
INTERPOLATIVE DECOMPOSITION VIA PROXY POINTS FOR
KERNEL MATRICES∗

XIN XING† AND EDMOND CHOW‡

Abstract. In the construction of rank-structured matrix representations of dense kernel ma-
trices, a heuristic compression method, called the proxy point method, has been used in practice
to efficiently compute the low-rank approximation of certain kernel matrix blocks in the form of an
interpolative decomposition. We present a long overdue error analysis for the proxy point method,
rigorously proving the effectiveness of the method under specific conditions. The analysis also gener-
alizes the method, allowing it to be applied to the construction of different types of rank-structured
matrices with general kernel functions in low-dimensional spaces. Based on the analysis, a system-
atic and adaptive scheme for selecting the proxy points used in the method is developed, which can
guarantee that the method is effective for any given kernel function under specific conditions.

Key words. interpolative decomposition, low-rank approximation, rank-structured matrix,
proxy point method, kernel matrix

1. Introduction. Large dense kernel matrices appear in many scientific com-
puting problems. The quadratic cost for matrix storage and matrix-vector multipli-
cations is the main challenge in working with these matrices. A class of tools that
reduces these costs is rank-structured matrix techniques, such asH [21,24], H2 [22,23],
HSS [10], HODLR [1], directional H2 [3,5], and butterfly factorization [27]. The main
idea of these techniques is to first locate the blocks of a kernel matrix that are nu-
merically low-rank, and then represent these blocks in low-rank form. Representing
a kernel matrix in a rank-structured matrix format generally requires expensive com-
putation to construct low-rank approximations of kernel matrix blocks (referred to as
compressing the blocks). For example, compressing the blocks via SVD or QR factor-
ization can lead to prohibitive quadratic construction cost. As a result, efficient com-
pression methods are critical for the construction and application of rank-structured
matrix techniques.

For a class of fast direct solvers [11, 16, 25, 29] for kernel matrices based on HSS
format, an acceleration technique called the proxy surface method has been proposed
to efficiently compress specific kernel matrix blocks in a low-rank form called an
interpolative decomposition [11, 20] (ID, to be explained in Subsection 2.2), dramat-
ically reducing the construction cost for HSS formats. Methods closely related to
the proxy surface method also exist which differ in their selection of so-called proxy
points [12,32]. Together, all these methods, including the proxy surface method, have
a general form that we refer to as the proxy point method. As to be discussed later in
this section, while the proxy point method has many advantages, several important
problems about the method still remain unsolved, which limits its present application
to the construction of HSS and H2 matrices with specific kernel functions. In this
paper, we address these problems and generalize the application of the method to the
construction of different types of rank-structured matrices with kernel functions that
are more general than those usually used.

Figure 1.1 gives a simple illustration of the proxy surface method which calculates
an ID approximation of a kernel matrix block K(X0, Y0) = (K(xi, yj))xi∈X0,yj∈Y0

∗Version of November 15, 2019.
Funding: Supported by NSF under grant ACI-1609842.
†School of Mathematics, Georgia Institute of Technology, Atlanta, GA (xxing33@gatech.edu).
‡School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA

(echow@cc.gatech.edu).

1

mailto:xxing33@gatech.edu
mailto:echow@cc.gatech.edu


2 XIN XING AND EDMOND CHOW

where K(x, y) is the Laplace kernel and X0 and Y0 are two sets of points lying in
domains X and Y. The method first uniformly selects a small set of proxy points Yp
on the interior boundary of Y. An ID approximation of K(X0, Yp) is then computed
algebraically, where K(X0, Yp) is usually a much smaller matrix than K(X0, Y0).
Lastly, this ID approximation is used to efficiently construct an ID approximation of
K(X0, Y0). The proxy point method generalizes the proxy surface method, where the
proxy points Yp can be selected in the whole domain Y and the domains X and Y are
chosen differently for different kernel functions (see Figure 2.1 later in this paper).

Fig. 1.1. Illustration of the proxy surface method. The proxy points Yp are uniformly selected
on the interior boundary Γ of Y. The ID approximation of K(X0, Y0) is efficiently constructed via
an algebraic ID approximation of K(X0, Yp).

For K(X0, Y0) described above, the more commonly used efficient compression
methods are analytic techniques based on a degenerate approximation of K(x, y) in
X × Y, such as multipole expansion [19], polynomial interpolation [15, 17], Fourier
series [38], and other special expansions [2, 13, 36, 37]. Compared with analytic tech-
niques, the proxy point method only requires that a degenerate approximation of
K(x, y) exists and does not need that approximation to be known explicitly (to be
explained in Section 4). The approximation accuracy of the method for K(X0, Y0) is
directly controlled by controlling the accuracy of the ID approximation of K(X0, Yp).
Meanwhile, controlling the approximation accuracy of analytic techniques generally
requires trial-and-error or algebraic recompression.

The proxy point method, however, has limited application due to several unsolved
problems. First, the proper selection of proxy points Yp is critical to controlling the
approximation accuracy of the method, and such a selection varies for different kernel
functions. However, Yp is only heuristically selected in practice. Figure 1.2 shows a
numerical example where the proxy point method with Yp selected as in Figure 1.1
works well for the Laplace kernel but poorly for a Gaussian kernel. A more effective
but still heuristic selection of Yp for Gaussian kernels is suggested in Ref. [32]. Second,
the effectiveness of the method is, so far, only supported by numerical results. A
rigorous explanation of how the proxy point method works and under what conditions
is still missing.

In this paper, the proxy point method is presented for a general kernel function
K(x, y) with compact domains X and Y satisfying that K(x, y) in X × Y is smooth
and can be represented by an accurate, low-degree degenerate approximation (to be
explained in Subsection 2.1). In this general problem setting, we provide a rigorous
error analysis for the proxy point method. Using this error analysis, we further
develop a systematic and adaptive scheme to select proxy points that can guarantee
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Fig. 1.2. Relative approximation error of the proxy point method for K(X0, Y0) with different
approximation ranks and with two different kernel functions. Let X = [−1, 1]2, Y = [−5, 5]2\[−3, 3]2,
and Γ = ∂([−3, 3]2) as illustrated in Figure 1.1. We randomly select 400 points in X for X0 and
6400 points in Y for Y0, and uniformly select 300 points on Γ for Yp.

the method to be effective, paving the way for a wider application of the proxy point
method in the construction of different types of rank-structured matrices.

2. Background.

2.1. Low-rank kernel matrix blocks. Let K(x, y) be a kernel function in a
pair of domains X × Y. In this paper, we always assume that domains X and Y
are compact, i.e., closed and bounded, and that K(x, y) is smooth in X × Y for the
simplicity of analysis, which is mostly the case in practice. For two sets of points, X0

in X and Y0 in Y, a kernel matrix block K(X0, Y0) consists of the entries K(xi, yj)
for all pairs of xi ∈ X0 and yj ∈ Y0. The low-rank property of K(X0, Y0) is closely
related to the existence of a low-degree degenerate approximation of K(x, y) in X ×Y.
A degenerate approximation of K(x, y) in X × Y is precisely defined as follows.

Definition 2.1. K(x, y) is said to have an r-term ε-expansion in X ×Y if there
exist functions {ψi(x)}ri=1 and {φi(y)}ri=1 such that

(2.1)

∣∣∣∣∣K(x, y)−
r∑
i=1

ψi(x)φi(y)

∣∣∣∣∣ 6 ε, x ∈ X , y ∈ Y.

The summation in (2.1) is called a degenerate approximation (a.k.a. separated repre-
sentation) of K(x, y) with degree r and accuracy ε in X × Y.

