
Release the Hounds! Automated Inference and Empirical Security
Evaluation of Field-Deployed PLCs Using Active Network Data

Ryan Pickren
Georgia Institute of Technology

Atlanta, GA, USA
rpickren3@gatech.edu

Animesh Chhotaray
Georgia Institute of Technology

Atlanta, GA, USA
achhotaray3@gatech.edu

Frank Li
Georgia Institute of Technology

Atlanta, GA, USA
frankli@gatech.edu

Saman Zonouz
Georgia Institute of Technology

Atlanta, GA, USA
szonouz6@gatech.edu

Raheem Beyah
Georgia Institute of Technology

Atlanta, GA, USA
rbeyah@coe.gatech.edu

Abstract
Surveying field-deployed Industrial Control System (ICS) equip-
ment has numerous security applications, including attack-surface
management and measuring the adoption of vulnerability patches.
However, discovering real-world devices using massive Internet-
scale scan datasets is tedious and error-prone. We introduce PL-
CHound, a novel ICS asset discovery solution designed to automat-
ically reveal elusive ICS devices hiding in network data collected
by Internet-scale scanners such as Censys or Shodan. Our solution
systematically uncovers indirect evidence of controllers using sub-
tle network-based indicators and temporally-resistant signatures
that are often overlooked in prior work. We present PLCHound’s
architecture, experimentally verify its accuracy, and explore the
security advantages of enhanced device discovery. We also use PL-
CHound to perform the largest comprehensive examination of the
publicly-reachable population of ICS devices by popular vendors.
Our results reveal that the industry-accepted estimations and latest
published papers undercount the true number of public devices by
up to 37x. We also find that 95.88% of devices expose protocols that
cause them to be remotely vulnerable to recent critical CVEs.

CCS Concepts
• Networks → Network protocols; • Security and privacy →
Network security; • General and reference→ Measurement.

Keywords
Network Security, Industrial Control Systems, Programmable Logic
Controllers

ACM Reference Format:
Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, and Raheem
Beyah. 2024. Release the Hounds! Automated Inference and Empirical Se-
curity Evaluation of Field-Deployed PLCs Using Active Network Data. In
Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM,
New York, NY, USA, 19 pages. https://doi.org/10.1145/3658644.3690195

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690195

1 Introduction
Industrial Control Systems (ICSs) refer to the broad category of
software and hardware systems designed to automate industrial pro-
cesses, like those commonly found in critical infrastructure such as
water treatment plants, nuclear facilities, and electrical substations.
At the heart of these systems, ruggedized single-purpose comput-
ers called Programmable Logic Controllers (PLCs) control physical
equipment by reading sensors and manipulating actuators. PLCs
communicate with peripheral ICS devices such as Human-Machine
Interfaces (HMIs), Engineering Workstations, and Data Histori-
ans via a plethora of IP-based networking protocols. Historically,
PLCs exclusively used domain-specific protocols such as ISO-TSAP
(UDP/102), EIP (UDP/44818), and Modbus (TCP/502) to transmit
informationwithin closed ICS environments. Recently, PLCs also be-
gan to incorporate standard IT protocols such as HTTPS (TCP/443),
SSH (TCP/22), and FTP (TCP/21) for administrative configuration
and maintenance.

Unfortunately, the interconnectivity of these systems have made
them a prime target for cyberattacks in recent years. Notable real-
world attacks on ICSs include the infamous Stuxnet [36] worm,
which targeted Iran’s nuclear program, Triton [24], which disrupted
Saudi petrochemical plants, and the recent Ukraine power grid at-
tacks [23]. These incidents highlight that cybercriminals are actively
targeting and successfully compromising these systems.

To further compound the issue, many ICS networks are miscon-
figured to allow inbound traffic from the public Internet to reach
their controllers. The existence of Internet-facing ICS devices, es-
pecially PLCs, is an extensively studied phenomenon [6, 27, 39,
42, 70] and has directly resulted in recent critical infrastructure
breaches [20]. This topic gained attention shortly after the prolifer-
ation of Internet-scale scanning services such as Shodan [2] and
Censys [1] due to the urgent need to study and protect exposed
critical infrastructure. These scanning services probe public IP ad-
dresses using common network protocols and record the decoded
responses into large searchable databases, thus creating a vast cata-
log of Internet-facing network services. These databases provide
an extensive, although oftentimes overwhelmingly large, source of
data to search for exposed ICS devices.

Interestingly, the industry standard approach to querying these
massive datasets for ICS devices is somewhat naive and one-dimens-
ional. Most prior work uses a simple heuristic approach, where
a manually chosen indicator (e.g., stringified model number) is

https://orcid.org/0009-0001-0705-5667
https://orcid.org/0009-0006-1051-172X
https://orcid.org/0000-0003-2242-048X
https://orcid.org/0009-0006-7302-0178
https://orcid.org/0000-0002-9188-3464
https://doi.org/10.1145/3658644.3690195
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3658644.3690195

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

searched against a commonly used port for ICS protocols (e.g.,
502). This approach is widely used in academic papers [6, 17, 27,
39, 70] and industry-leading reports [34, 51]. In fact, Shodan itself
recommends using this approach to query its dataset [60].

