
Asynchronous Multigrid Methods

Jordi Wolfson-Pou
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, Georgia, United States of America

jwp3@gatech.edu

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, Georgia, United States of America

echow@cc.gatech.edu

Abstract—Reducing synchronization in iterative methods for
solving large sparse linear systems may become one of the most
important goals for such solvers on exascale computers. Research
in asynchronous iterative methods has primarily considered basic
iterative methods. In this paper, we examine how multigrid
methods can be executed asynchronously. We present models of
asynchronous additive multigrid methods, and use these models
to study the convergence properties of these methods. We also
introduce two parallel algorithms for implementing asynchronous
additive multigrid, the global-res and local-res algorithms. These
two algorithms differ in how the fine grid residual is computed,
where local-res requires less computation than global-res but
converges more slowly. We compare two types of asynchronous
additive multigrid methods: the asynchronous fast adaptive
composite grid method with smoothing (AFACx) and additive
variants of the classical multiplicative method (Multadd). We
implement asynchronous versions of Multadd and AFACx in
OpenMP and generate the prolongation and coarse grid matrices
using the BoomerAMG package. Our experimental results show
that asynchronous multigrid can exhibit grid-size independent
convergence and can be faster than classical multigrid in terms of
solve wall-clock time. We also show that asynchronous smoothing
is the best choice of smoother for our test cases, even when only
one smoothing sweep is used.

I. INTRODUCTION

Synchronization can be a bottleneck for massively parallel

codes due to some parallel processes taking longer than others

during phases of computation and communication (this hap-

pens on heterogeneous machines, for example). Research in

asynchronous iterative methods for solving linear systems goes

back to 1969 [1], studied both theoretically and in practice.

However, research on these methods has mainly considered

simple fixed-point iterations [1]–[7], which converge much

more slowly than Krylov subspace and multigrid methods.

To be clear, by “asynchronous” we are not referring to non-

blocking MPI, task-based parallelism, or pipelined methods.

Multigrid methods combine a smoother with a hierarchy of

coarser grids, where a smoother and a coarse grid correction

are used to solve the error equations on each grid (except the

coarsest grid). Multigrid methods are often used for larger

problems because their convergence rate is independent of

the problem size, and modern implementations scale well on

massively parallel machines [8]. However, the multiplicative

nature of the methods introduces many synchronization points.

These may be costly for codes running on massively parallel

machines, where the time it takes to synchronize may be

significantly large compared to the computation time.

There have been some suggestions to use an asynchronous

version of multigrid [9], [10], but only in [11] is asynchronous

multigrid discussed in-depth. In [11], the authors created

a “chaotic-cycle”, where sawtooth-cycles (V-cycles with no

pre-smoothing) are carried out asynchronously. The post-

smoothing and prolongation are done asynchronously, but

there is still global synchronization after a cycle is complete.

In this paper, our version of asynchronous multigrid avoids all

global synchronization by allowing grids to update the current

approximation to the solution without ever synchronizing. We

accomplish this by using additive multigrid methods, and

while we are not creating a new additive method, we are

creating the means by which additive methods can be executed

asynchronously. We explore two additive methods: additive

variants of the classical multiplicative method (Multadd) [12],

and the asynchronous fast adaptive composite grid method

with smoothing (AFACx) and full refinement [13]. While the

literature on AFACx has discussed AFACx as an asynchronous

method, this paper provides a more in-depth discussion of how

additive methods can be made asynchronous.

We define two models of asynchronous multigrid, and intro-

duce two parallel algorithms for implementing asynchronous

additive multigrid, the global-res and local-res algorithms.

While the amount of computation per thread is lower in

the global-res algorithm than in the local-res algorithm, our

experimental results show that the convergence rate of global-

res is worse than local-res. We provide OpenMP results that

show that asynchronous Multadd can be faster in terms of wall-

clock time than the classical multiplicative multigrid method

when the amount of computation per thread is reasonably

small. We also show that asynchronous multigrid can exhibit

grid-size independent convergence, even when the smoother

is also asynchronous. Additionally, we show that using an

asynchronous smoother, rather than a synchronous smoother,

can reduce the wall-clock time.

II. BACKGROUND

A. Classical Multiplicative Multigrid Methods
To define the classical multigrid V(1, 1)-cycle, we first need to

define the matrices used for coarse grid corrections. For grid

numbers k = 0, . . . , � − 1, where � is the coarsest grid, we

define:

• the two-level interpolant P k
k+1 that transfers a vector from

grid k + 1 to k. For simplicity, we will choose (P k
k+1)

T

101

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00021

as the restriction matrix that transfers a vector from grid

k to k + 1.

• the coarse grid operator Ak+1 = (P k
k+1)

TAkP
k
k+1 at grid

k + 1.

• the smoothing iteration matrix Gk = I−M−1
k Ak, where

the smoothing matrix Mk is typically easy to invert.

We can now define the classical V(1,1)-cycle, as shown in

Algorithm 1.

Algorithm 1: Multiplicative V(1,1)-Multigrid

1 Initialize r0 = b
2 for t = 1, 2, . . . , tmax do
3 Sequential for k = 0, . . . , �− 1 do
4 ek = M−1

k rk � pre-smoothing

5 rk+1 = (Pk
k+1)

T (rk −Akek) � restriction

6 end
7 e� = A−1

� r� � exact solve on coarsest grid
8 Sequential for k = �− 1 . . . , 0 do
9 ek = ek + Pk

k+1ek+1 � coarse grid correction

10 ek = ek +M−1
k (rk −Akek) � post-smoothing

11 end
12 x = x+ e0 � correct solution on finest grid
13 r0 = b−Ax � compute new residual
14 end

B. Additive Multigrid Methods
Before describing Multadd and AFACx, we define the multi-

level interpolant P 0
k for k = 0, 1, . . . � that transfers a vector

from grid k to the finest grid. Additionally, we define (P 0
k)

T

as the corresponding restriction matrix. For k = 0, P 0
0 = I . In

this paper, P 0
k = P 0

1P
1
2 · · ·P k−1

k and is not explicitly formed,

i.e., each P j−1
j for j = 1, . . . , k is applied to the vector that

is being interpolated.

In additive multigrid methods, while the restriction and

prolongation steps are done sequentially, smoothing on each

grid can be done concurrently. This allows the corrections from

each grid to be added together on the fine grid. The classical

additive multigrid method is known as the BPX method [14].

One V-cycle of BPX can be written as

x = x+
�∑

k=0

P 0
kΛk(P

0
k)

T r, (1)

where Λk is the inverse of the smoothing matrix for k =
0, . . . , �− 1 and Λ� = A−1

� .

BPX is typically used as a preconditioner because adding

the corrections “over-corrects” x, resulting in a divergent

solver. This over-correction occurs because the right-hand

sides on the coarse grids are approximately equal, resulting in

redundant corrections. In [10], BPX is modified using multi-

coloring to create a convergent solver. The authors suggest that

this new solver could be asynchronous, but do not precisely

define what asynchronous multigrid means in this context.