Let Ψ(x) and Φ(y) denote the r-dimensional vectors of functions {ψi(x)}ri=1 and
{φi(y)}ri=1 from (2.1), respectively. The approximation (2.1) can be written as

K(x, y) = Ψ(x)TΦ(y) +O(ε).

Substituting all pairs of xi ∈ X0 and yj ∈ Y0 into the above equation gives

(2.2) K(X0, Y0) ≈ Ψ(X0)TΦ(Y0),

where Ψ(X0) ∈ Rr×|X0| denotes the matrix of column vectors Ψ(xi) for all xi ∈ X0 and
Φ(Y0) is similarly defined. Equation (2.2) gives a rank-r approximation Ψ(X0)TΦ(Y0)
to K(X0, Y0) with O(ε) error.
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To locate the low-rank blocks of a kernel matrix, instead of algebraically checking
the numerical rank of a block K(X0, Y0), rank-structured matrix techniques check
the pair of domains X and Y to decide whether there exists an accurate, low-degree
degenerate approximation of K(x, y) in X × Y. Here, “low-degree” usually refers to
O(1)-degree. More specifically, for common kernel functions used in practice, there
exist geometric criteria for a pair of domains X and Y that can decide whether such
a degenerate approximation of K(x, y) in X × Y exists. Such geometric criteria are
referred to as admissibility conditions and a pair of domains that meet the criteria
are said to be admissible. Figure 2.1 shows examples of admissible pairs of domains
in three different situations.

Different rank-structured matrices use different admissibility conditions for a ker-
nel function to locate the low-rank blocks of a kernel matrix. For example, admissi-
bility conditions for non-oscillatory kernels used in H and H2 matrices are illustrated
in Figure 2.1a and Figure 2.1b, respectively. For oscillatory Helmholtz kernels, more
complicated admissibility conditions are used in the butterfly method [31], direc-
tional H2 matrices [3], and the fast directional multilevel algorithm [13]. Figure 2.1c
illustrates the admissible condition used in Ref. [13]. In the construction of a rank-
structured matrix with a corresponding admissibility condition, a kernel matrix block
K(X0, Y0) is approximated by a low-rank form if X0 and Y0 are in an admissible pair
of domains. Compression of these kernel blocks dominates the construction cost.

(a) (b) (c)

Fig. 2.1. Examples of admissible pairs of domains X ×Y for different kernel functions K(x, y):
(a) K(x, y) = log(|x − y|) used in H matrices [24], (b) K(x, y) = log(|x − y|) used in H2 matrices
[23], (c) 2D Helmholtz kernel used in the fast directional multilevel algorithm [13]. Admissibility
conditions generally have constraints on the relative size of certain geometric features of X and Y
which is characterized by the parameter d in the figures.

We note that the above discussion of rank-structured matrices based on admissible
domains mainly works for kernel matrices with points in low-dimensional spaces (e.g.,
2D and 3D). In high-dimensional spaces, admissibility conditions that guarantee the
existence of low-degree degenerate approximations in a pair of domains are generally
not available. In this case, the low-rank property of kernel matrix blocks usually relies
on the existence of low-dimensional manifolds that support all the points. In practice,
heuristic criteria based on the distances between points [28] have been used to locate
low-rank blocks.

Like all the analytic techniques based on degenerate approximations, the proxy
point method discussed in this paper requires an admissible pair of domains associated
with the approximated kernel matrix block. Thus, it cannot be applied directly to
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high-dimensional problems. Existing methods for high-dimensional problems, e.g.,
[28, 33], all rely on purely algebraic compression techniques.

2.2. Proxy surface and related methods. An interpolative decomposition
[11, 20] represents or approximates a matrix A ∈ Rn×m in the low-rank form UAJ ,
where U ∈ Rn×k has bounded entries, AJ ∈ Rk×m contains k rows of A, and k is
the rank. An ID approximation defined this way is said to have error below the error
threshold ε0 if the 2-norm of each row of A−UAJ is bounded by ε0. Using an algebraic
approach, an ID approximation with a given rank or a given error threshold can be
calculated using the strong rank-revealing QR (SRRQR) decomposition [20] with
typical complexity O(knm) (or O(knm log(n)) in rare cases). The matrix U obtained
by this approach can have all its entries bounded by a prespecified parameter Cqr > 1.
Specifically, an ID approximation of a kernel matrix K(X0, Y0) can be written as

K(X0, Y0) ≈ UK(Xid, Y0),

where K(Xid, Y0) contains a subset of rows in K(X0, Y0) and Xid is a subset of points
in X0. The components U and Xid uniquely decide such an ID approximation.

To the best of our knowledge, only two specific examples of the proxy point
method have been used in practice, the proxy surface method [11, 16, 25, 29] and a
variant [12,32] of the proxy surface method.

The proxy surface method illustrated in Figure 1.1 in the Introduction is a specific
case of the general proxy point method (to be described in Algorithm 3.1) simply with
the proxy points Yp selected on the boundary of Y. The proxy surface method mainly
works for kernel functions from potential theory, such as the Laplace and the Stokes
kernel. The motivation and heuristic explanation [29] for the method are based on
Green’s identity from potential theory, where proxy points play the role of “equivalent
charges” for the interactions (defined by the kernel function) between charges located
at X0 and those at Y0.

For Gaussian kernels, the proxy surface method works poorly as illustrated pre-
viously by Figure 1.2. In this case, a heuristic and effective variant method [32] is to
select the proxy points Yp in an annulus around the boundary of Y and the remaining
steps are exactly the same as the proxy surface method.

Existing works for the error analysis of the proxy surface and related methods are
limited. Ref. [34] provides an error analysis specifically for the proxy surface method
for the 3D Laplace kernel. Ref. [35] considers a variant of the proxy surface method
with kernel functions in the specific form K(x, y) = 1

|x−y|d with x, y in the complex

plane and d being a positive integer. Compared to these existing results, our error
analysis in this paper is more general and can be applied to the proxy point method
with broader sets of kernel functions, domains, and proxy points.

3. Proxy point method. Recall that the proxy surface method and its variant
only work for specific kernel functions with an admissible pair of domains as exempli-
fied in Figure 1.1. The proxy point method has a more general form than the proxy
surface method and its variant and is described in Algorithm 3.1. It turns out that
the proxy point method can calculate a good ID approximation of a kernel matrix
block K(X0, Y0) for any smooth kernel function K(x, y) as long as the pair of compact
domains X and Y enclosing X0 and Y0 is admissible for K(x, y), i.e., there exists an
accurate, low-degree degenerate approximation of K(x, y) in X × Y. The key is to
select a set of proxy points Yp in Y properly and adaptively according to the kernel
function K(x, y) and the domains X and Y.
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Algorithm 3.1 Proxy point method

Input: X , Y, X0, Y0.
Output: ID approximation of K(X0, Y0),

(3.1) K(X0, Y0) ≈ UK(Xid, Y0), Xid ⊂ X0.

Step 1: Select a set of proxy points Yp in the domain Y. Points in Yp are indepen-
dent of X0 and Y0.
Step 2: Calculate U and Xid for (3.1) from an algebraic ID approximation of
K(X0, Yp) using SRRQR with a given error threshold (or a given rank),

(3.2) K(X0, Yp) ≈ UK(Xid, Yp).

This section provides a fundamental mathematical interpretation of how the proxy
point method works and also connects the method with an existing analytic compres-
sion technique. Section 4 then rigorously studies the approximation error of the proxy
point method in the general case, proving the effectiveness of the method. Lastly, Sec-
tion 5 discusses how to systematically select a proper set of proxy points for any given
kernel function K(x, y) and domains X and Y.