While this approach may yield some results, it unfortunately
only captures the small subset of devices that are grossly misconfig-
ured to allow their primary, unredacted, ICS protocol to be exposed.
In practice, most ICSs enforce strict network segregation, where
critical traffic is isolated to secure enclaves and blocked by fire-
walls [16]. Furthermore, the responses from network probes shift
over time depending on the firmware version and customer con-
figuration, meaning that a static, manually-chosen, indicator may
only apply to a fraction of exposed devices. Thus, the complex
state of ICS environments results in incomplete and transitory net-
work data, which causes accurate large-scale security analyses to
be exceedingly challenging. Refining a query to include multiple
protocols and capture shifting probe responses requires substantial
manual effort, as demonstrated in Section 2.2.

In this paper, we address this challenge by developing a cus-
tom optimization algorithm that performs robust entity resolution
using subtle network-based indicators and temporally-resistant
signatures. This ICS asset discovery solution, which we call PL-
CHound, was created using observations about how ICSs manifest
in practice. Specifically, we capitalize on the observation that once
devices become field-deployed, customers often enable additional
protocols and incorporate modular hardware add-ons to increase
functionality (e.g., telecom gateways, local HMIs, etc.). We also
observe that ICSs tend to simultaneously use multiple PLCs behind
a single NAT, meaning that clues about different firmware versions
and configuration settings are often present in search results even
if the query did not directly discover those devices. We use this aux-
iliary information to infer how the field-deployed population has
changed over time, and through inductive reasoning, build complex
signatures that capture the true field-deployed population. Unlike
prior work that attempts to directly read obvious static indicators
in ICS protocols, our approach uncovers evolving network-based
signatures that allow us to indirectly infer the existence of devices.

Beyond merely identifying more hosts than prior work, PL-
CHound discovers a more diverse and realistic population of devices.
These devices speak multiple protocols, use a variety of firmware
versions, and are coupled with an assortment of hardware add-ons.
The rich nature of this dataset enables us to answer important se-
curity questions and reveal interesting security-related trends. For
example, we use PLCHound to study the real field-deployed attack
surface, gain insight into industrial firewall configurations, explore
non-ICS methods for attacking ICSs, and survey customer-enabled
security settings. Our results show that vulnerable co-located de-
vices actively provide attackers with potential paths to circumvent
industrial firewalls, and even more troubling, that 95.88% of devices
directly expose protocols that cause them to be remotely vulnera-
ble to recent critical CVEs. Using these results, we conducted an
extensive disclosure campaign to notify vulnerable network admin-
istrators and co-authored a public security advisory with the ICS
vendor. In summary, our main contributions are as follows:

(1) We introduce PLCHound, a holistic, cross-protocol, ICS asset
discovery solution that infers the existence of devices using

subtle indicators and temporally-resistant signatures (with a
verified 98.67% true positive rate);

(2) We perform the largest comprehensive survey of Internet-facing
PLC devices by popular vendors (up to 37x more devices than
prior work);

(3) We provide the first rigorous examination of the field-deployed
ICS attack surface (revealing that 95.88% of devices are vulnera-
ble to recent CVEs).

2 Background and Motivation
This section discusses prior ICS asset discovery papers and provides
the reader with the real-world case study that motivated our work.

2.1 Related Work
Hunting for Internet-exposed ICS devices, especially PLCs, is an ex-
tensively explored area of research. This topic was largely pioneered
by Leverett et al. in their 2011 paper, where they detailed hand-
curated Shodan queries and their corresponding ICS devices [39].
This academic work was quickly followed up by an industry report,
co-authored by the United States Department of Homeland Security,
called “Project Shine” that sought to quantify to what extent critical
systems were exposed to the Internet [51].

These works laid the foundation for numerous subsequent stud-
ies [5, 27, 35, 69, 70] that researched different aspects of the Internet-
accessible ICS population. Unfortunately, accurately querying the
large datasets produced by Shodan and Censys proved to be chal-
lenging, which forced most prior work to limit their search to a
single specific protocol and use a best-effort static string query. Re-
cently, Ashley et al. explicitly discussed the painstaking process of
manual query formation and proposed a query optimization model
using flowcharts [6].

To the best of our knowledge, our paper is the first and only work
that automates the ICS asset discovery process by programmatically
generating queries that span multiple protocols, user settings, and
device configurations. The most similar work to our paper is the
recent study by Sasaki et al., which used fuzzy hashing to group
remote management device WebUIs together, although their work
still required manual signature extraction and query formation [55].

2.2 Motivating Example
For our motivating example, we aim to identify the ICSs that are
remotely vulnerable to CVE-2022-45140, a recent critical (CVSS
9.8) unauthenticated remote code execution vulnerability affecting
multiple families of WAGO devices and present in every firmware
version since inception. Specifically, this vulnerability impacts PLCs
by abusing an HTTP-based Application Program Interface (API)
exposed by the on-board embedded webserver. This analysis is
useful for many parties, including 1) government agencies perform-
ing mandatory audits (e.g., NERC CIP [18]) 2) large corporations
with many disperse facilities (e.g., telecoms), and 3) independent
security researchers. Note that while this specific example only
impacts WAGO PLCs, a similar analysis can be performed using
other vulnerabilities impacting other ICS vendors (e.g., Siemens,
Allen-Bradely, Mitsubishi, etc.).

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 1: High-Level Overview of the PLCHound Algorithm

Searching for these devices using traditional approaches (i.e.,
manually chosen keyword against a commonly used ICS port)
would entail using a Censys query like below:

same_service(port=44818 AND banner:“750-881”)

This query uses the aforementioned methodology since 44818
is the port commonly used for the EIP ICS protocol and 750-881 is
the model number of one of the affected devices. As of the time
of writing, this query discovers 7 hosts, 6 of which expose one or
more HTTP servers. Since these hosts oftentimes contain multiple
devices behind NAT, we must manually inspect every HTTP server
to confirm they belong to the target device. In total, these 6 hosts
exposed 12 unique HTTP servers and a manual inspection (using
an HTTP client such as curl [21]) reveals that 5 of them do indeed
route to the PLC. In summary, the above querying methodology
shows that 5 PLCs are remotely vulnerable to CVE-2022-45140.