1) Additive Variants of Multiplicative Multigrid (Multadd)
Multadd [12] is derived by re-writing the multiplicative

method as

x = x+
�∑

k=0

P
0

kΛk(P
0

k)
T r. (2)

This method looks like BPX, but with the multi-level smoothed

interpolants P
0

k = P
0

1 · · ·P
k−1

k , where the two-level smoothed

interpolants are P
k

k+1 = GkP
k
k+1 for k = 0, . . . , �− 1.

If Λk is chosen to be the symmetrized smoothing ma-
trix M

−1

k = M−T
k (Mk + MT

k − Ak)M
−1
k , then Multadd

is mathematically equivalent to a symmetric multiplicative

V(1,1)-cycle (where GT
k is chosen as the post-smoothing

iteration matrix). If it is not a requirement for Multadd to

be mathematically equivalent to the classical multiplicative

multigrid method, an approximation Λk to Λk can also be used

as the symmetrized smoother, e.g., Λk = Dk. We consider this

case for a hybrid smoother (see Section V).

Expressing the multiplicative method in this additive form

may seem too good to be true since now each grid can

be processed concurrently without sacrificing multiplicative

convergence properties. However, the additive form introduces

redundant computation, since grid k + 1 must carry out the

same set of prolongation and restriction steps as grid k.

This suggests that Multadd would likely be slower than the

multiplicative method, but if we were to make the method

asynchronous, the increased computational cost might be out-

weighed by the gain in speed from not having to synchronize.

2) The Asynchronous Fast Adaptive Composite Grid Method
The asynchronous fast adaptive composite grid (AFACx)

method [9], [13], [15], [16] is an additive multigrid method

for solving PDEs on composite grids. A composite grid can be

decomposed into a hierarchy of grids with different resolutions

and different domain sizes. We can use AFACx as a multigrid

method by thinking of the multigrid hierarchy as a hierarchy

from a fully refined composite grid. There are three key steps

in AFACx when computing the correction for grid k:

1) The quantity ek+1 is computed by smoothing on the

equations Ak+1ek+1 = rk+1, where an initial guess of

zero is used and rk+1 is the fine grid residual restricted

to grid k + 1.

2) The quantity ek is then computed by smoothing on the

equations Akek = rk using an initial guess of P k
k+1ek+1.

3) x is corrected: x = x+ P k
k ek − P k

k+1ek+1.

The subtraction of P k
k+1ek+1 from x in the third step is what

prevents an over-correction of x. This is because grids k and

k + 1 may produce approximately the same corrections, so

subtracting P k
k+1ek+1 from P k

k ek serves to remove the portion

of P k
k ek that is close in value to the correction from grid k+1.

Algorithm 2 shows AFACx, where V(1/1,0)-cycles are used

in the inner loop (not to be confused with a V(1,1)-cycle). The

1/1 refers to using one smoothing sweep to compute ek and

one smoothing sweep to compute ek+1 (a V(s1/s2, 0)-cycle

can also be defined). The redundant computation of P 0
k ek and

P 0
k+1ek+1 can be avoided by modifying how ek is computed:

we use an initial guess of zero and a modified right-hand side

of rk−AkP
k
k+1ek+1, as shown in lines 8 and 9 of Algorithm 2.

3) Other Additive Multigrid Methods
The first additive multigrid method was proposed in [17].

To address the over-correction issue, the corrections are done

sequentially, where each correction is made to be orthogonal

102

Algorithm 2: V(1/1,0)-AFACx

1 Initialize r = b
2 for t = 1, 2, . . . , tmax do
3 Sequential for k = 0, . . . , � do
4 rk = (P 0

k)
T r � restriction

5 if k == � then
6 ek = A−1

k rk � exact solve on coarsest grid
7 else
8 ek+1 = M−1

k+1(P
k
k+1)

T rk
9 ek = M−1

k (rk −AkP
k
k+1ek+1) � smooth

10 end
11 x = x+ P 0

k ek � correct solution on finest grid
12 end
13 r = b−Ax � compute new residual
14 end

to the new residual (the residual after the approximation

is corrected) on the next finer grid. This sequential aspect,

however, is not ideal for devising an asynchronous method.

Residual splitting methods [18] split the residual into

a rough and smooth part using an appropriate filter. The

smoother then uses the rough part of the residual, and the

coarse grid correction uses the smooth part. These two cor-

rections can then be added together without over-correcting.

In [19], all grids carry out this process simultaneously. These

methods converge slower than multiplicative methods, and the

added cost of filtering increases the solve time.

C. Asynchronous Iterative Methods
Using a smoother to solve Ax = b can be expressed as

x(t+1) = Gx(t) + f, (3)

where f = M−1b and the superscript t denotes the iteration

number. If we were to implement this method on a parallel

computer with n processes (equal to the number of rows), each

process would be responsible for relaxing a single row, i.e.,

process i would do the calculation

x
(t+1)
i =

n∑
j=1

Gijx
(t)
j + fi. (4)

In the synchronous case, each process must wait for all other

processes to finish computing x(t+1) before moving on to iter-

ation t+2. Alternatively, rows can be relaxed asynchronously,

where a process simply continues to iteration t + 2 without

waiting and uses the most up-to-date information to calculate

x
(t+2)
i . As presented in Chapter 5 of [2], a mathematical model

of an asynchronous iterative method can be written as

x
(t+1)
i =

⎧⎪⎨
⎪⎩

n∑
j=1

Gijx
(zij(t))
j + fi, if i ∈ Ψ(t),

x
(t)
i , otherwise.

(5)

We will refer to the asynchronous iteration number t as the

time instant. The mapping zij(t) denotes the time instant

that process i reads xj from, and Ψ(t) is the set of rows

that are relaxed at time instant t. The method from Equa-

tion 5 will converge if ρ(|G|) < 1 (|G| is the element-wise

absolute value of the synchronous iteration matrix). While

asynchronous smoothers are not commonly used, we will

show experimentally that using asynchronous smoothers can

reduce the solve wall-clock time of multigrid compared to

synchronous smoothers. This result is also shown in [20] for

asynchronous smoothers implemented on GPUs.

III. MODELS OF ASYNCHRONOUS MULTIGRID METHODS

In this section, we present new models of asynchronous addi-

tive multigrid methods. We emphasize that our definitions of

asynchronous multigrid are different than that of asynchronous

task-based processing of grids, as in [21]. The purpose of this

section is not to analyze these models, but to define what

asynchronous multigrid actually is, which has not been done

before. In other words, the models presented in this section

give us a clear picture of what is meant by asynchronous

multigrid: at some time instant t, some set of grids update

without any of the grids synchronizing, i.e., each grid has

no information about the progress made by other grids. In the

case that some grid update is delayed, this means that multiple

corrections from other grids have been performed before the

delayed grid has corrected once.