3.1. Algorithm interpretation. The proxy point method can be interpreted
as follows. In Algorithm 3.1, the ID approximations (3.1) and (3.2) can be viewed
row-by-row as

K(X0, Y0) ≈ UK(Xid, Y0)⇐⇒ K(xi, Y0) ≈ uTi K(Xid, Y0), xi ∈ X0,(3.3)

K(X0, Yp) ≈ UK(Xid, Yp)⇐⇒ K(xi, Yp) ≈ uTi K(Xid, Yp), xi ∈ X0,(3.4)

where uTi denotes the ith row of U . For each xi ∈ X0, the above two row approxima-
tions are connected by the function approximation in the domain Y,

(3.5) K(xi, y) ≈ uTi K(Xid, y), y ∈ Y.

Evaluating this function approximation at Y0 and Yp gives the row approximations
(3.3) and (3.4), respectively. Furthermore, it always holds that

‖K(xi, Y0)− uTi K(Xid, Y0)‖2/
√
|Y0| 6 max

y∈Y
|K(xi, y)− uTi K(Xid, y)|,

with any ID components U and Xid, which is based on the simple inequality ‖v‖2 6√
nmaxi |vi| for v ∈ Rn and the fact that Y0 ⊂ Y.

From this analysis, a good ID approximation UK(Xid, Y0) to K(X0, Y0) can be
found by seeking U and Xid such that each function approximation defined in (3.5)
has small error in Y. To make the problem tractable, instead of considering the
approximation (3.5) at every y ∈ Y, the proxy point method considers it at the finite
set of proxy points Yp ⊂ Y. With X × Y being admissible for K(x, y), it turns out
that there exists a proper selection of Yp such that the approximation (3.5) to each
K(xi, y) with any ID components U and Xid has maximum absolute error bounded
by a small multiple of its root-mean-square error at Yp, i.e.,

(3.6) max
y∈Y
|K(xi, y)− uTi K(Xid, y)| 6 O(1)

(
‖K(xi, Yp)− uTi K(Xid, Yp)‖2/

√
|Yp|

)
.
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Such a selection of Yp will be discussed in Section 5.
Assuming that we have a set of proxy points Yp satisfying (3.6), the proxy point

method calculates U and Xid from (3.2) using SRRQR, which has the approxima-
tion error ‖K(xi, Yp) − uTi K(Xid, Yp)‖2 for each row bounded by a specified error
threshold. According to (3.6), the resulting U and Xid define a good function ap-
proximation (3.5) at points in Yp and thus in Y. As a result, the error of the ID
approximation UK(Xid, Y0) to K(X0, Y0) is controlled by the error of the ID approx-
imation UK(Xid, Yp) to K(X0, Yp) as

‖K(xi, Y0)− uTi K(Xid, Y0)‖2/
√
|Y0| 6 O(1)

(
‖K(xi, Yp)− uTi K(Xid, Yp)‖2/

√
|Yp|

)
.

As to be shown in Section 5, the number of proxy points Yp needed to satisfy (3.6)
can be as small as the degree of a putative degenerate approximation of K(x, y) in
X ×Y with a given accuracy. Therefore, K(X0, Yp) is usually a much smaller matrix
than K(X0, Y0) and the proxy point method in Algorithm 3.1 can be much faster
than the direct ID approximation of K(X0, Y0) using SRRQR alone.

3.2. Connection with pseudoskeleton approximation. The general proxy
point method is closely related to the degenerate approximation of K(x, y) in X ×Y
in a pseudoskeleton form [18], i.e.,

(3.7) K(x, y) ≈ K(x, Ypt)K(Xpt, Ypt)
†K(Xpt, y), x ∈ X , y ∈ Y,

where Xpt and Ypt are “pivot” points selected in X and Y, respectively, and the dagger
symbol “†” denotes the pseudoinverse of a matrix. Pseudoskeleton approximations
with different choices ofXpt and Ypt are used in many fast matrix-vector multiplication
algorithms such as the kernel independent fast multipole method [36, 37], the fast
directional multilevel algorithm [13], and the butterfly method [31]. Compression
techniques such as adaptive cross approximation [4] and skeletonized interpolation [9]
are also in this form.

The proxy point method turns out to be equivalent to the combination of a
pseudoskeleton approximation of K(x, y) in X × Y and an algebraic recompression.
For two sets of points, X0 in X and Y0 in Y, a pseudoskeleton approximation (3.7)
defines a low-rank approximation of K(X0, Y0) as

(3.8) K(X0, Y0) ≈ K(X0, Ypt)K(Xpt, Ypt)
†K(Xpt, Y0).

Then consider a recompression of the above low-rank approximation via computing
an ID approximation UK(Xid, Ypt) to the factor K(X0, Ypt) using SRRQR. This step
is analogous to the computation of (3.2) in the proxy point method. With this ID
approximation, the approximation (3.8) is written as

K(X0, Y0) ≈ UK(Xid, Ypt)K(Xpt, Ypt)
†K(Xpt, Y0)

≈ UK(Xid, Y0),

where the second approximation is obtained by substituting Xid and Y0 into (3.7).
This final ID approximation UK(Xid, Y0) is exactly the result (3.1) computed by the
proxy point method if Yp is selected as Ypt.

The main difference between the proxy point method and the above recompressed
pseudoskeleton approximation is that there is no need for Xpt and K(Xpt, Ypt)

† in
the proxy point method. The matrix K(Xpt, Ypt) is usually close to singular and
calculation of its pseudoinverse can be numerically unstable. In practice, Ref. [37]
applies a Tikhonov regularization to compute K(Xpt, Ypt)

† and Ref. [9] applies a
backward stable algorithm to compute K(Xpt, Ypt)

†K(Xpt, y) for a given point y.
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3.3. Examples of proxy points. In the proxy point method, the key compo-
nent is a set of proxy points Yp that satisfies (3.6). Clearly, the selection of proxy
points in Y should be related to K(x, y) and X × Y. Based on the above connection
between the proxy point method and the pseudoskeleton approximation, it is natu-
ral to use pivot points Ypt from existing pseudoskeleton approximation methods as
the corresponding proxy points Yp. Figure 3.1 shows three examples of proxy points
borrowed from existing pseudoskeleton approximation methods. The effectiveness of
some of these proxy point selections can be rigorously justified by the error analysis
in Section 4.

(a) (b) (c)

Fig. 3.1. Examples of proxy points (marked as stars) borrowed from existing pseudoskeleton
approximation methods for different kernel functions and corresponding admissible domain pairs:
(a) For smooth kernels that can be well approximated by polynomials in Y, proxy points are selected
as a tensor grid of Chebyshev points in Y based on Ref. [9]. (b) For smooth radial basis functions,
proxy points are selected as multiple layers of uniform grid points around the interior boundary
of Y based on Ref. [36]. (c) For oscillatory kernels, proxy points are selected via the pivoted QR
decomposition of a kernel matrix defined by points densely selected in X and Y based on Ref. [13]
(cf. Figure 3 in [14]).

4. Error analysis. In this section, we present a rigorous error analysis for the
proxy point method, which proves the effectiveness of the method and also provides
theoretical guidance for selecting the proxy points as discussed in Section 5. Recall
that we always assume that X and Y are compact and K(x, y) is smooth in X × Y.

Using the resulting U and Xid from Algorithm 3.1, denote the error of the function
approximation (3.5) to each K(xi, y) as

(4.1) ei(y) = K(xi, y)− uTi K(Xid, y), xi ∈ X0, y ∈ Y.

With this notation, the ith row of the error matrix K(X0, Y0)− UK(Xid, Y0) for the
ID approximation (3.1) is exactly ei(Y0). Similarly, the ith row of the error matrix
K(X0, Yp)− UK(Xid, Yp) for the ID approximation (3.2) is ei(Yp).