Many prior works [9, 25] stop at this point, however a keen
observer may note that we can use those 5 results to form a new
query to directly find more HTTP-enabled PLCs. Manual inspection
of the HTTP responses and a cross-reference to the Censys Data
Definitions Search Syntax [12] allows us to form the below query:

same_service(port=80 AND http.response.html_title=“ WAGO
Ethernet Web-Based Management ”)

As of the time of writing, this query discovers 303 hosts, meaning
that this new query resulted in a 5,960% increase in discovered ICSs.
These results suggests that the HTTP protocol is less scrutinized
by industrial firewalls and network operators than typical ICS pro-
tocols such as EIP. Unfortunately, for the reasons mentioned in
Section 1, this query is still only capturing a small subset of the
total population.

To expand this query even further, the user must manually in-
spect all hosts to look for additional PLC-originating protocols
not picked up by this query but still present in the search results
nonetheless due to customers either owning multiple PLCs be-
hind a single NAT or using multiple different protocols to speak
to the same device. These supplementary datapoints may reveal
clues about different firmware versions and configuration settings,
which may be used to expand the search. The user must manu-
ally compare different non-captured protocol responses and isolate
common, yet still distinct enough to not introduce false positives,
substrings to build syntactically valid queries. At the end of this

tedious and error-prone process, the user may eventually end up
with the below query:

same_service(extended_service_name:{“HTTP”, “HTTPS”} AND
(http.response.headers:(key:Server AND

value.headers:"WAGO_Webs") OR http.response.html_title=/[
]?WAGO [A-Za-z]*Web-(B|b)ased Management[]?/ OR

tls.certificates.leaf_data.subject.email_address=/[a-z]{3}[a-z]?o[a-
z\S\s]*\@wago\.com/))

This query encompassesmultiple device configurations, firmware
versions, and user settings, thus capturing a much larger percent-
age of the field-deployed population. As of the time of writing, this
query resulted in 6,616 hosts (+2,084%). Key components of the
above query include the following:

(1) Temporally-Resistant Signatures e.g., regular expression for
the HTML title that allows firmware updates to evolve the string
from “ WAGO Ethernet Web-based Management ” to “WAGO
Web-based Management” to “WAGO Web-Based Management” ;

(2) Device Configurations e.g., including both the encrypted and
plaintext variations of the HTTP protocol;

(3) User Settings e.g., localization language preference chang-
ing the TLS certificate contact from info@wago.com to sup-
port.de@wago.com;

These results reveal that the true number of Internet-facing de-
vices vulnerable to CVE-2022-45140 is over 1,323X that discovered
with the naive EIP-based query and 21X that discovered with the
direct HTTP query.

Unfortunately, developing an advanced query like this requires
substantial manual effort and multiple iterations of intermediate
queries to collect enough datapoints to generalize patterns. In this
paper, we present a fully automated approach that begins with a
simple seed query and automatically expands the search without
any user interaction or effort.

3 Solution Overview
The PLCHound algorithm has three major stages, 1 Keyphrase
Extraction, 2 Candidate Selection, and 3 Device Profiling,
as shown in Figure 1. This section provides a high-level overview of
each stage to give the reader insight into PLCHound’s core function-
ality. See Section 4 for in-depth design details. While this section
uses the PLC from the motivating example as a case study to build

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

intuition, the algorithm is generic enough to work for all ICS ven-
dors, as demonstrated in Section 5.2. Thus, our solution is suitable
for any ICS cybersecurity effort that seeks to examine the complex
field-deployed attack surface.

Search Engine & Seed Query. Our contribution builds on top
of a queryable dataset of active network scan data. This dataset of
protocol probe responses (called “banners”) can be independently
generated using publically available scanners (e.g., Zmap [26] or
Nmap [44]) or accessed via a third-party commercial service (e.g.,
Censys [1], Shodan [2], or ZoomEye [71]). Implementation details
regarding the search engine are outside the scope of this paper
since our approach is fully agnostic to the underlying scanner.

PLCHound takes a simple seed query as input, which is used
to guide the initial trajectory of the algorithm. Any query devel-
oped using the industry-standard technique from prior work (i.e.,
keyword against a commonly used ICS port) is sufficient. Ideally,
this query should have a low false-positive rate and return exem-
plary results. We discuss the algorithm’s sensitivity to different
seed queries in Section 5. As an example, we can use the naive EIP
query from Section 2.

Stage 1: Keyphrase Extraction. Once an initial database of
devices has been constructed using the search results from the seed
query, PLCHound enters theKeyphrase Extraction stage. In this stage,
the algorithm is tasked with automatically extracting meaningful
textual phrases that can be used as positive indicators that the
PLC is present. See Section 4.1 for details regarding the custom
tokenization process, domain-specific lexical analysis [43, 49], and
NLP-based conditionals used to assign relevance scores to phrases.