The first model is the semi-asynchronous model (semi-

async),

x(t+1) = x(t) +
∑

k∈Ψ(t)

Bk(x
(zk(t))), (6)

and the second is the fully asynchronous model (full-async),

x(t+1) = x(t) +
∑

k∈Ψ(t)

Bk(x
(zk1(t))
1 , . . . , x(zkn(t))

n). (7)

We refer to these two models as the solution-based versions

of semi-async and full-async since x(t) is written to and

read from by all grids. If k > 0, Bk is a function that

outputs the correction for grid k. If k = 0, the output

of Bk corresponds to one smoothing sweep applied to the

error equations. For example, for grid k in the semi-async

model of Multadd, Bk(x) = P
0

kΛk(P
0

k)
T (b − Ax(zk(t))).

In these models, the computation of Bk(x) is carried out

synchronously by the threads belonging to grid k. However,

an asynchronous smoother could also be used, i.e., we could

apply Λk asynchronously.

There are similarities between Equations 6 and 7, and

Equation 5. First, the set Ψ(t) is now the set of grids correcting

the solution at time instant t. Second, we now have the

mappings zk(t) and zki(t) for i = 1, . . . , n. These two

mappings are what make semi-async and full-async different

from each other. For full-async, x can be corrected by one

grid while a different grid is simultaneously reading x from

memory. The result is that the copy of x read from memory

contains elements from different time instants. For semi-async,

all components of x read from memory come from the same

time instant.

Alternatively, with the observation that any fixed-point

iteration (Equation 3) can be expressed as

x = x+M−1r

r = r −AM−1r
(8)

103

we can also express the semi-async and full-async models in

terms of the residual:

r(t+1) = r(t) −A
∑

k∈Ψ(t)

Ck(r
(zk(t))), (9)

and,

r(t+1) = r(t) −A
∑

k∈Ψ(t)

Ck(r
(zk1(t))
1 , . . . , r(zkn(t))

n), (10)

where Ck is defined similarly to Bk. We refer to these two

models as the residual-based versions of semi-async and

full-async, respectively. In the case of semi-async, there is

no difference between the residual-based and solution-based

versions, given that, for all k and t, zk(t) is the same

in both cases. However, for full-async, the solution-based

and residual-based versions are different since the vectors

(r
(zk1(t))
1 , . . . , r

(zkn(t))
n)T and b− A(x

(zk1(t))
1 , . . . , x

(zkn(t))
n)T

can be different, even when zk1(t), . . . , zkn(t) are the same

for all k and t.
To demonstrate the difference in convergence among our

four models (solution-based and residual-based versions of

semi-async and full-async), we simulated asynchronous multi-

grid by implementing Equations 6, 7, and 10 as solvers to be

executed sequentially. In the simulation, grid k has an update
probability pk, i.e., grid k has the probability pk of being in

Ψ(t) at time instant t. In our experiments, pk is determined in

advance (before we start solving Ax = b) by sampling from a

uniform random integer distribution in the range [α, 1], where

α is the minimum update probability and 1 > α > 0. As α
decreases, the grids will become more “out of sync”, i.e., the

values of pk will have a higher variation resulting in some

grids updating more often than others.

If k ∈ Ψ(t), the value of zk(t) (zki(t) in the case of

full-async) is chosen randomly by sampling from a uniform

random integer distribution in the range (min(zk(τk), t−δ), t].
The time instant τk denotes the last time instant that grid k read

from. The maximum read delay δ is defined as the maximum

value of t− zk(t) and denotes the minimum past time instant

that grid k can read from. In other words, we are assuming two

things: 1) a grid cannot read older information than what has

already been read (zk(τk) term), and 2) even if a grid updates

very slowly compared to other grids, there is still some bound

on how old the information can be that is read from memory

(t− δ term).

Each grid stops updating after 20 updates, and the iteration

is terminated after all grids have completed 20 updates. We

compare this to 20 V(1,1)-cycles of synchronous multigrid. For

our test framework, we used the 27pt test set (see Section V for

matrix descriptions) with mesh sizes ranging from 40×40×40
to 80×80×80. Weighted Jacobi was used as a smoother with

a weight of .9. We used the BoomerAMG package [22] to

generate the interpolation and coarse grid matrices. For our

BoomerAMG options, we chose HMIS coarsening with one

aggressive level, and classical modified interpolation.

Figure 1 demonstrates the effect of α on the convergence of

semi-async when δ = 0. The figure shows the relative residual

2-norm versus the grid length for Multadd and AFACx. Each

data point is the mean relative residual 2-norm of 20 runs. Each

figure shows synchronous multigrid and simulations of semi-

async with different values of α. The figures show that with

small values of α, convergence is slower, but the convergence

is still independent of the grid length.

Figure 2 demonstrates the effect of δ on the convergence

of full-async with α = .1. Each figure shows synchronous

multigrid and simulations of either the solution-based or

residual-based versions of full-async. These results show that

with larger values of δ, convergence is slower, but the conver-

gence is still independent of the grid length. Additionally, the

residual-based versions converge faster than the solution-based

versions for large values of δ.

IV. ASYNCHRONOUS MULTIGRID FOR SHARED MEMORY

This section presents asynchronous additive multigrid methods

for shared memory parallel computers. The main issue to

address is the computation of the residual on the fine grid. We

first describe two implementations for synchronous two-grid

Multadd, and then extend these to the asynchronous case. The

implementations are mathematically the same when executed

synchronously. We proceed with an example. We have five

threads, t0, t1, t2, t3 and t4. The fine grid has seven points,

and the coarse grid has three points. Recall that one V(1,1)-

Semi-async AFACx Simulation

40 50 60 70 80

Grid Length

10-3

10-2

R
el

. R
es

. 2
-n

or
m

async, probability .1
async, probability .9
sync

Semi-async Multadd Simulation

40 50 60 70 80

Grid Length

10-5

10-4

10-3

R
el

. R
es

. 2
-n

or
m

Fig. 1. Final relative residual 2-norm after 20 V-cycles versus grid length for
the semi-asynchronous multigrid model (Equation 6) for AFACx and Multadd.
A maximum delay of zero is used. Results are shown for five minimum update
probabilities, where blue-to-green corresponds to increasing minimum update
probability. The 27pt test set is used (see Section V). These results show that
even with a small minimum update probability, asynchronous multigrid still
exhibits grid-size independent convergence.

104

Full-async AFACx Simulation Full-async Multadd Simulation
Solution-based Residual-based Solution-based Residual-based

40 50 60 70 80

Grid Length

10-4

10-2

100

R
el

. R
es

. 2
-n

or
m

async, delay 20
async, delay 1
sync

40 50 60 70 80

Grid Length

10-4

10-2

100

R
el

. R
es

. 2
-n

or
m

40 50 60 70 80

Grid Length

10-4

10-2

100

R
el

. R
es

. 2
-n

or
m

40 50 60 70 80

Grid Length

10-4

10-2

100

R
el

. R
es

. 2
-n

or
m

Fig. 2. Final relative residual 2-norm after 20 V-cycles versus grid length for the full-asynchronous multigrid model. The solution-based (Equation 7) and
residual-based versions (Equation 10) of AFACx and Multadd are shown. A minimum update probability of .1 is used and results for five maximum delay
values are shown, where blue-to-green gradient corresponds to decreasing maximum delay. The 27pt test set is used (see Section V). These results show that
even with large delays, asynchronous multigrid still exhibits grid-size independent convergence.

cycle of Multadd is

r = b−Ax

x = x+ Λ0r + P
0

1A
−1
1 (P

0

1)
T r.