For an arbitrary set of points Y0 in Y, the best upper bound for ‖ei(Y0)‖2 is

(4.2) ‖ei(Y0)‖2 6
√
|Y0|max

y∈Y
|ei(y)| =

√
|Y0|‖ei(y)‖∞,

where equality holds when |ei(y)| reaches the same maximum in Y for all points in
Y0. On the other hand, ‖ei(Yp)‖2 is bounded by the error threshold specified for
the ID approximation (3.2) of K(X0, Yp). Thus, the following error analysis for the
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proxy point method seeks an upper bound for ‖ei(y)‖∞ in terms of ‖ei(Yp)‖2, i.e., an
inequality in the form of (3.6).

For analysis purposes, consider a generic r-term ε-expansion of K(x, y) in X ×Y,

(4.3) K(x, y) =

r∑
j=1

ψj(x)φj(y) +Rr(x, y), x ∈ X , y ∈ Y,

where the remainder |Rr(x, y)| is bounded by ε. Assume that functions in {φj(y)}rj=1

are linearly independent. Such an expansion (4.3) shows that, for any x ∈ X , the
function K(x, y) in the single variable y ∈ Y is close to the r-dimensional function
space spanned by {φj(y)}rj=1 with distance less than ε, i.e.,

(4.4) dist
(
K(x, y), span({φj(y)}rj=1)

)
= inf
f∈span({φj(y)}rj=1)

‖K(x, y)− f(y)‖∞ 6 ε.

Being a linear combination of K(xi, y) and {K(xj , y)}xj∈Xid
, each error function ei(y)

is also close to span({φj(y)}rj=1) with small distance,

dist
(
ei(y), span({φj(y)}rj=1)

)
6 (1 + ‖ui‖1) max

x∈X0

dist
(
K(x, y), span({φj(y)}rj=1)

)
6 (1 + Cqr|Yp|)ε.(4.5)

The first inequality above is based on the triangular inequality. The second inequal-
ity is based on the facts that entries of U computed in (3.2) are bounded by the
prespecified parameter Cqr and that |Xid| computed in (3.2) is no greater than |Yp|.

To estimate ‖ei(y)‖∞ in terms of ‖ei(Yp)‖2, the idea is to first approximate ei(y)
in the function space span({φj(y)}rj=1) based on its values at points in Yp and then
estimate ‖ei(y)‖∞ in this finite-dimensional space. To begin with, consider finding
an approximation of ei(y) in span({φj(y)}rj=1) as

(4.6) ei(y) ≈ c1φ1(y) + . . .+ crφr(y) = cTΦ(y),

where c = (c1, c2, . . . , cr)
T and Φ(y) = (φ1(y), φ2(y), . . . , φr(y))T . The coefficient

vector c is selected to minimize the function approximation error at Yp, i.e.,

c = argv∈Rr min ‖ei(Yp)− vTΦ(Yp)‖2,

where Φ(Yp) ∈ Rr×|Yp| denotes the matrix of column vectors Φ(yj) for all yj in Yp. For
the uniqueness of c and thus the uniqueness of the approximant cTΦ(y), a necessary
condition that Yp needs to satisfy is

(4.7) rank(Φ(Yp)) = r,

meaning that row vectors of Φ(Yp) are linearly independent. Under this condition, c
is solved as cT = ei(Yp)Φ(Yp)

† and ei(y) is approximated as

ei(y) ≈ ei(Yp)Φ(Yp)
†Φ(y).

Let SYp(y) = (s1(y), s2(y), . . . , s|Yp|(y))T denote the vector Φ(Yp)
†Φ(y) of dimen-

sion |Yp|. The above approximation process of ei(y) can be generalized as a linear
operator L : C∞(Y)→ span({φj(y)}rj=1) in the function space C∞(Y) that contains
all the smooth functions in Y,

(4.8) Lf(y) =
∑
yj∈Yp

f(yj)sj(y) = f(Yp)SYp
(y), f ∈ C∞(Y).
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This operator defines a generalized interpolation process such that Lf(y) is the unique
function in span({φj(y)}rj=1) whose values at points in Yp are equal to the projection

of f(Yp) onto the vector space span({φj(Yp)}rj=1), i.e., Lf(Yp) = f(Yp)Φ(Yp)
†Φ(Yp).

Also, it holds that Lf(y) = f(y) for any f(y) in span({φj(y)}rj=1) based on (4.7).
We then estimate ‖ei(y)‖∞ based on its approximation ‖Lei(y)‖∞,

‖ei(y)‖∞ 6 ‖ei(y)− Lei(y)‖∞ + ‖Lei(y)‖∞
6 min
f∈span({φj(y)}rj=1)

(‖ei(y)− f(y)‖∞ + ‖f(y)− Lei(y)‖∞) + ‖Lei(y)‖∞

= min
f∈span({φj(y)}rj=1)

(‖ei(y)− f(y)‖∞ + ‖Lf(y)− Lei(y)‖∞) + ‖Lei(y)‖∞

6 min
f∈span({φj(y)}rj=1)

(‖ei(y)− f(y)‖∞ + ‖L‖∞‖f(y)− ei(y)‖∞) + ‖Lei(y)‖∞

= (1 + ‖L‖∞)dist(ei(y), span({φj(y)}rj=1)) + ‖Lei(y)‖∞,(4.9)

where the operator norm ‖L‖∞ is defined as

(4.10) ‖L‖∞ = max
f∈C∞(Y),f 6=0

‖Lf‖∞
‖f‖∞

= max
y∈Y
‖SYp

(y)‖1.

The second representation of ‖L‖∞ above is based on (4.8) and Hölder’s inequality

|Lf(y)| 6 ‖f(Yp)‖∞‖SYp
(y)‖1 6 ‖f‖∞‖SYp

(y)‖1, y ∈ Y,

where equality can hold true for some f ∈ C∞(Y) and thus the second equality in
(4.10) holds true. Also, Lei(y) = ei(Yp)SYp(y) can be bounded as

(4.11) ‖Lei(y)‖∞ 6 ‖ei(Yp)‖2 max
y∈Y
‖SYp

(y)‖2.

Lastly, substituting (4.5), (4.10), and (4.11) into (4.9), ‖ei(y)‖∞ is bounded as

(4.12) ‖ei(y)‖∞ 6 (1 + max
y∈Y
‖SYp(y)‖1)(1 + Cqr|Yp|)ε+ ‖ei(Yp)‖2 max

y∈Y
‖SYp(y)‖2.

We note that the above estimation of ‖ei(y)‖∞ in terms of ‖ei(Yp)‖2 works for any
r-term ε-expansion (4.3) of K(x, y) and for any Yp that satisfies the condition (4.7).
Noting that the upper bound (4.12) does not rely on {ψj(x)}rj=1 in the expansion
(4.3), (4.12) can be further sharpened by fixing {φj(x)}rj=1 and varying {ψj(x)}rj=1

to reduce ε that appears in the upper bound. Specifically, the minimal accuracy ε∗
of an expansion (4.3) using a fixed set of functions {φj(y)}rj=1 can be defined as

(4.13) ε∗ = sup
x∈X

inf
f∈span({φj(y)}rj=1)

‖K(x, y)− f(y)‖∞,

which describes the maximum distance between all the functions in {K(x, y)}x∈X and
the function space span({φj(y)}rj=1).

Combining the upper bound (4.12), the minimal accuracy ε∗ in (4.13), and the
inequality ‖ei(Y0)‖2/

√
|Y0| 6 ‖ei(y)‖∞ from (4.2), the error bound for the proxy

point method can be summarized as follows.