Running the banners found by our example seed query through
this process identifies the following phrases as relevant, in decreas-
ing order: {“wago”, “pfc200”, “kontakttechnik”, [...] “ssi”}. In this
example, the first phrase (“wago”) is the manufacturer name, the
second phrase (“pfc200”) is the device family name, and the third
phrase (“kontakttechnik”) is a German expression meaning Com-
munication Technology. This list continues up to the phrase “ssi,”
which is the obscure file extension used by the server-side script-
ing language of the embedded webserver. Note that none of these
phrases were included in the seed query, thus demonstrating the
algorithm’s ability to extract keyphrases that the user may be un-
aware of and possibly not even understand due to language barriers.
These phrases influence how the algorithm selects candidates in
the next stage and ultimately synthesizes queries in the final stage.

Stage 2: Candidate Selection. As mentioned in Section 1, real-
world ICSs often run multiple devices behind a single NAT, causing
them to share the same public IP address. When those other devices
are differently configured PLCs, we use them to garner clues about
different firmware versions and user settings. However, if those
other devices are unrelated to the target PLC, they can potentially
misguide the algorithm and cause unfounded correlations. To avoid
this situation, PLCHound automatically identifies and removes the
irrelevant co-located banners from the dataset, as shown in Fig-
ure 2. For example, running the banners found by our seed query
through this stage automatically identifies the PLC’s Web-Based
Management (WBM) web portal as a valid banner type while si-
multaneously discarding the irrelevant co-located employee login

PLC #1
FW α
Config β

PLC #2
FW γ
Config δ

Unrelated
Devices

Public IP Address

HTTP

HTTP

FTP

EIP

MODBUS

HTTP

SNMP

RDP

RTSP

H
TT

P
FT

P
EI

P
H

TT
P

M
O

D
BU

S
H

TT
P

SN
M

P
R

D
P

R
TS

P

Differently
Configured PLCs

Web-Based Management

FW: 13.13.72
IP: 192.168.10.12
Last Updated: 1691468511

Location: Seattle, WA

Details Edit More

PLC Admin

Queried
Relevant Banner

Non-Queried
Relevant Banner

Non-Queried
Irrelevant Banner

Employee Login

Login

Web-based Ethernet Management

FW: 07.27.91
IP: 192.168.10.09
Last Updated: 1691468524

Location: Seattle, WA

Details Edit ...

PLC Admin

Figure 2: Example of Candidate Selection Process

portals. Details regarding our banner clustering process, cluster
ranking methodology, and dynamic threshold formation are in-
cluded in Section 4.2.

Stage 3: Device Profiling. In the Device Profiling stage, PL-
CHound builds regular expression (regex) based signatures that
account for the variability within the remaining valid banners. This
variability is caused by the field-deployed customizations discussed
in Section 1 such as firmware version differences, customer lan-
guage preferences, and usage statistics. These signatures intention-
ally use flexible character sets in areas of high entropy to potentially
match unseen valid banners. PLCHound then scrutinizes each sig-
nature to ensure it is descriptive enough to not match false positive
banners. Lastly, these signatures are used to synthesize new queries
that can be safely applied to the Internet-wide dataset. See Sec-
tion 4.3 for details regarding the fault-tolerant grammar induction
and programmatic solution space exploration used to synthesize
queries. The valid banners within the example seed dataset ulti-
mately synthesized the following query to discover PLCs using the
FTPes protocol.

same_service(extended_service_name="FTPes" AND
tls.certificates.leaf_data.subject_dn=/C\=DE, ST\=Germany,

[A-Z][A-Z]?\=[A-Z][a-zA-Z\S\s0-9]+, O\=Wago Kontakttechnik
GmbH \& Co\. KG, [A-Z][A-Z]?\=[A-Z][A-Z\S\s0-9a-z]+,

emailAddress\=info\@wago\.com/)

The entire cycle then repeats, each time finding new devices,
honing the device profile, and synthesizing more robust queries
as it learns more about the total population. This process creates
a diverse multi-protocol dataset of field-deployed devices, which
accurately depicts the complex and fragmented state of real-world
ICS environments.

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

4 Algorithm Design Details
This section discusses the in-depth design details for the three
stages of the PLCHound algorithm, namely 1 Keyphrase Extrac-
tion, 2 Candidate Selection, and 3 Device Profiling. In our
dataset, “hosts” refer to Internet-facing middleboxes with public IP
addresses and “banners” refer to the decoded protocol responses
from probing hosts. As described in this section, PLCHound is de-
signed to automatically minimize False Positive Hosts (FPHs) by
only using True Positive Banners (TPBs) to synthesize robust, yet
descriptive, new queries.

4.1 Stage 1: Keyphrase Extraction
Since PLCHound only utilizes TPBs to synthesize new queries, it
must somehow identify and prune away the False Positive Banners
(FPBs). ICS subject-matter experts are able to manually perform this
task by inspecting all banners and making educated guesses based
off of substrings found in their ASCII representations. For example,
a human operator can deduce that an SNMP banner containing
the product model in the system description (e.g., “6ES7 215-1BG40-
0XB0”) will likely belong to the PLC. Unfortunately, this strategy is
often tedious and requires deep domain-specific knowledge.

PLCHound replaces the need for domain-specific knowledge by
automatically assigning “importance scores” to banner substrings
in the Keyphrase Extraction stage. These scores are a prerequisite to
FPB pruning, since they determine which phrases (and by extension,
which banners) likely originated from the target device. In practice,
high-scoring phrases are often model numbers, vendor names, and
chipset identifiers. The goal of this stage is to automatically identify
these strings. To accomplish this task, we first split each banner into
discrete phrases (Banner Tokenization), determine the importance of
each phrase (Lexical Analysis), and remove the nondescript phrases
(NLP Pruning), as discussed below.

