 3 basis vectors were used for each aggregate, this time
constructed from 12 smooth vectors, with each smooth vector generated using 36 SGS
relaxation steps. The results show that grid-independent convergence is not present,
particularly for the anisotropic problems. It is expected that for larger problems,
a larger number of smoothing steps for the sample vectors is required to achieve a
convergence rate comparable to that for smaller problems.

Table 3.6 shows test results when a variable number of basis vectors is used for
each aggregate. These tests were performed using a MATLAB code which had this
functionality, but no timings are available. The test problems were UNI5 and ANI5
(see Table 3.5 for matrix information), and four levels were used in SVMG. We used
a block of 12 sample vectors, each constructed from 3 SGS steps. The number of
basis vectors was fixed at 1, 2, or 3, or was chosen based on δ (defined in Section
2.4). Table 3.6 shows that a savings in storage can be achieved with a small impact
on convergence rate, and in some cases a savings in time may be possible due to a
lower operator complexity.

3.3. Using low-energy vectors from the Lanczos method. Instead of using
SGS or another smoother to approximately solve the homogeneous error equation,
the algebraically smooth error samples can be generated in other ways. For example,
starting with a random vector, the Lanczos method can generate approximations to
the extremal eigenvalues and eigenvectors of the fine-grid matrix. For SPD problems,
it is natural to use the Ritz vectors corresponding to the smallest Ritz values to
construct the smooth-vector interpolation operator. If a large number of Lanczos
steps are desired, however, the method can be costly both in terms of storage (of the
Lanczos vectors) and computation (forming the Ritz vectors).
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Equations Nonzeros Levels Iterations Time (s)
Setup Solve Total

UNI4 3321 22761 2 7 0.25 0.03 0.28
UNI5 13041 90321 3 7 1.25 0.11 1.36
UNI6 51681 359841 4 7 5.57 0.49 6.06
UNI7 205761 1436481 5 13 23.12 3.49 26.61
ANI4 3321 22761 2 13 0.24 0.05 0.29
ANI5 13041 90321 3 22 1.30 0.32 1.62
ANI6 51681 359841 4 44 6.24 2.86 9.10
ANI7 205761 1436481 5 89 25.97 23.77 49.74

Table 3.5

Test results for increasing problem sizes. Grid-independent convergence is not present, par-
ticularly for the anisotropic problems. It is expected that for larger problems, a larger number of
smoothing steps are required to achieve a convergence rate comparable to that for smaller problems.

Grid Operator Iterations
complexity complexity

UNI5 δ = 0.1 1.40 3.21 9
δ = 0.2 1.29 2.17 12
δ = 0.3 1.20 1.55 16
δ = 0.4 1.16 1.33 20
δ = 0.5 1.14 1.25 21
k = 3 1.40 3.03 11
k = 2 1.26 1.90 16
k = 1 1.13 1.22 23

ANI5 δ = 0.1 1.61 6.48 25
δ = 0.2 1.44 3.86 37
δ = 0.3 1.37 2.93 47
δ = 0.4 1.32 2.40 59
δ = 0.5 1.27 1.97 76
k = 3 1.40 3.03 46
k = 2 1.26 1.90 89
k = 1 1.13 1.22 124

Table 3.6

Test results using a variable number of basis vectors, selected via δ (defined in Section 2.4) or
k, the number of basis vectors. As the grid and operator complexities improve by using fewer basis
vectors, the iteration counts increase.

We note also that SGS relaxation can be applied to a block of vectors, which is
computationally very efficient. Block versions of the Lanczos method, on the other
hand, generate poorer low-energy Ritz vectors, depending on the block size.

Tables 3.7 and 3.8 show test results using low-energy Ritz vectors for UNI7 and
ANI7, respectively. Three basis vectors were used for each aggregate and 5 levels were
used in SVMG.

The tables show budgets of either 36 or 72 matrix-vector multiplies. (A budget
of 72 corresponds to 36 SGS smoothing steps, but the computational cost is greater.)
A different number of low-energy Ritz vectors were constructed. The results show
that using more Ritz vectors will improve the convergence rate, and may also improve
the total time, depending on the increase in setup cost. In particular, for the ANI7
problem, the best timings are achieved when more than the minimum number of Ritz
vectors are constructed.