(11)

Threads t0 and t1 are responsible for computing Λ0r,

and threads t2, t3 and t4 are responsible for computing

P
0

1A
−1
1 (P

0

1)
T r. We say that t0 and t1 are assigned to grid

0, and t2, t3 and t4 are assigned to grid 1. In the general

case, threads are distributed among the grids to balance the

amount of “work”, where the work for a grid is approximately

the number of flops required for that grid to carry out its

correction.

We present two algorithms for parallel synchronous Multadd

which differ only in how r is computed:

1) global-res: Just like in classical multigrid, each thread

would be responsible for computing some number of

elements of the fine grid residual r, and r would be

computed using a parallel SpMV operation using all five

threads. We call this the global-res algorithm since, in ad-

dition to x, r is a “global” variable. Here, “global” refers

to memory that can be read by all threads, while memory

that is “local” to a grid refers to memory that can be read

only by threads assigned to that grid. Algorithm 3 and

Figure 3 show global-res for this example, where Sync()

denotes the synchronization of the threads listed. In line 1

of Algorithm 3, all threads take part in computing r using

a parallel SpMV operation. If we are using OpenMP, the

computation of r would be parallelized using a parallel

for loop with a static scheduling.

In the if statements, only the threads assigned to a grid

take part in each operation, which are also carried out

with parallel loops. For example, in the case of grid 0,

if we are using OpenMP, Λ0r would be computed using

a parallel for loop but only with the threads t0 and t1.

In the case of grid 1, the application of P
0

1, A−1
1 , and

(P
0

1)
T to a vector are carried out by threads t2, t3 and t4

(SpMV and triangular solve operations), where the three

threads synchronize after each application.

Note that both grids update x concurrently in lines 6

and 11, which creates a race condition. We will discuss

later in this section how these race conditions are handled.

2) local-res: Only x is a global variable. Threads assigned

to a grid would read x from memory and then compute a

local residual, e.g., threads t0 and t1 would compute the

local residual r0 using a parallel for loop. We call this

the local-res algorithm, which is shown in Algorithm 4

and in Figure 3. The two threads first read x in line 1,

and then in lines 4 and 9, threads t0 and t1 compute r0

and r1, respectively, which are the local residuals. The

rest of the algorithm is the same as that of global-res.

In Algorithms 3 and 4, to make these algorithms asyn-

chronous, we simply replace all Sync(t0, t1, t2, t3, t4) oper-

ations with Sync(t0, t1) and Sync(t2, t3, t4), i.e., we replace

all global synchronizations with synchronizations of subsets

of threads, where each subset is the set of threads assigned

to a grid, and the union of all the subsets is the set of all

threads. This means that there is some synchronization, but

only among threads assigned to the same grid.

Algorithm 3: global-res
for two-grid synchronous

Multadd with five threads

1 r = b−Ax
2 Sync(t0, t1, t2, t3, t4)
3 if threads t0, t1 then
4 Sync(t0, t1)
5 e0 = Λ0r
6 Sync(t0, t1)
7 x = x+ e0

8 end
9 if threads t2, t3, t4 then

10 c = (P
0
1)

T r
11 Sync(t2, t3, t4)

12 d = A−1
1 c

13 Sync(t2, t3, t4)

14 e1 = P
0
1d

15 Sync(t2, t3, t4)
16 x = x+ e1

17 end
18 Sync(t0, t1, t2, t3, t4)

Algorithm 4: local-res for

two-grid synchronous Mul-

tadd with five threads

1 x0 = x1 = x
2 Sync(t0, t1, t2, t3, t4)
3 if threads t0, t1 then
4 r0 = b−Ax0

5 Sync(t0, t1)
6 e0 = Λ0r0

7 Sync(t0, t1)
8 x = x+ e0

9 end
10 if threads t2, t3, t4 then
11 r1 = b−Ax1

12 Sync(t2, t3, t4)

13 c = (P
0
1)

T r1

14 Sync(t2, t3, t4)

15 d = A−1
1 c

16 Sync(t2, t3, t4)

17 e1 = P
0
1d

18 Sync(t2, t3, t4)
19 x = x+ e1

20 end
21 Sync(t0, t1, t2, t3, t4)

A problem with the global-res algorithm comes from how

the residual is computed. As stated earlier, if a grid update is

severely delayed, the faster grids may do many corrections

105

Global-res݁଴ = ଴ݎ଴߉ ݔ = ݔ + ݁଴
ݖ = ܲଵ଴ ் ݎ ݁ଵ = ܲଵ଴ܣଵି ଵݖ ݔ = ݔ + ݁ଵ

gr
id

 1
gr

id
ݎ0 = ܾ − ݔܣ ܋ܖܡ܁ ࢚૙, ࢚૚, ࢚૛, ࢚૜, ࢚૝ ܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝ ܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝

܋ܖܡ܁ ࢚૙, ࢚૚

܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝
܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝

܋ܖܡ܁ ࢚૙, ࢚૚
܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝

܋ܖܡ܁ ࢚૙, ࢚૚܋ܖܡ܁ ࢚૙, ࢚૚
܋ܖܡ܁ ࢚૙, ࢚૚, ࢚૛, ࢚૜, ࢚૝

܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝
Local-resݎ଴ = ܾ − ଴ݔܣ ݁଴ = ଴ݎ଴߉ ݔ = ݔ + ݁଴

ଵݎ = ܾ − ଵݔܣ ݖ = ܲଵ଴ ் ଵݎ ݁ଵ = ܲଵ଴ܣଵିଵݖ ݔ = ݔ + ݁ଵ

gr
id

 1
gr

id
 0

܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝ ܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝ ܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝

܋ܖܡ܁ ࢚૙, ࢚૚܋ܖܡ܁ ࢚૙, ࢚૚܋ܖܡ܁ ࢚૙, ࢚૚
܋ܖܡ܁ ࢚૙, ࢚૚, ࢚૛, ࢚૜, ࢚૝ ܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝ ܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝ ܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝

܋ܖܡ܁ ࢚૙, ࢚૚ ܋ܖܡ܁ ࢚૙, ࢚૚

܋ܖܡ܁ ࢚૛, ࢚૜, ࢚૝
Fig. 3. Global-res and local-res partitionings for the Multadd example presented in Section IV for each step of the computation of the corrections e0 and
e1. Arrows denote moving to the next step of the computation. Sync() denotes a synchronization point, where the list of threads passed to Sync() denotes the
threads that synchronize. Blue Sync() denotes a synchronization for asynchronous multigrid, and red Sync() denotes a synchronization point for synchronous
multigrid. Colored points denote points used in a calculation, where t0 is assigned the purple points, t1 is assigned the yellow points, t2 is assigned the blue
points, t3 is assigned the orange points, and t4 is assigned the green points. Gray points denote points not used in a calculation.

with a residual that has some components that are up-to-

date, and other components that are very out-of-date. We will

see in Section VI that this can result in asynchronous multi-

grid diverging or converging more slowly than synchronous

multigrid. The local-res algorithm does not suffer from this

problem, but requires more computation per thread.