Banner Tokenization. The objective of the Banner Tokeniza-
tion step is to intelligently parse raw banners into meaningful sub-
strings called phrases. A key challenge with this step is keeping
semantically equivalent, yet syntactically different, phrases consis-
tent across different protocols. For example, the phrase “s7 1200”
could be represented as “s71200” inside the JavaScript code located
within the HTTP response, represented as “S7-1200” inside the FTP
login banner, and represented as “s7\uFFFD1200” in the raw EIP
bytestream.

We account for these differences by first tokenizing banners
using common delimiters found in human-readable language cor-
puses [57] (e.g., whitespaces, punctuation, and newlines) then apply-
ing our own custom tokenization rules. These rules accommodate
raw network streams, high-level source code, and other common
data types found in banners. In particular, we unescape control
sequences (e.g., null bytes), split apart common naming conven-
tions in source code (snake case and camel case), and delimit all
non-printable byte sequences.

Next, we use a variable-length sliding window to capture N-
Grams consisting of one-to-five individual tokens. These N-Grams
are then joined with a whitespace (“ ”) to create protocol agnostic
multi-token phrases (e.g., “s7 1200”).

Lexical Analysis. Since the above tokenization process creates
a large number of mostly-overlapping phrases, we must systemati-
cally determine which of them can aid in the targeted search process
and which can be discarded as irrelevant. Irrelevant phrases can
either originate from FPBs (e.g., employee login pages that share
the same public IP addresses as PLCs) or nondescript portions of
TPBs (e.g., RFC-defined FTP status strings). The goal of this step is
to automatically identify which phrases are significant enough to
guide the trajectory of the algorithm.

To numerically quantify our confidence that a given phrase orig-
inated from a TPB, we measure its occurrence in explicitly queried
banners (called “matched banners”). This value is then normalized
so a 1 indicates that the phrase is present in every matched banner
and a 0 indicates that it is not present in any matched banners.
We refer to this number as the phrase’s match score, 𝑆𝑀𝑎𝑡𝑐ℎ (𝑥).
In practice, phrases with high match scores tend to be relevant
strings such as “siemens simatic s7” as well as generic snippets of
boilerplate protocol messages such as “html head meta charset utf.”

Hence, the match score alone is not sufficient in finding note-
worthy phrases. To help identify device-specific strings, we also
measure how many different protocols use that phrase. This step
exploits a key property of PLCs - they are deeply interconnected to
a multitude of ICS devices such as engineering workstations, HMIs,
and data historians. This interconnectivity often requires PLCs to
simultaneously speak multiple protocols, many of which contain
common phrases that allow peripheral equipment to identify the
device. The number of phrase-containing-protocols is then normal-
ized, so a 1 indicates the token is present in every protocol and a 0
indicates it is only present in a single protocol (i.e., the protocol in
which the phrase was discovered). We refer to this number as the
phrase’s cross-protocol score, 𝑆𝑋𝑃𝑟𝑜𝑡 (𝑥). In practice, phrases with
high cross-protocol scores tend to be relevant strings such as “cpu
1200” as well as common network verbiage such as “user login.”

While neither metric (match score nor cross-protocol score)
are perfect indicators in isolation, we observe that many phrases
with high values for both metrics tend to be exceptionally relevant
strings. This observation leads us to the third and final lexical met-
ric, which we call the super score, 𝑆𝑆𝑢𝑝𝑒𝑟 (𝑥). This value is calculated
on the pruned intersection of phrases with non-zero match scores
and phrases with non-zero cross-protocol scores, and the numerical
value is simply their average. The pruning process (explained next)
ensures that only highly scrutinized phrases get a non-zero super
score.

NLP Pruning. Crucially, not every relevant phrase is descriptive
enough to accurately guide the trajectory of the algorithm. For
example, even though the phrase “nuremberg”, the city in Germany
where Siemens develops PLCs, has a high match score (since it is
present in many matched banners) and has a high cross-protocol
score (since it is present in many protocols), using it alone to guide
the algorithm will likely introduce FPH since other companies in
that city also manufacture devices.

Therefore, we must apply additional “descriptiveness” checks be-
fore awarding a given phrase a non-zero super score. These checks
are inspired by commonly-used NLP conditions [54] designed to
weed out insignificant tokens. Firstly, we require all tokens in each
phrase to be above a certain length to avoid coincidentally-identical

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

short random sequences. Next, we require tokens to not be present
in a domain-specific stopword list to avoid generic filler strings. We
also require all tokens to meet a minimum total host agreement
threshold to prevent a small minority of hosts from misguiding the
algorithm. And finally, to avoid common English words, we require
tokens to not exceed a large language corpus popularity threshold.

Lastly, we compile all metrics into a three-dimensional vector,
𝑆 (𝑥) = [𝑆𝑀𝑎𝑡𝑐ℎ (𝑥), 𝑆𝑋𝑃𝑟𝑜𝑡 (𝑥), 𝑆𝑆𝑢𝑝𝑒𝑟 (𝑥)], that captures the “im-
portance” of a given phrase, 𝑥 . This vector is used in the Candidate
Selection stage to identify TPBs and the Device Profiling stage to
identify descriptive queries.

4.2 Stage 2: Candidate Selection
Now that PLCHound is aware of important phrases, it uses them
to automatically isolate the TPBs from the FPBs. This is a crucial
step of the algorithm because only TPBs are used to synthesize new
queries.