Theorem 4.1 (Error bound for the proxy point method). Consider two compact
domains X and Y and a kernel function K(x, y) being smooth in X ×Y. Given a set
of linearly independent functions {φj(y)}rj=1 in Y, the minimal accuracy ε∗ of all the
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possible degenerate approximations of K(x, y) in X × Y using {φj(y)}rj=1 is defined
in (4.13). If the set of proxy points Yp satisfies the condition rank(Φ(Yp)) = r, the ID
approximation of K(X0, Y0) calculated by the proxy point method with Yp has error in
the ith row ei(Y0) bounded as
(4.14)
‖ei(Y0)‖2√
|Y0|

6

(
1 + max

y∈Y
‖SYp(y)‖1

)
(1 + Cqr|Yp|) ε∗ + ‖ei(Yp)‖2 max

y∈Y
‖SYp(y)‖2.

We note that Theorem 4.1 works for any set of linearly independent functions
{φj(y)}rj=1 which will be referred to as a set of basis functions. The assumption that
X × Y is admissible for K(x, y), i.e., there exists an accurate, low-degree degenerate
approximation of K(x, y) in X × Y, guarantees that there exists a small set of basis
functions {φj(y)}rj=1 such that the minimal accuracy ε∗ is negligible compared to
‖ei(Yp)‖2. With such {φj(y)}rj=1, the first term of the upper bound (4.14) is negligible
if maxy∈Y ‖SYp

(y)‖1 is of scale O(1). Theorem 4.1 then shows that

‖ei(Y0)‖2/
√
|Y0| 6 O(1)‖ei(Yp)‖2/

√
|Yp|,

if maxy∈Y ‖SYp
(y)‖2 and |Yp| are also of scale O(1), which proves the effectiveness of

the proxy point method. The remaining problem becomes how to select a small set of
proxy points Yp so that maxy∈Y ‖SYp(y)‖2 and maxy∈Y ‖SYp(y)‖1 are of scale O(1).

5. Proxy point selection.

5.1. Guidelines for selecting proxy points. Recall that the ultimate goal of
a proper selection of the proxy points Yp is to guarantee that ‖ei(y)‖∞ is bounded

by a small multiple of ‖ei(Yp)‖2/
√
|Yp|. Assume that ‖ei(Yp)‖2 6 εid from the error

threshold εid specified for the ID approximation of K(X0, Yp). Based on Theorem 4.1,
the guidelines for selecting proxy points are established as follows.

To simplify our discussion, the upper bound (4.14) is slightly loosened as

(5.1) ‖ei(y)‖∞ .
(
ε∗|Yp|

3
2 + ‖ei(Yp)‖2

)
max
y∈Y
‖SYp

(y)‖2,

using ‖SYp
(y)‖1 6

√
|Yp|‖SYp

(y)‖2. This upper bound relies on two important com-
ponents: basis functions {φj(y)}rj=1 and proxy points Yp ⊂ Y. Fixing a set of basis
functions {φj(y)}rj=1, (5.1) gives the following guidelines for selecting proxy points:

1. Yp should satisfy rank(Φ(Yp)) = r as required by Theorem 4.1.
2. Yp should have O(1)r points for the efficiency of the proxy point method.
3. Yp should make maxy∈Y ‖SYp

(y)‖2 of scale O(1).
To make ‖ei(y)‖∞ bounded by O(1)εid via (5.1), the basis functions {φj(y)}rj=1

used in the above guidelines need to satisfy

(5.2) ε∗|Yp|
3
2 ∼ ε∗r

3
2 6 O(1)εid.

The number of basis functions r should also be small so that only a small number
of proxy points is selected following the guidelines. In other words, we need to use a
small set of basis functions {φj(y)}rj=1 (small r) whose span is close to all the functions
in {K(x, y)}x∈X (small ε∗). As to be discussed next, such a set of basis functions can
be selected heuristically based on analytic properties of the kernel function. The basis
functions can also be selected in a numerical way, which is the approach used by the
proposed proxy point selection scheme in this paper.
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5.2. Selection of basis functions. General expansion techniques such as Tay-
lor expansion, interpolation, and Fourier series are commonly used to construct de-
generate approximations of K(x, y) in X × Y, which correspond to approximating
functions in {K(x, y)}x∈X using specific basis functions, e.g., polynomials and trigono-
metric polynomials. If we know that K(x, y) in the single variable y ∈ Y can be well
approximated using a small number of polynomials or trigonometric polynomials,
then these basis functions can be used in the guidelines for selecting proxy points.
The number of such basis functions r can be selected by trial-and-error or by analytic
estimation of the minimal accuracy ε∗ in terms of r.

Another idea that does not require a priori knowledge of a degenerate approxima-
tion of K(x, y) is to use a finite subset of {K(x, y)}x∈X as the basis functions. Denote
such a subset as {K(xj , y)}xj∈Xp

associated with a set of points Xp in X . Based on
the assumption that X and Y are compact and K(x, y) is smooth in X × Y, it can
be proved that there always exists such a finite subset that can approximate all the
functions in {K(x, y)}x∈X with a given accuracy. The basic idea is that we can select
a finite set of points Xp ⊂ X such that, for any x ∈ X , there exists some x∗ ∈ Xp

whose distance to x is below an arbitrarily small threshold. Then, K(x∗, y) can ap-
proximate K(x, y) well in Y and thus so can a linear combination of {K(xj , y)}xj∈Xp

.
We skip the detailed proof here. In practice, the basis functions {K(xj , y)}xj∈Xp

with
the minimal accuracy ε∗ approximately below a given threshold εp can be numerically
selected as follows.

First sample domain Y to obtain a set of uniformly distributed points Y1 with high
point density. Similarly, sample domain X to obtain a set of points X1 which is larger
than the expected size of Xp (through trial-and-error as explained below). Compute
an ID approximation of K(X1, Y1) using SRRQR and define Xp as the subset of X1

that corresponds to the row subset of this ID approximation, i.e.,

(5.3) K(X1, Y1) ≈ U1K(Xp, Y1).

The error threshold for this ID approximation is set to εp
√
|Y1|. This selection of Xp

satisfies the condition that K(x, Y1) for any x ∈ X1 can be approximated by a linear
combination of {K(xj , Y1)}xj∈Xp with root-mean-square error bounded by εp. Since
K(x, y) is smooth in X × Y and X1 and Y1 have high point densities in X and Y,
respectively, we can expect that functions in {K(x, y)}x∈X can be approximated by
linear combinations of {K(xj , y)}xj∈Xp

with error O(εp). The above selection process
can start with a relatively small set of points X1. If the ID approximation (5.3) has
full rank, i.e., Xp = X1, we can double the size of X1 and repeat the selection process.

To make ε∗ satisfy the condition (5.2), we can conservatively set εp a few orders
of magnitude smaller than εid while taking arithmetic rounding errors into account.
This selection of basis functions is summarized by Step 1 in Algorithm 5.1.

5.3. Selection of proxy points. Assume that we have a set of basis functions
{φj(y)}rj=1 selected according to the above discussion. Following the above guidelines
for selecting proxy points, we seek exactly r proxy points such that rank(Φ(Yp)) = r
and maxy∈Y ‖SYp

(y)‖2 is of scale O(1). If |Yp| = r and rank(Φ(Yp)) = r, it holds that
SYp(y) = Φ(Yp)

−1Φ(y) where the pseudoinverse becomes the exact inverse. Then the
operator L defined in (4.8) is exactly the interpolation operator in span({φj(y)}rj=1)
where Yp is the set of interpolation nodes and entries of SYp

(y) are the corresponding
Lagrangian functions.