As mentioned earlier, when the global variable x (x and

r in the case of global-res) is updated, we must handle race

conditions since threads assigned to different grids update x
concurrently. One option is to use a mutex lock. For this

option, all grids have a master thread. All threads assigned

to grid k block until the master thread for grid k acquires a

mutex lock. Once the lock is acquired, the variable is updated

by all threads assigned to grid k using a parallel for loop. We

call this option the lock-write option. The second option is to

use an atomic fetch-and-add operation inside the parfor loop.

We call this option the atomic-write option.

We can now write asynchronous multigrid, as shown in

Algorithm 5. In the algorithm:

• The k superscript denotes a variable stored in the local

memory of grid k.

• For grid k, the operations Smooth(), Prolong(), Restrict(),

Read(), Axk, and x + ek are carried using blocking

parallel for loops (threads synchronize after completing

the loop), where only the threads assigned to k carry out

the loops.

• x and r are global, i.e., can be accessed by any grid.

• The flag rescomp type (local or global) specifies whether

global-res or local-res is used.

• The Write() operation handles race conditions (explained

above) when writing to a global variable.

• The GlobalParFor loop is executed by all threads, which

is the global update of the residual for global-res. The No
Wait denotes a non-blocking parallel for loop, which is

conceptually the same as adding a “no wait” clause to an

OpenMP parfor loop.

• In lines 19-26, the residual can instead be updated as r =
r −Ae instead of r = b−Ax as outlined in Section III.

Algorithm 5: Asynchronous multigrid for grid k

1 Initialize rk = r = b � initialize local residuals
2 while grid k has not converged do � procedure for grid k
3 rk = Restrict(rk)
4 if k == � then
5 ek = Smooth(Ak, r

k)
6 else
7 ek = ExactSolve(Ak, r

k)
8 end
9 ek = Prolong(ek)

10 x = Write(x+ ek) � correct x
11 xk = Read(x) � store x to local memory
12 if rescomp type == local then
13 rk = b−Axk � recompute local residual
14 else
15 No Wait GlobalParfor i = 1, . . . , n do
16 ri = Write(bi −

∑n
j=1 aijxj) � update global residual

17 end
18 rk = Read(r) � store r to local memory
19 end
20 end

In terms of the models presented in Section III, only local-

res with the lock-write option can be modeled by semi-async

(Equation 6). All other variations of Algorithm 5 can be

modeled by full-async (Equations 7 and 10).
V. TEST FRAMEWORK FOR EXPERIMENTAL RESULTS

For our numerical results, we used an Intel Xeon Phi Knights

Landing (KNL) processor with 68 cores and 272 threads.

We implemented synchronous multigrid (Mult) using OpenMP

parallel for loops with static scheduling. For synchronous

Multadd and AFACx, each grid was assigned threads in the

same way as the asynchronous local-res implementation. This

thread partitioning is used only to do coarse grid corrections

concurrently. At the end of a single cycle, all threads synchro-

nize and carry out an SpMV to compute the residual using an

OpenMP parallel for loop. This is the same way the residual

106

is computed in Mult.

We experimented with four different smoothers: weighted

Jacobi (ω-Jacobi), �1-Jacobi [23], hybrid Jacobi Gauss-Seidel

(hybrid JGS) [23], and asynchronous Gauss-Seidel (async GS).

As in ω-Jacobi, �1-Jacobi uses a diagonal smoothing matrix,

where the diagonal entries are the L1 norms of the rows of A,

i.e., Mii =
∑n

j=1 |aij |. It can be shown that if A is symmetric

and positive-definite, the error monotonically decreases in the

A-norm when �1-Jacobi is used as a smoother.

The hybrid Jacobi Gauss-Seidel smoother can be thought

of as an inexact block Jacobi method where the blocks

are solved inexactly using a small number of Gauss-Seidel

sweeps. In this paper, we only consider using one sweep.

For parallel smoothers, the number of subdomains is equal

to the number of processes or threads, making the method

highly parallel. However, without proper weighting [24] or

using an �1 variation of the method [23], the method can

diverge if many subdomains are used. Asynchronous Gauss-

Seidel is an asynchronous version of hybrid JGS. For a shared

memory implementation, a thread relaxes a subset of rows

(approximately n/p rows), and immediately writes the updated

information to memory after each relaxation. This means that

information that is read from memory could be a mix of new

and old information, which is modeled in Equation 5.

We used BoomerAMG [22] to generate the prolongation

and coarse grid matrices for all our multigrid methods. For

Multadd, if �1-Jacobi was used as a smoother, we used the �1-

Jacobi iteration matrix to construct the smoothed interpolants.

For all other smoothers, we used the ω-Jacobi iteration matrix.

We did this for performance reasons, i.e., we wanted to keep

the smoothed interpolants sparse, even though the convergence

may be slower than when using a hybrid or asynchronous

smoother. For example, for a V(1,1)-cycle of Multadd with

hybrid JGS, P
k

k+1 = (I − ωD−1
k P k

k+1) and Λk is the block

diagonal matrix with blocks L−1
k1 , . . . , L

−1
kp , where Lki is the

lower triangular part of block i of Ak, for i = 1, . . . , p. In our

results, we only consider using one smoothing sweep since it

is not clear how to do multiple sweeps with Multadd while

keeping the smoothed interpolants fixed.

We used four sets of test matrices with different problem

sizes within each set. Two of these sets were generated using

the MFEM software package [25]:

• The three-dimensional Laplace matrices in a cube dis-

cretized using the 7-point and 27-point centered differ-

ence methods. We will refer to these two sets as 7pt and

27pt.

• The three-dimensional Laplace matrices in a sphere

discretized using a NURBS mesh [26] and H1 nodal

finite elements. These matrices were generated using the

MFEM package [25]. We will refer to these matrices as

MFEM Laplace.

• Three-dimensional linear elasticity matrices modeling a

multi-material cantilever beam using a tetrahedral mesh

and H1 nodal finite elements. These matrices were gen-

erated using the MFEM package [25]. We will refer to

these matrices as MFEM Elasticity.

We used random right-hand sides with values in [−1, 1].
In our implementations, we do not try to detect when the

global relative residual norm ‖r‖2/‖b‖2 falls below some

specified tolerance τ . This would require a subset of grids

to compute a norm, which is an extra delay on that grid, and

the relative residual norm generally does not monotonically

decrease. There are two convergence criteria we use to detect

when tmax V-cycles have been carried out:

• Criterion 1: A grid immediately breaks from the main

loop when it has carried out tmax corrections. This means

that grids can finish iterating before other grids have

finished. This is the same criterion used in the simulations

in Section III.