To achieve this goal, we first break apart each banner into func-
tionally distinct components (Banner Decomposition), group similar
values together (Component Clustering), assign each group a score
(Cluster Scoring), and dynamically infer a cutoff point (Threshold
Formation). These steps ensure that only highly relevant and descrip-
tive banners get treated as true positives. While we intentionally
ignore the FPBs during the core algorithm, Section 5.3 explores
how vulnerable services behind these FPBs can be a potential entry
point for attackers into the privilaged ICS network.

Banner Decomposition. The first step in removing FPBs is to de-
compose each banner into functionally distinct components accord-
ing to its protocol specification. For example, an HTTP banner can
be parsed according to RFC7230 [28] to extract various, functionally
distinct, components, such as metadata located in response headers
(e.g., “Set-Cookie”) and the message body. Additionally, the body
content can be further parsed according to its declared content type
(e.g., HTML/RFC1866 [8], JSON/RFC8259 [10], CSV/RFC4180 [58]),
as shown in Figure 3. Each leaf node in the decomposition tree
contains a functionally distinct string that can be individually scru-
tinized. For our implementation (discussed in-depth in Section 5.1),
we rely on Censys’s Data Definition parsing engine [12]; however
similar decompositions can be produced on any raw probe response.

HTTP Response Banner

Status Headers

Body

V. Code Server Content-Type...

Title Favicon ... Meta

R
FC

72
30

R
FC

18
66

Figure 3: Banner Decomposition of HTML over HTTP

Component Clustering. Since each leaf node in the decomposi-
tion tree (called a “banner component”) is functionally distinct, we
can individually scrutinize it in isolation from the rest of the banner.
This process allows the algorithm to easily notice similarities in

certain portions of the banners (e.g., HTML title), while ignoring
high entropy sections (e.g., Last-Modified HTTP header).

We use these similarities in banner component values to auto-
matically identify outliers, which may indicate the presence of a
FPB. A key challenge with this task is that banner components
have an unknown number of unique “types,” and more than one
of them are potentially true positives. This variability is due to the
high-degree of programmability of field-deployed PLCs, meaning
that customers can configure their devices to inadvertently pro-
duce wildly different types of banners. For example, customers can
configure the Schneider Modicon M241 PLC HTTP homepage to
either be the WBM administrative page or a CODESYS WebVisu
HMI screen. While these pages should not be grouped together,
they are both still valid indicators of the PLC, as shown in Figure 4.

Employee Login

Login

Hello, World!

HTML Body

WebVisu HMI

Web-based Ethernet Management

FW: 07.27.91
IP: 192.168.10.09
Last Updated: 1691468524

Location: Seattle, WA

Details Edit ...

PLC Admin

Figure 4: 2D Projection of Banner Component Clusters

We address this challenge by first transforming each compo-
nent value into a feature vector using Term-Frequency Inverse-
Document-Frequency [53] (TF-IDF) then use an unsupervised ma-
chine learning-based approach, where the KMeans algorithm [41]
is used in conjunction with the Silhouette Method [52] to cluster
neighboring feature vectors together into a variable number of
clusters.

Cluster Scoring. Since each banner component has an unknown
number of valid clusters, we must develop a system for measuring
each cluster’s validity likelihood on a 0-1 scale. Towards this goal,
we created a validity metric using our domain expertise to quantita-
tively evaluate each cluster. This algorithm incorporates 5 different
features, one of which corresponds to the “trustworthiness” of the
datapoints, another corresponds to the entropy within the clus-
ter, and the final three incorporate the lexical analysis scores from
Section 4.1. Details concerning our cluster scoring algorithm are
presented in Section A of the Appendix.

Threshold Formation. At this point, every banner has been
decomposed into individual components and every component
has an N-dimensional matrix, where similar values are clustered
together and scored, as shown in Figure 5. Next, we use these scored
clusters to automatically identify the FPBs.

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0.63

0.21 0.85

0.19
0.29

0.71

0.85

0.33
0.35

0.03

0.13

0.01
0.12

0.72
0.09

0.91...

HTTP

Location Header HTML Body Status Code HTML Title

Figure 5: Scored Banner Component Clusters

To achieve this goal, we first create an overall banner score by
averaging the scores from these independently-evaluated compo-
nents. This process allows all relevant banners to be ranked highly,
regardless of which part of the banner was deemed meaningful. For
example, the CODESYS WebVisu HMI page may be ranked lower
in the HTML body and ranked higher within the “Set-Cookie” re-
sponse header, but vice versa may be true for the WBM homepage.
Since all components values are averaged together, both types of
pages will be considered relevant.

In practice, our clustering method often causes the subtle field-
deployed difference between devices (e.g., firmware differences and
customer settings) to not induce major deviations in the overall
banner scores, so long as the devices are generating the same “type”
of banner (e.g., HMI vs WBM). We can use a histogram of banner
scores to visualize this tendency, as shown in Figure 6.

1.00.0

B
an

ne
r C

ou
nt

Banner Score

"Hello, World"
Page

Miscellaneous
Webservers HMI WBM

Threshold

Figure 6: Histogram Illustration of Banner Scores

The final step in this stage is to methodically remove the FPBs.
To accomplish this task, we incorporate a binary classification of
the Jenks natural breaks optimization algorithm [33] (K=2) to auto-
matically determine a per-protocol threshold. We consider banners
above this threshold to be a likely TPB, although Section 4.3’s fault-
tolerant design allows for occasional misclassifications without
issue. In practice, this removal procedure oftentimes eliminates
many clusters entirely, since none of the enclosed datapoints were
above the threshold. Therefore, the remaining clusters represent
functionally distinct “types” of valid banner components, and the
datapoints within the remaining clusters are real field-deployed
examples, as shown in Figure 7.