In numerical approximation theory, the norm of L, ‖L‖∞ = maxy∈Y ‖SYp
(y)‖1,

is called the Lebesgue constant and is used to characterize the quality of interpolation
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nodes Yp. For polynomials and trigonometric polynomials in a regular box domain,
selections of interpolation nodes leading to small Lebesgue constant have been well
studied [30]. Since ‖SYp

(y)‖2 6 ‖SYp
(y)‖1, these interpolation nodes can be directly

used as proxy points. For example, if {φj(y)}rj=1 are polynomials in a 2D box Y of

degree up to k − 1 for each variable (r = k2), we can select Yp as a k × k tensor grid
of Chebyshev nodes in Y as illustrated in Figure 3.1a, which has maxy∈Y ‖SYp

(y)‖2
that is well bounded, i.e.,

max
y∈Y
‖SYp(y)‖2 6 max

y∈Y
‖SYp(y)‖1 ≈

(
2

π
log(k + 1)

)2

.

Furthermore, we can also select Yp as a k × k tensor grid of Gauss-Lobatto nodes
which gives an even smaller scaling factor, maxy∈Y ‖SYp

(y)‖2 = 1 (see Ref. [7]).
In this paper, we only consider the general case with basis functions of the form

{K(xj , y)}xj∈Xp
and with irregular domain Y, where analytic choices of interpolation

nodes with small Lebesgue constant are not available. In this case, we introduce a
numerical method to select r proxy points Yp in Y such that maxy∈Y ‖SYp(y)‖2 is of
scale O(1).

First, we sample domain Y to obtain a set of uniformly distributed points Y2 with
high point density. Then, we find an r-point subset Yp of Y2 that bounds ‖SYp

(y)‖2 =
‖Φ(Yp)

−1Φ(y)‖2 at any point y ∈ Y2. To do this, compute a numerically exact SRRQR
decomposition of Φ(Y2) ∈ Rr×|Y2| as

(5.4) Φ(Y2)P = Q(R1 R2),

where P is a permutation matrix, Q is an orthogonal matrix, and R1 is an r × r
upper-triangular matrix. Let Yp be the subset of points in Y2 that corresponds to
the columns of R1 in the decomposition, i.e., Φ(Yp) = QR1. It is the key feature of
SRRQR that, with (5.4), the matrix

Φ(Yp)
−1Φ(Y2) = (QR1)−1Q(R1 R2)PT = (Ir R

−1
1 R2)PT

has all its entries bounded by the prespecified parameter Cqr > 1. Thus, ‖SYp
(y)‖ 6

Cqr
√
r for any y ∈ Y2. Since Y2 is uniformly distributed and has high point density

in Y, this selection of Yp satisfies the condition that maxy∈Y ‖SYp
(y)‖2 . Cqr

√
r.

This selection of proxy points is summarized by Step 2 in Algorithm 5.1. Also,
we note that this selection approach is closely related to the pseudoskeleton approx-
imation method [13] and the numerical construction of a special set of interpolation
nodes called Fekete points [6].

5.4. Summary of the selection scheme. Algorithm 5.1 summarizes the over-
all systematic numerical scheme above to select the basis functions and the proxy
points. A heuristic “densification” step is included in Algorithm 5.1 in order to im-
prove the quality of the set of selected proxy points. The motivation for this additional
step is explained below.

In Algorithm 5.1, Step 1 obtains a set of basis functions {K(xj , y)}xj∈Xp that can
approximate functions in {K(x, y)}x∈X with error O(εp). Step 2 then selects r = |Xp|
number of proxy points Yp that satisfies maxy∈Y ‖SYp

(y)‖2 . Cqr
√
r. By (5.1), the

proxy points Yp obtained by Step 1 and Step 2 satisfy the error bound

(5.5) ‖ei(y)‖∞ .
(
εpr

3
2 + ‖ei(Yp)‖2

)
Cqr
√
r,
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Algorithm 5.1 Proxy point selection scheme

Input: K(x, y), X , Y, εp.
Output: Proxy points Yp.

Step 1: Selection of basis functions {φj(y)}rj=1.
a. Sample domains X and Y to obtain two sets of uniformly distributed points
X1 and Y1 with high point density, respectively.

b. Compute an ID approximation (5.3) of K(X1, Y1) using SRRQR with error
threshold εp

√
|Y1|.

c. Set {φj(y)}rj=1 as {K(xj , y)}xj∈Xp
with Xp defined by (5.3).

Step 2: Selection of proxy points Yp.
a. Sample domain Y to obtain a set of uniformly distributed points Y2 with

high point density.
b. Compute an exact SRRQR decomposition (5.4) of Φ(Y2).
c. Set Yp as the subset of points in Y2 that corresponds to the columns of R1

in (5.4).
Step 3: Heuristic densification of Yp. For each point yj ∈ Yp, calculate the distance
dj between yj and its nearest neighbor in Yp. Randomly select one (or more) extra
point in the ball centered at yj with radius dj/3 and add it to Yp.

which justifies the effectiveness of the selected proxy points if εpr
3
2 is negligible or of

similar scale as the error threshold εid specified for ‖ei(Yp)‖2.
However, note that εp is the root-mean-square error threshold for the algebraic

ID approximation (5.3). Due to arithmetic rounding errors, εp cannot be of smaller
scale than machine precision εmachine. Thus, the error bound (5.5) suggests that the
approximation error of the proxy point method with Yp selected by Step 1 and Step 2

in Algorithm 5.1 may stagnate around εmachiner
3
2 if the specified error threshold εid

is close to machine precision. Such error stagnation is indeed observed in some of
our preliminary tests, where the smallest relative approximation error of the proxy
point method can only reach around 10−13 ∼ 10−10 with double precision (10−16)
arithmetic. To tackle this possible error stagnation for extremely small error threshold
εid, a heuristic densification of Yp by Step 3 in Algorithm 5.1 is added where extra
proxy points are added. This densification step turns out to be experimentally effective
as illustrated by the numerical results in the next section.

In terms of computational cost, Algorithm 5.1 is expensive due to the large number
of sample points in X1, Y1, and Y2. Reusing the proxy points selected by Algorithm 5.1
is critical for practical applications of Algorithm 5.1. Luckily, in most rank-structured
matrix applications, the kernel function is translationally invariant, i.e.,

K(x, y) = k(x− y), for some univariate function k(·).

As a result, the proxy points selected by Algorithm 5.1 can be reused by simple
translations for different admissible pairs of domains in the construction of rank-
structured matrices (see the numerical test in Subsection 6.5).

Lastly, in practice and for the numerical experiments in the next section, the
sample points X1, Y1, and Y2 in Algorithm 5.1 are randomly and uniformly sampled
from X and Y with their numbers of points heuristically decided for efficiency and
simplicity. However, to rigorously justify the arguments about X1, Y1, and Y2 in
Subsection 5.2 and Subsection 5.3, the point densities of these sets should depend on
the magnitude of the variation of K(x, y) in X ×Y, about which we skip more detailed
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discussions. Possible approaches for reducing the sizes of these sample point sets are
the “weakly admissible meshes” used in Ref. [6] and the tensor grid of Chebyshev
nodes used in Ref. [9]. Another heuristic but usually effective approach, similar to
the idea used in Ref. [13], is to initially apply Algorithm 5.1 with small X1, Y1, and
Y2 and recursively enlarge the three sets of points if needed.

6. Numerical experiments. In this section, we provide numerical tests to il-
lustrate the effectiveness of the proxy point selection scheme (Algorithm 5.1) and the
performance of the proxy point method (Algorithm 3.1) for general kernel functions
and corresponding admissible domain pairs. The parameter Cqr for SRRQR used in
the proxy point method and in the proxy point selection scheme is set to 2. In all
the tests of Algorithm 5.1, X1 contains 1500 points sampled in X , Y1 contains 10000
points sampled in Y, Y2 is the same set of points as Y1, and the parameter εp is set
to 10−14. All these sets of sample points, X1 and Y1, are randomly and uniformly
sampled in their corresponding domains.