3.4. Plane strain problem. We briefly consider a problem that strictly re-
quires multiple basis vectors per aggregate, a plane strain problem on a square with
homogeneous Dirichlet boundary conditions. The 3 rigid body modes are known
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Matvec Ritz Iterations Time (s)
budget vectors Setup Solve Total

36 3 50 10.57 12.77 23.34
4 45 11.24 11.53 22.77
6 41 12.19 10.50 22.69
9 36 13.83 9.24 23.07
12 33 14.73 8.53 23.26

72 3 26 12.11 6.74 18.85
4 24 12.75 6.24 18.99
6 21 14.02 5.52 19.54
9 21 15.63 5.48 21.11
12 20 17.19 5.26 22.45

Table 3.7

PCG-SVMG results for UNI7, using low-energy Ritz vectors.

Matvec Ritz Iterations Time (s)
budget vectors Setup Solve Total

36 3 300 15.30 80.69 95.99
4 289 15.99 77.72 93.71
6 282 17.30 75.89 93.19
9 280 18.27 75.72 93.99
12 281 19.44 75.61 95.05

72 3 204 15.49 54.33 69.82
4 184 16.51 49.28 65.79
6 176 17.75 47.12 64.87
9 173 19.68 46.40 66.08
12 170 21.22 45.45 66.67

Table 3.8

PCG-SVMG results for ANI7, using low-energy Ritz vectors.

from the geometry and grid for this problem and span the near-nullspace of the PDE
operator.

The problem was discretized with 217× 217 linear quadrilateral elements (93,312
equations). The nodes were aggregated regularly, using 3 × 3 node aggregates. Ten
smooth vectors were used, with 10 SGS relaxation steps to generate each vector.
Three basis vectors were used per aggregate. The multigrid method used 4 levels.

The original problem matrix, A, was generated, as well as a scaled matrix, DAD,
with D = diag(10d1 , 10d2 , . . .) and with the real numbers, di, selected randomly from
(0, 6).

Table 3.9 shows the results for the original problem matrix and the scaled matrix,
using both the rigid body modes to construct the interpolation operator and the
algebraically smooth vectors. Interpolation using the rigid body modes is ideal for
the original matrix, but is entirely inappropriate for the scaled matrix. On the other
hand, by using the algebraically smooth vectors, both problems can be solved. As
expected, however, for the original matrix, the smooth-vector interpolation does not
perform as well as interpolating using the rigid body modes.

4. Concluding Remarks. The smooth-vector interpolation operator presented
in this paper is constructed to interpolate samples of algebraically smooth error. The
interpolation operator is matrix dependent, but particular entries in the matrix are
not needed once the aggregates have been chosen. When the budget for generating
the sample vectors is fixed, it can be beneficial to use more samples than the number
of basis vectors, even if each sample vector has more energy. This technique is particu-
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Poisson SA SVMG
ratio Original Scaled Original Scaled
.30 13 200+ 34 64
.40 18 200+ 49 97
.45 24 200+ 87 161

Table 3.9

PCG iteration counts for the plane strain problem, using original and scaled matrices. SA or
SVMG were compared as the preconditioner. 200+ denotes that no convergence was achieved in 200
iterations.

larly advantageous when many basis vectors are required, since additional vectors are
available (from the singular value decomposition) at no additional cost. Compared
to other methods such as spectral AMGe [10], this method does not require that the
stiffness matrices for each aggregate be available. Generating the sample vectors may
also be very efficient, if blocks of vectors are relaxed simultaneously, but this was not
tested in this paper.

We note that the performance of the method cannot be better than using the ex-
act near-nullspace vectors if they are known and available. An apparent disadvantage
of the method is that for larger problems, smoother sample vectors are required to
maintain the same rate of convergence. Thus it may be necessary to use a multigrid
method to help generate the sample vectors themselves, as in the adaptive multilevel
methods described in the Introduction. SVMG can be made adaptive by approxi-
mately solving Ae = 0 and updating the set of algebraically smooth error vectors
used to construct the interpolation operator. Preliminary results were reported in
[11].

We also note that it is also possible to perform the node aggregation using samples
of algebraically smooth error, instead of using matrix entries. As in [12], nodes may be
aggregated if the samples of algebraically smooth error show a strong coupling between
the nodes. Incorporating such a strategy may help develop multigrid methods that
are matrix-free.
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