4.3 Stage 3: Device Profiling
In the Device Profiling stage, we use inductive reasoning to meld
the true positive banner component examples together (Grammar
Induction) to create a comprehensive representation of how this
device manifests in practice. This compact representation, which we

HTML Body

WebVisu HMI

200

Status Code HTML Title

"Ethernet Web-based
Management"

" Web-based Management "

"Web-Based Management"

... ...

"HMI Dashboard"

Web-based Ethernet Management

FW: 07.27.91
IP: 192.168.10.09
Last Updated: 1691468524

Location: Seattle, WA

Details Edit ...

PLC Admin

Figure 7: Example of Remaining Clusters post FPB Removal

call the “device profile,” contains all signatures needed to discover
additional hosts (Query Synthesis). A key challenge with this stage is
that it is tasked with creating robust and widely-applicable queries,
to find previously unknown devices, without being overly broad,
which could introduce FPH.

Grammar Induction. While the previous stage attempted to
remove all FPBs, we cannot be certain that some banners were
not accidentally misclassified. This inherent risk forces us to con-
servatively combine the “true positive examples” in such a way
where any left-in FPBs do not poison our profile. To accomplish this
challenging task, we developed a highly fault-tolerant grammar
induction algorithm that discovers patterns that match most, but
not necessarily all, of the strings within each cluster.

During this process, we generalize common patterns so that the
resulting regular expressions can potentially match valid unseen fu-
ture strings. For example, if the algorithm observes that two strings
differ due to a “4” being replaced by a “7”, we assign this sequence a
character set of all 0-9 digits, in hopes that other valid strings may
include different numbers in this position. In practice, this strat-
egy allows the algorithm to account for variable sequences inside
banners such as timestamps, version numbers, and customized dis-
play names. We call these templatized banners temporally-resistant
signatures since they account for shifting strings across firmware
versions and user settings. Thus, they are able to capture devices
throughout multiple stages of their lifecycle.

Query Synthesis. Unfortunately, not all signatures can produce
accurate queries. Since our goal is to intelligently hone a targeted
search, not aggressively widen the search scope, we must only syn-
thesize descriptive queries.

Towards this goal, we heavily scrutinize each regular expression
to ensure it will not introduce FPH if applied to the Internet-wide
dataset. We do this by performing programmatic exploration of
the regular expression solution space (i.e., brute forcing example
matches) to essentially “fuzz” the allowed grammar. We then tok-
enize each example match using the process described in Section 4.1
and compare the yielded phrases to known phrases with non-zero
super scores. If the example match does not contain any phrases
with non-zero super scores, we conclude that the signature is too
vague and therefore fails the test.

If a signature passes the test, we use it to synthesize a new
query. During the synthesis process, the field name is built by
traversing the decomposition tree from Section 4.2 and the value
is the stringified regex signature. The specific syntax needed to
build a valid query is dependent on the underlying database. Our
implementation (described in detail in Section 5.1) adheres to Elastic
Cache syntax using Censys Data Definitions [12].

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

Figure 8: Count of Devices over Iterations of PLCHound w/ Large Uptick Queries Highlighted

Finally, we end with a list of robust, yet highly descriptive, new
queries. These queries are then added to a running queue that
holds all unused queries discovered during prior iterations. The
best query is then applied against the Internet-wide dataset and
the algorithm repeats. Details regarding the cyclical behavior can
be found in Section B of the Appendix.

5 Evaluation
This section provides an overview of our software implementation
of PLCHound as well as a rigorous evaluation of its performance us-
ing experimentally collected results. We also evaluate PLCHound’s
ability to aid in various security-oriented tasks.

5.1 Implementation
PLCHound is implemented using 2,339 lines of Python code and uti-
lizes both disk and in-memory caching layers. This section provides
a brief description of the software implementation and highlights
any notable optimizations and utilization of third-party compo-
nents.

Scanner Interface. We utilize the popular Censys [1] service
as our Internet-wide scanner. Specifically, we use their publically-
available Python library on top of a custom disk-cache to prevent
unnecessary network requests and credit exhaustion. Note that
our asset discovery algorithm is fully agnostic to the underlying
scanner, meaning that future researchers can implement variations
of PLCHound using other readily available scanners such as Shodan
or ZoomEye.

Core Algorithm. In the Keyphrase Extraction stage, we use the
third party word frequency library, wordfreq [61] and a domain-
specific stopword list that we developed in-house using the top 1,000
responses of the Censys Report Tool [14]. We also use sklearn [46]
for banner content tokenization and functools [29] for caching
to avoid repeated tokenizations. In the Candidate Selection stage,
sklearn [46] aids in KMeans clustering and Silhouette Score, while
jenkspy [38] determines the dynamic score threshold. The Device
Profiling stage leverages a modified RegExTractor [48] for fault-
tolerant grammar induction and rstr [45] for regex solution space
exploration.