• Criterion 2: A single master thread is in charge of

making sure all grids have carried out at least tmax

corrections. This thread then sets a flag indicating that

the iteration must terminate. For a thread that is not

the master, it reads this flag after finishing computing

a correction. If the flag is not set, the thread computes

another correction. Otherwise, it exits the main solve

loop.

To find the wall-clock time required to reduce ‖r‖2/‖b‖2
below some tolerance, we plot ‖r‖2/‖b‖2 versus wall-clock

time, saving time stamps of ‖r‖2/‖b‖2 for doing a small to

large number of cycles, e.g., we do 5, 10, . . . , 100 V-cycles,

saving ‖r‖2/‖b‖2 and the wall-clock time for each number

of V(1,1)-cycles. When saving the wall-clock times, we do

multiple runs for each number of cycles and take the mean of

the wall-clock times for those runs (for asynchronous methods,

we also take the mean of the relative residual 2-norms).

We then find the wall-clock time corresponding to the first

occurrence of ‖r‖2/‖b‖2 < τ . For all our experiments, we

took the average of 20 runs and set τ = 10−9.

VI. EXPERIMENTAL RESULTS

We first show that asynchronous multigrid methods can exhibit

grid-size independent convergence. Figure 4 shows ‖r‖2/‖b‖2
after 20 V(1,1)-cycles (see Section V for how a V-cycle is

defined in the asynchronous case) versus the grid length for

the 7pt and 27pt test sets (a grid length of 40 denotes a 40×
40× 40 mesh) using 68 threads. Each data point is the mean

‖r‖2/‖b‖2 of 20 runs. For the asynchronous methods, we used

Criterion 1 for convergence detection (see Section IV). Results

for ω-Jacobi and async GS smoothing are shown. For our

BoomerAMG options, we chose HMIS coarsening with one

aggressive level, and classical modified interpolation. If “sync”

is written next to a legend entry, the method is synchronous.

Otherwise, the method is asynchronous.

Figure 4 shows that all the asynchronous methods approxi-

mately achieve grid-size independent convergence, even when

using async GS as the smoother. We can also see that in most

cases, global-res results in a solver that converges more slowly

than when using local-res. This is due to grids using fine grid

residual values that are delayed. In other words, since grid

k computes a correction using values of r0 that are updated

107

7pt 27pt
ω-Jacobi async GS ω-Jacobi async GS

40 50 60 70 80

Num Rows

10-10

10-8

10-6

10-4

10-2

R
el

. R
es

. 2
-n

or
m

sync mult
sync afacx
afacx, lock-write
multadd, lock-write, global-res
multadd, lock-write, local-res
multadd, atomic-write, global-res
multadd, atomic-write, local-res

40 45 50 55 60 65 70 75 80

Num Rows

10-10

10-8

10-6

10-4

10-2

40 45 50 55 60 65 70 75 80

Num Rows

10-10

10-8

10-6

10-4

10-2

40 45 50 55 60 65 70 75 80

Num Rows

10-10

10-8

10-6

10-4

10-2

Fig. 4. Relative residual 2-norm versus number of rows for 20 V(1,1)-cycles and 68 threads. Results for the 7pt and 27pt test sets are shown. For each test
set, results for two smoothers are shown. For the asynchronous methods, we used Criterion 1 as our stopping criterion (see Section V), and each data point
is the mean relative residual 2-norm of 20 runs. The figures show that asynchronous multigrid methods can exhibit grid-size independent convergence.

exclusively by other grids, grid k could be using very old

values if another grid update is delayed. Figure 5 shows the

same experiment but with the MFEM Laplace test set and no

aggressive coarsening. Multadd local-res lock-write exhibits

grid-size independent convergence. AFACx (synchronous and

asynchronous) and Multadd global-res did not exhibit grid-size

independent convergence for this test set.

Table I shows results for four test matrices, one from each

test set, and 272 threads. For the asynchronous methods, we

used Criterion 2 for convergence detection (see Section IV).

Corrects is the average number of corrections of all the grids

divided by the number of grids. For each test matrix, results

for four smoothers are shown. For our BoomerAMG options,

ω-Jacobi

103 104 105

Num Rows

10-15

10-10

10-5

R
el

. R
es

. 2
-n

or
m

sync mult
multadd, atomic-write, local-res
multadd, lock-write, local-res

async GS

103 104 105

Num Rows

10-15

10-10

10-5

R
el

. R
es

. 2
-n

or
m

Fig. 5. Relative residual 2-norm versus number of rows for 20 V(1,1)-cycles
and 68 threads. The MFEM Laplace matrix is used and results for the ω-Jacobi
and async GS smoothers are shown. The figures show that asynchronous
multigrid can exhibit grid-size independent convergence.

we chose HMIS coarsening with two aggressive levels, and

classical modified interpolation. The r- prefix in r-Multadd

denotes that Multadd was implemented using the residual-

based implementation (in Section IV, see the last bullet of

the explanation of Algorithm 5). These results show that,

with the exception of async GS for the MFEM Elasticity

matrix, asynchronous Multadd requires the lowest wall-clock

time, even if it requires more computation than Mult (higher

number in the Corrects column). Additionally, using atomic

operations is slower than using locks, with the exception

of r-Multadd for the MFEM Laplace matrix with the async

GS smoother. In some cases (MFEM Laplace with ω-Jacobi

smoothing, and 7pt with hybrid JGS smoothing), global-res is

the best solver. In most cases, local-res is the best solver since

it requires significantly fewer V-cycles to converge. Finally,

using async GS smoothing always requires the lowest number

of V(1,1)-cycles and least wall-clock time compared to the

other smoothers.

Figure 6 shows the wall-clock time versus the number

of threads for the same four matrices from Table I. The

BoomerAMG options are the same options used in Table I

and w-Jacobi smoothing is used. Each subfigure shows three

methods: sync Mult, sync Multadd lock-write, and Multadd

lock-write local-res. In all subfigures, we can see that with

a low number of threads, Mult is typically the fastest since

synchronization is not a large cost compared to the cost of

computation. However, asynchronous Multadd is the fastest

for a sufficiently large number of threads, and scales better,

i.e., as the number of threads increases, the wall-clock time of

asynchronous Multadd does not increase as much as that of

Mult. This provides a good outlook for distributed memory,

where the number of parallel processes is orders of magnitude

higher, and in the case of exascale machines, the problem

size per process may be quite small. We also see that syn-

chronous Multadd scales better than Mult, demonstrating that

computing corrections concurrently can be beneficial. This is

because there is only global communication on the fine grid

for synchronous Multadd, whereas for Mult, there is global

synchronization on every grid.

VII. CONCLUSION

In this paper, we introduced asynchronous multigrid methods.