6.1. Basic tests. Consider the following four different problem settings:
1. K(x, y) = 1/

√
1 + |x− y|2, X = [−1, 1]2, Y = [3, 5]× [−1, 1].

2. K(x, y) = e−|x−y|
2

, X = [−1, 1]2, Y = [−7, 7]2\[−3, 3]2.
3. K(x, y) = e2πi|x−y|, X = B2(0, 2), Y = {y ∈ R2 : θ(y, l) 6 1/2, 4 6 |y| 6 16}

with l = (1, 0).
(Note: Bd(0, a) denotes the d-dimensional ball centered at the origin with
radius a, and θ(y, l) denotes the angle between y and l.)

4. K(x, y) = e2πi|x−y|/|x − y|, X = B3(0, 2), Y = {y ∈ R3 : θ(y, l) 6 1/2, 4 6
|y| 6 8} with l = (1, 0, 0).

For each problem setting above, the domains X and Y and the corresponding proxy
points Yp selected by Algorithm 5.1 are plotted in Figures 6.1 to 6.4.

Two sets of points X0 and Y0 are randomly and uniformly selected in X and
Y, respectively, with an average 100 points per unit of area in 2D or 50 points per
unit of volume in 3D. For different approximation ranks, the relative approximation
error of the proxy point method with the selected Yp for K(X0, Y0) is also plotted in
the figure for each of the problem settings. The relative error of the intermediate ID
approximation of K(X0, Yp) in the proxy point method is plotted as well.

As can be observed from the results, the proxy point method with proxy points
selected by Algorithm 5.1 has approximation error close to those of SVD and the ID
approximation using SRRQR. Also, the intermediate ID approximation of K(X0, Yp)
has similar relative error as the ID approximation of K(X0, Y0). This shows that the
accuracy of the final ID approximation in the proxy point method can be controlled
by controlling the accuracy of the ID approximation of K(X0, Yp).

6.2. Error bound for ‖ei(y)‖∞. The proxy point selection scheme in Algo-
rithm 5.1 and the effectiveness of the proxy point method are both based on The-
orem 4.1 and the derived error bound (5.1) for ‖ei(y)‖∞. In this subsection, we
numerically study the tightness of this error bound.

Consider K(x, y) = e−|x−y|
2

, X = [−1, 1]2, and Y = [−7, 7]2\[−3, 3]2. We ran-
domly and uniformly select 400 points in X for X0. We fix the error threshold
εid = 10−6 for the ID approximation of K(X0, Yp) with any Yp. In order to test the
proxy point method with a given number of proxy points, we use a simple modification
of Algorithm 5.1. Specifically, given an integer r, we select a set of r basis functions
{K(xj , y)}xj∈Xp

with Xp computed by a rank-r ID approximation of K(X1, Y1) in
Step 1 of Algorithm 5.1. Exactly r proxy points Yp can be then selected by Step 2 of
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(a) proxy points
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(b) relative approximation error

Fig. 6.1. Basic test for problem setting 1: K(x, y) = 1/
√

1 + |x− y|2, |X0| = 400, |Y0| = 400,
and |Yp| = 118. In this and the following three figures, “intermediate approx.” refers to the relative
error of the ID approximation of K(X0, Yp) in the proxy point method.
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(b) relative approximation error

Fig. 6.2. Basic test for problem setting 2: K(x, y) = e−|x−y|
2

, |X0| = 400, |Y0| = 16000, and
|Yp| = 384.
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(b) relative approximation error

Fig. 6.3. Basic test for problem setting 3: K(x, y) = e2πi|x−y|, |X0| = 1300, |Y0| = 6000, and
|Yp| = 330.
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(a) proxy points
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(b) relative approximation error

Fig. 6.4. Basic test for problem setting 4: K(x, y) = e2πi|x−y|/|x − y|, |X0| = 1700, |Y0| =
22500, and |Yp| = 870. Domain Y is not plotted. The selected proxy points are colored in (a) based
on their x-axis coordinates for better visualization. Most of the proxy points are near the boundary
of Y excluding the outer hemispherical surface, i.e., |y| = 8.

Algorithm 5.1 without densification.
Using this selection scheme, we vary r and select the corresponding r proxy points

Yp. The error function ei(y) for each xi ∈ X0 is then defined by the ID approx-
imation of K(X0, Yp) with error threshold εid. For different Yp, Figure 6.5 plots
maxxi∈X0

‖ei(y)‖∞ and its upper bound derived from (5.1), i.e.,

(6.1) max
xi∈X0

‖ei(y)‖∞ . (r
3
2 ε∗ + εid) max

y∈Y
‖SYp

(y)‖2,

where ε∗ and maxy∈Y ‖SYp(y)‖2 are numerically estimated for each set of proxy points
Yp based on the associated set of basis functions {K(xj , y)}xj∈Xp

. Although having a
large gap, the upper bound (6.1) captures the changing trend of maxxi∈X0

‖ei(y)‖∞.
Further numerical tests show that the large gap between the upper bound (6.1) and
the actual value maxxi∈X0

‖ei(y)‖∞ is mainly due to the loose estimate of ‖ei(y) −
Lei(y)‖∞ in (4.9), i.e.,

‖ei(y)− Lei(y)‖∞ 6 (1 + max
y∈Y
‖SYp(y)‖2)(1 + Cqr|Yp|)ε∗ . r

3
2 ε∗max

y∈Y
‖SYp(y)‖2,

which is used to derive the first term in (6.1).

6.3. Comparison of different selections of proxy points. As illustrated in
the Introduction, an improper selection of proxy points Yp can lead to a much larger
approximation error in the proxy point method when compared to the SVD. In this
subsection, we compare the proposed proxy point selection scheme in Algorithm 5.1
with existing heuristic selection schemes.

Consider again K(x, y) = e−|x−y|
2

, X = [−1, 1]2, and Y = [−7, 7]2\[−3, 3]2. Al-
gorithm 5.1 obtains 384 proxy points with densification, as illustrated previously in
Figure 6.2. We test three other heuristic choices of 384 proxy points: (1) uniform
selection on the surface ∂[−3, 3]2, (2) uniform and random selection in the annu-
lus [−3.2, 3.2]2\[−3, 3]2, (3) uniform and random selection in another wider annulus
[−3.5, 3.5]2\[−3, 3]2. The heuristic selection of proxy points in an annulus was sug-
gested in Ref. [32] for Gaussian kernels.
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Fig. 6.5. Values of maxxi∈X0 ‖ei(y)‖∞ and its upper bound (6.1) for different numbers of
proxy points selected by a simple modification of Algorithm 5.1.

We randomly and uniformly select 400 points in X for X0 and 16000 points in Y
for Y0. The relative approximation errors of the proxy point method with the above
four sets of proxy points for K(X0, Y0) are plotted in Figure 6.6a. We apply the same

test to another Gaussian kernel K(x, y) = e−0.1|x−y|
2

with the same domains X and
Y, where 194 proxy points are selected by Algorithm 5.1. The corresponding relative
approximation errors are plotted in Figure 6.6b.

As can be observed, Algorithm 5.1 outperforms the three heuristic selection
schemes. With these heuristic schemes, the relative approximation error can stop
decreasing or even increase when the approximation rank becomes large. One part
of the reason for the increasing approximation error is the numerical instability of
computing the ID approximation of K(X0, Yp) for a large approximation rank. With
an improper selection of proxy points Yp (especially the selection on the surface),
K(X0, Yp) can have numerical rank smaller than the actual rank needed for an ID
approximation of K(X0, Y0) to obtain a given accuracy. As a result, the ID approx-
imation of K(X0, Yp) computed by SRRQR with a given approximation rank larger
than the numerical rank of K(X0, Yp) becomes numerically unstable.