These methods are asynchronous versions of additive multi-

108

Table I: Timing results for four test matrices, and for each matrix, four smoothers. 272 threads are used. For each smoother, results for all multigrid methods
are shown (see Section IV for explanations of lock-write, atomic-write, local-res, and global-res). The † marker indicates that a method diverged. For each

smoother, the bolded number indicates the lowest wall-clock time among all the methods. These results show that asynchronous Multadd is generally faster
than the classical multiplicative multigrid method (Mult) in terms of wall-clock time, and async GS is the best smoother for all matrices.

7pt: 27,000 rows and 183,600 non-zero values
ω-Jacobi, ω = .9 �1-Jacobi hybrid JGS async GS

method time corrects V-cycles time corrects V-cycles time corrects V-cycles time corrects V-cycles

sync Mult 0.1164 75 75 0.1927 120 120 0.1009 65 65 0.0828 55 55

sync Multadd, lock-write 0.0305 75 75 0.0490 120 120 0.0405 100 100 0.0323 80 80

sync Multadd, atomic-write 0.0299 75 75 0.0465 120 120 0.0393 100 100 0.0322 80 80

sync AFACx, lock-write 0.0489 135 135 † † † 0.0420 115 115 0.0339 95 95

sync AFACx, atomic-write 0.0481 135 135 † † † 0.0418 115 115 0.0337 95 95

AFACx, lock-write 0.0429 154 110 † † † 0.0430 142 110 0.0349 115 90

AFACx, atomic-write 0.0575 160 120 † † † 0.0533 138 110 0.0466 121 95

Multadd, lock-write, global-res 0.0249 89 70 † † † 0.0267 97 75 0.0591 192 155

Multadd, lock-write, local-res 0.0200 73 45 0.0326 123 75 0.0269 97 60 0.0203 74 45

Multadd, atomic-write, global-res 0.0286 78 70 † † † 0.0351 97 85 0.0293 80 70

Multadd, atomic-write, local-res 0.0259 71 50 0.0441 123 85 0.0360 98 70 0.0310 86 60

r-Multadd, atomic-write, local-res 0.0257 69 50 0.0452 122 90 0.0359 94 70 0.0281 76 55

27pt: 27,000 rows and 681,472 non-zero values
ω-Jacobi, ω = .9 �1-Jacobi hybrid JGS async GS

method time corrects V-cycles time corrects V-cycles time corrects V-cycles time corrects V-cycles

sync Mult 0.0939 65 65 0.1553 105 105 0.0795 55 55 0.0581 40 40

sync Multadd, lock-write 0.0259 65 65 0.0414 105 105 0.0349 90 90 0.0281 70 70

sync Multadd, atomic-write 0.0250 65 65 0.0400 105 105 0.0355 90 90 0.0254 65 65

sync AFACx, lock-write 0.0451 120 120 † † † 0.0383 100 100 0.0282 75 75

sync AFACx, atomic-write 0.0429 120 120 † † † 0.0380 100 100 0.0274 75 75

AFACx, lock-write 0.0420 120 85 † † † 0.0418 110 85 0.0324 85 65

AFACx, atomic-write 0.0465 112 85 † † † 0.0464 108 85 0.0385 90 70

Multadd, lock-write, global-res 0.0254 79 65 † † † 0.0321 119 95 0.0481 150 125

Multadd, lock-write, local-res 0.0206 58 40 0.0304 93 60 0.0280 85 55 0.0231 65 45

Multadd, atomic-write, global-res 0.0339 98 95 † † † 0.0357 105 100 0.0342 99 95

Multadd, atomic-write, local-res 0.0223 56 40 0.0336 89 60 0.0308 81 55 0.0253 65 45

r-Multadd, atomic-write, local-res 0.0254 62 45 0.0362 89 65 0.0391 92 70 0.0282 69 50

MFEM Laplace: 29,521 rows and 781,297 non-zero values
ω-Jacobi, ω = .5 �1-Jacobi hybrid JGS async GS

method time corrects V-cycles time corrects V-cycles time corrects V-cycles time corrects V-cycles

sync Mult 0.2404 150 150 0.2473 155 155 † † † 0.0924 60 60

sync Multadd, lock-write 0.0924 150 150 0.0964 155 155 0.0847 140 140 0.0588 95 95

sync Multadd, atomic-write 0.0909 150 150 0.0949 155 155 0.0845 140 140 0.0586 95 95

sync AFACx, lock-write 0.1316 295 295 † † † † † † 0.0572 100 100

sync AFACx, atomic-write 0.1314 295 295 † † † † † † 0.0563 100 100

AFACx, lock-write 0.1442 300 235 † † † † † † 0.0730 135 120

AFACx, atomic-write 0.1532 296 230 † † † † † † 0.0751 127 115

Multadd, lock-write, global-res 0.0737 189 160 † † † 0.0677 177 145 0.0652 166 140

Multadd, lock-write, local-res 0.0782 148 110 0.0818 154 115 0.0636 127 90 0.0513 94 70

Multadd, atomic-write, global-res 0.0788 172 160 † † † 0.0721 159 145 0.0691 147 140

Multadd, atomic-write, local-res 0.0836 149 115 0.0899 158 120 0.0732 135 100 0.0564 97 75

r-Multadd, atomic-write, local-res 0.0790 145 110 0.0845 153 115 0.0644 122 90 0.0512 93 70

MFEM Elasticity: 37,281 rows and 251,617 non-zero values
ω-Jacobi, ω = .5 �1-Jacobi hybrid JGS async GS

method time corrects V-cycles time corrects V-cycles time corrects V-cycles time corrects V-cycles

sync Mult 0.3425 190 190 0.3352 190 190 0.1736 100 100 0.1465 85 85

sync Multadd, lock-write 0.1367 190 190 0.1361 190 190 0.1134 165 165 0.0902 125 125

sync Multadd, atomic-write 0.1337 190 190 0.1346 190 190 0.1119 165 165 0.0888 125 125

sync AFACx, lock-write 0.2301 385 385 † † † 0.1150 195 195 0.1109 170 170

sync AFACx, atomic-write 0.2269 385 385 † † † 0.1134 195 195 0.1107 170 170

AFACx, lock-write 0.2103 404 310 † † † † † † 0.1603 268 235

AFACx, atomic-write 0.2378 405 315 † † † † † † 0.2006 301 260

Multadd, lock-write, global-res † † † † † † † † † † † †
Multadd, lock-write, local-res 0.1098 192 145 0.1099 195 145 0.0934 171 125 0.0904 152 115

Multadd, atomic-write, global-res † † † † † † † † † † † †
Multadd, atomic-write, local-res 0.1266 201 160 0.1268 202 160 0.1174 192 150 0.1008 156 125

r-Multadd, atomic-write, local-res 0.1177 193 155 0.1185 195 155 0.1014 169 135 0.0927 150 120

109

7pt 27pt MFEM Laplace MFEM Elasticity

21 22 23 24 25 26 27 28

Number of Threads

2-5

2-4

2-3

2-2

2-1

W
al

l-
cl

oc
k

T
im

e

sync mult
sync multadd
multadd, lock-write, local-res

21 22 23 24 25 26 27 28

Number of Threads

2-5

2-4

2-3

2-2

2-1

21 22 23 24 25 26 27 28

Number of Threads

2-3.5

2-3

2-2.5

2-2

2-1.5

2-1

2-0.5

20

20.5

21 22 23 24 25 26 27 28

Number of Threads

2-3

2-2

2-1

20

21

Fig. 6. Wall-clock time versus number of threads for the 7pt, 27pt, MFEM Laplace, and MFEM Elasticity matrices (see Table I) are shown with ω-Jacobi
smoothing. The BoomerAMG options are the same as that of Table I. Each data point is the mean ‖r‖2/‖b‖2 of 20 runs. The figures show that asynchronous
multigrid is faster than synchronous multigrid for a sufficiently large number of threads, and typically scales better.

grid methods, specifically, the AFACx and Multadd methods.

Although we have used the familiar term “V-cycle” in these

methods to mean one set of corrections from every grid in

the multigrid hierarchy, there is no concept of a cycle in

asynchronous additive multigrid methods: corrections from all

grids are performed simultaneously and do not wait for each

other. Our models and experiments show that grid-independent

convergence can be retained in this asynchronous setting.

However, in our simulations and experimental tests, the num-

ber of corrections from each grid is approximately balanced.

It is possible to show that if the number of corrections is not

balanced (e.g., far more corrections from some grids compared

to others), then grid-independent convergence is lost.
We showed that asynchronous Multadd can be faster (in

terms of solver wall-clock time) than the classical synchronous

multiplicative method when the problem size per thread is

sufficiently small, which suggests that asynchronous multi-

grid would be the method of choice for massively parallel

machines. Additionally, we showed that an asynchronous

smoother is the best choice in smoother, even when using just

one smoothing sweep. Looking towards distributed memory

parallelism, we believe that the global-res approach is the most

natural way to implement a distributed asynchronous multigrid

method since we do not have to compute multiple fine grid

residuals.
VIII. ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy

under Award Number DE-SC-0012538 and used the resources

of the National Energy Research Scientific Computing Center

under Contract No. DE-AC02-05CH11231.
REFERENCES

[1] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and
its Applications, vol. 2, no. 2, pp. 199–222, 1969.

[2] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Parallel Iterative Al-
gorithms: From Sequential to Grid Computing. Chapman & Hall/CRC,
2007.

[3] A. Frommer and D. Szyld, “On asynchronous iterations,” Journal of
Computational and Applied Mathematics, vol. 123, no. 12, pp. 201–
216, 2000.

[4] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: An algorithmic frame-
work for asynchronous parallel coordinate updates,” SIAM Journal on
Scientific Computing, vol. 38, no. 5, pp. 2851–2879, 2016.

[5] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham, “Perfor-
mance analysis of asynchronous Jacobi’s method implemented in MPI,
SHMEM and OpenMP,” International Journal on High Performance
Computing Applications, vol. 28, no. 1, pp. 97–111, 2014.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Prentice-Hall, Inc., 1989.

[7] J. Wolfson-Pou and E. Chow, “Convergence models and surprising
results for the asynchronous Jacobi method,” IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 940–949, 2018.

[8] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling
hypre’s multigrid solvers to 100,000 cores,” High-Performance Scientific
Computing: Algorithms and Applications, pp. 261–279, 2012.

[9] L. Hart and S. McCormick, “Asynchronous multilevel adaptive methods
for solving partial differential equations on multiprocessors: Basic
ideas,” Parallel Computing, vol. 12, no. 2, pp. 131–144, 1989.

[10] X. C. Tai and P. Tseng, “Convergence rate analysis of an asynchronous
space decomposition method for convex minimization,” Mathematics of
Computation, vol. 71, no. 239, pp. 1105–1135, 2002.

[11] J. Hawkes, G. Vaz, A. Phillips, C. Klaij, S. Cox, and S. Turnock,
“Chaotic multigrid methods for the solution of elliptic equations,”
Computer Physics Communications, vol. 237, pp. 26–36, 2019.

[12] P. S. Vassilevski and U. M. Yang, “Reducing communication in alge-
braic multigrid using additive variants,” Numerical Linear Algebra with
Applications, vol. 21, no. 2, pp. 275–296, 2014.

[13] D. Quinlan, “Adaptive mesh refinement for distributed parallel architec-
tures,” Ph.D. dissertation, University of Coloardo Denver, 1993.

[14] J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel precondi-
tioners,” Mathematics of Computation, vol. 55, no. 191, pp. 131–144,
1990.

[15] B. Lee, S. McCormick, B. Philip, and D. Quinlan, “Asynchronous
fast adaptive composite-grid methods for elliptic problems: Theoretical
foundations,” SIAM Journal on Numerical Analysis, vol. 42, no. 1, pp.
130–152, 2004.

[16] ——, “Asynchronous fast adaptive composite-grid methods: Numerical
results,” SIAM Journal on Scientific Computing, vol. 25, no. 2, pp. 682–
700, 2003.

[17] A. Greenbaum, “A multigrid method for multiprocessors,” Applied
Mathematics and Computation, vol. 19, no. 1-4, pp. 75–88, 1986.

[18] T. F. Chan and R. S. Tuminaro, “Design and implementation of parallel
multigrid algorithms,” Proceedings of the Fourth Copper Mountain
Conference on Multigrid Methods, pp. 101–115, 1987.

[19] D. Gannon and J. V. Rosendale, “On the structure of parallelism in
a highly concurrent PDE solver,” Journal of Parallel and Distributed
Computing, vol. 3, no. 1, pp. 106–135, 1986.

[20] H. Anzt, S. Tomov, M. Gates, J. Dongarra, and V. Heuveline, “Block-
asynchronous multigrid smoothers for GPU-accelerated systems,” Pro-
ceedings of the International Conference on Computational Science
(ICCS), vol. 9, pp. 7–16, 2012.

[21] A. AlOnazi, G. S. Markomanolis, and D. Keyes, “Asynchronous task-
based parallelization of algebraic multigrid,” Proceedings of the Platform
for Advanced Scientific Computing Conference, no. 5, pp. 1–11, 2017.

[22] V. E. Henson and U. M. Yang, “BoomerAMG: A parallel algebraic
multigrid solver and preconditioner,” Applied Numerical Mathematics,
vol. 41, no. 1, pp. 155–177, 2002.

[23] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Multigrid
smoothers for ultraparallel computing,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2864–2887, 2011.

[24] U. M. Yang, “On the use of relaxation parameters in hybrid smoothers,”
Numerical Linear Algebra with Applications, vol. 11, no. 23, pp. 155–
172, 2004.

[25] “MFEM: Modular finite element methods library,” mfem.org.
[26] R. Sevilla, “NURBS: Enhanced finite element method (NEFEM),” Ph.D.

dissertation, Polytechnic University of Catalonia, 2009.

110