6.4. Comparison with algebraic compression methods. In this subsection,
we compare the proxy point method with three algebraic compression methods: (1)
ID using SRRQR, (2) adaptive cross approximation (ACA) with partial pivoting [4],
and (3) a pseudoskeleton approximation method based on random column sampling
and the pivoted QR decomposition that is similarly presented in Ref. [26].

Consider the same test settings as in the previous subsection: K(x, y) = e−|x−y|
2

,
X = [−1, 1]2, Y = [−7, 7]2\[−3, 3]2, 384 proxy points selected by Algorithm 5.1,
400 points in X for X0, and 16000 points in Y for Y0. For different approximation
ranks, Figure 6.7 plots the relative approximation errors and running times of the
four different compression methods. As can be observed, the proxy point method has
slightly better approximation accuracy and much less computational cost compared
to ACA and the pseudoskeleton approximation method. However, it is worth noting
that the accuracy difference between these tested methods is also related to the actual
distribution of points Y0 in the domain Y. Meanwhile, all these methods and tests are
implemented in Matlab without code optimization. These facts could also affect the
test results. More tests are needed for a comprehensive comparison of these methods
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(b) K(x, y) = e−0.1|x−y|2

Fig. 6.6. Relative approximation error of the proxy point method with different selections of
proxy points for two kernel functions. In the legend, “annulus 1” refers to [−3.2, 3.2]2\[−3, 3]2 and
“annulus 2” refers to [−3.5, 3.5]2\[−3, 3]2.

but these are outside the scope of this paper.
We note that the running time of the proxy point method in Figure 6.7 does not

include the running time of the proxy point selection by Algorithm 5.1, which is 5.9
seconds. As discussed in Subsection 5.4, the proxy point selection by Algorithm 5.1
should be viewed as a precomputation step and the selected proxy points are used
repeatedly when applying the proxy point method in rank-structured matrix construc-
tion (see the numerical test in Subsection 6.5). Thus, it is reasonable to ignore the
running time of the proxy point selection when comparing the proxy point method
with other algebraic compression methods.
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(a) relative approximation error

0 50 100 150 200

10
-2

10
-1

10
0
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Fig. 6.7. Relative approximation error and running time of the proxy point method and three
different algebraic compression methods. The running time of the proxy point method in (b) does
not include the running time of the proxy point selection by Algorithm 5.1, which is 5.9 seconds.

6.5. Application to H2 matrix construction. We now apply the proxy point
method to efficiently construct H2 matrix representations of kernel matrices in the
form K(X,X) defined by a non-oscillatory kernel function K(x, y) and randomly gen-
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erated points X. Readers can refer to Refs. [8,25] for details ofH2 matrix construction
that has kernel matrix blocks compressed in the form of an ID.

In d-dimensional space (d = 2 or d = 3), we uniformly and randomly select N

points in a square or cubical box with edge length L = N
1
d for X. This box, enclosing

all the points, is recursively partitioned into smaller boxes. Specifically, a box is
uniformly subdivided into 2d smaller boxes if it contains more than 300 points. With
uniformly distributed points, we partition all the boxes at every level until the finest
level. At the kth level of the recursive partitioning, the original box is partitioned into
2dk boxes with edge length L/2k. Such a recursive partitioning has O(logN) levels
in total.
H2 matrix construction at the kth level needs to compute ID approximations of

2dk number of kernel matrix blocks. These blocks share the same form K(X0, Y0)
where, for some box B at the kth level, X0 is a set of points lying in B and Y0 is a set
of points lying in all the other boxes that are at least one box away from B. Assuming
that K(x, y) is translationally invariant, we only need to select proxy points Yp using
Algorithm 5.1 for K(x, y) with domains

X =

[
− L

2k+1
,
L

2k+1

]d
and Y =

[
−(L− L

2k+1
), L− L

2k+1

]d
\
[
− 3L

2k+1
,

3L

2k+1

]d
.

We can then apply the proxy point method to each K(X0, Y0) at the kth level with
Yp properly shifted according to the position of B relative to X .

We test two different problem settings: K(x, y) = 1/
√

1 + |x− y|2 in 2D and
K(x, y) = (1 + 0.01|x − y|)e−0.01|x−y| in 3D. The proxy point method is used to
compute all the ID approximations in the construction of the H2 matrix, where all
the intermediate ID approximations of K(X0, Yp) in the method are computed with
relative error threshold τ = 10−6. Here, an ID approximation UAJ to a matrix A
meets a relative error threshold τ if the 2-norm of each row of A−UAJ is bounded by
τ times the maximum of the 2-norm of each row of A. For comparison, the H2 matrix
construction with all the ID approximations computed using SRRQR with relative
error threshold τ = 10−6 is also tested. All the tests are implemented in Matlab.

Figure 6.8 and Figure 6.9 plot the construction time, storage cost, and relative
error of H2 matrix constructions for the two problem settings, respectively. For a
constructed H2 matrix, its relative error is measured as the relative error of 100 ran-
domly chosen entries of the product of the H2 matrix with a random vector compared
with the entries of the exact product of the original kernel matrix with the vector.
The reported relative error results are averaged over 20 independent tests.

The runtime of selecting proxy points is significant but its asymptotic complexity
is only O(logN) since Algorithm 5.1 is applied only once at each level of H2 matrix
construction. The proxy point method leads to nearly linear H2 matrix construction,
which can also be justified theoretically if we assume that the number of proxy points
Yp selected at each level is O(1). Also, the storage cost and relative error of H2 matri-
ces constructed by the proxy point method are close to those by SRRQR, indicating
that the proxy point method is as effective as SRRQR in terms of the approximation
rank and accuracy for ID approximations in H2 matrix construction.

7. Conclusion. In this paper, we illustrate the effectiveness of the proxy point
method in a general problem setting, i.e., any kernel function K(x, y) and two compact
domains X and Y satisfying that X×Y is admissible for K(x, y) and K(x, y) is smooth
in X × Y, based on a rigorous error analysis. The selection of proxy points plays a
critical role to control the approximation accuracy of the method. While only heuristic
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Fig. 6.8. Results of the H2 matrix construction for K(x, y) = 1/
√

1 + |x− y|2 in 2D: (a)
construction time of H2 matrices, (b) storage cost of the constructed H2 matrices, (c) relative error
of the constructed H2 matrices. In the legend, “proxy point method” and “SRRQR” refer to the
corresponding ID approximation methods used in the H2 matrix construction. In (a), “proxy point
selection” refers to the total runtime of selecting the proxy points by Algorithm 5.1 for H2 matrix
construction. Reference lines for linear and quadratic scaling with N are also plotted.
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Fig. 6.9. Results of the H2 matrix construction for K(x, y) = (1+0.01|x−y|)e−0.01|x−y| in 3D:
(a) construction time of H2 matrices, (b) storage cost of the constructed H2 matrices, (c) relative
error of the constructed H2 matrices.

selections are used presently in practice, Algorithm 5.1 is proposed to systematically
select a proper set of proxy points for any given kernel function and corresponding
admissible domain pair. The effectiveness of this selection scheme is justified both
theoretically and numerically.

Based on the selection scheme, the proxy point method can now be used to ac-
celerate the construction of all types of rank-structured matrices with translationally
invariant kernel functions in low-dimensional spaces by simply replacing the existing
compression methods by the proxy point method. The kernel function being trans-
lationally invariant allows reusing the proxy points and thus amortizes the expensive
cost of Algorithm 5.1, which is presently the main limitation for practical applications
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of Algorithm 5.1. For kernel functions that are not translationally invariant, the error
analysis for the proxy point method is still valid and thus may be used to help design
more efficient selection schemes for specific kernel functions.
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