Testbed Configuration. The output of PLCHound is two-fold -
1) a vast snapshot of diverse hosts that currently contain an online
PLC and 2) a list of robust, yet descriptive, re-usable queries. These

queries can continue to be used going forward to study the field-
deployed population. In fact, since these queries were built using
temporally-resistant signatures with highly flexible regexes in areas
of high-entropy, they will likely continue to function against fu-
ture, unseen, firmware versions and user configurations. Thus, the
operator will only need to seldom, if ever, re-run the full PLCHound
algorithm. For our experiments, we ran PLCHound on an Apple M1
MacBook Pro (3.2 GHz with 32 GB memory), on which each run
took roughly 10 hours to complete.

5.2 Experimental Results
In this section, we experimentally evaluate PLCHound’s perfor-
mance against real-world devices and discuss the accuracy of its
output. Specifically, we present PLCHound’s results using the naive
EIP query from Section 2 as a seed, rigorously determine the FPH
rate, and analyze how different seed queries influence the outcome.
We also evaluate how PLCHound performs on other vendors to
show its generalizability across the ICS industry.

Case Study: Automating the Motivating Example. We evalu-
ated PLCHound by addressing the motivating question from Sec-
tion 2.2. In this scenario, a third-party group (e.g., Government
Agency or independent researcher) seeks to perform a security
analysis to determine how many PLCs are remotely susceptible
to a certain recent vulnerability. Prior to our solution, accurately
performing this task required deep subject matter expertise and
significant manual effort.

Recall that the seed query searches for a PLC model number on
a port commonly used for the EIP protocol. After the first iteration
of the algorithm, PLCHound synthesized 27 new queries, spanning
7 different protocols (FTP, HTTP, HTTPS, SNMP, EIP, CODESYS,
and MODBUS), as listed in Table 4 in the Appendix. Note that the
robustness of these queries increases over time, as the algorithm is
exposed to more examples from which it can generalize patterns
and refine the device profile. An example query synthesized from
this first iteration is included below.

same_service(extended_service_name="SNMP" AND
snmp.oid_system.contact="support@wago.com")

After the second iteration, PLCHound synthesized 26 additional
queries, several of whichwere a combination/generalization of prior
queries. An example query synthesized from this second iteration
is below.

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

same_service(extended_service_name="HTTPS" AND
tls.certificates.leaf_data.issuer_dn=/C\=DE, ST\=[A-Z][a-zA-Z]{2,6},
L\=Minden, O\=W[a-zA-Z]{3,3} Kontakttechnik GmbH & Co\. KG,
[A-Z\S\s a-z]*CN\=WAGO[\S\s]P[A-Z][A-Z]0,2C[0-9A-Z]{1,3},

emailAddress\=info\@wago\.com/)

This process continued until PLCHound fully mapped out the
entire lineage of firmware versions and hundreds of different user
settings. In total, the algorithm yielded 456 unique queries and
discovered 7,042, online at the time of scan, devices (777%-3,748%
more devices than discovered in prior work [35, 70]). Of these 7,042
hosts, 5,258 (74.67%) did not contain the “SCADA” Censys label [15],
despite belonging to the most quintessential SCADA device (i.e.,
PLCs). These results further illustrate that traditional approaches
to ICS asset discovery are ill-equipped to adequately characterize
the complex and fragmented state of the modern field-deployed
population. Figure 8 shows a graph of discovered hosts over time.
Since many of these queries are refined versions of prior queries,
the running total count of devices will not necessarily increase
after every iteration (hence the diminishing returns observed in the
graph). These relatively flat periods can intuitively be thought about
as times when the algorithm was honing the device profile and
refining queries to most effectively capture the existing population.
Figure 8 is annotated to explicitly list the most effective queries
during the life of the algorithm (i.e., queries that added the most
previously unknown devices at that time).

To distill the large list of overlapping and potentially redundant
queries into a minimal collection for the task at hand (finding
HTTP(s)-exposed PLCs), we first filter out all non-HTTP(s) protocol
queries. Next, we use Microsoft’s Theorem Proving tool, Z3 [22],
to perform minimal set coverage analysis. This process isolates the
minimal number of queries needed to rebuild the HTTP(s) dataset,
thus finding the most robust queries from our list and solving
the motiving example without any domain expertise or human
interaction.

False Positive Analysis. Ensuring a low false positive rate is
essential for the utility of our solution. To confirm this property,
we rigorously scrutinize every query and host from our dataset
through a series of manual inspections.

First, we use Z3 [22] to remove redundant queries from our syn-
thesized list. Next, we manually inspect all 18 remaining queries
to identify potentially ambiguous signatures (i.e., signatures that
do not explicitly require the vendor or model number). This step
resulted in 10 suspicious queries, listed in Table 5 in the Appendix,
that warrant a deeper investigation. The other 8 queries are inca-
pable of matching FPBs, since they require the full vendor name
and/or model number to be present in specific fields of the TLS
certificate, HTTP response headers, HTML title, or message body.

Next, we gather all hosts that were only discovered by suspicious
queries (i.e., no high-confidence query was able to “vouch” for it).
This process resulted in 127 hosts out of the 7,042 total results. We
manually inspected every suspicious host and concluded that 33
were indeed true positives, while the remaining 94 were inconclu-
sive but likely still PLC-related. Therefore, the lower bound for
PLCHound’s true positive rate was experimentally verified to be

98.67%. Full details regarding the manual inspection process are
presented in Section C of the Appendix.

Sensitivity to Seed Queries. The only aspect of PLCHound
that requires manual effort is the one-time formation of the seed
query to guide the initial trajectory of the algorithm. As we demon-
strated with the EIP seed query from Section 5.2, this query can be
easily constructed via the methodology commonly-used in prior
work [6, 27, 39, 70]. In this section, we experimentally validate
that the overall outcome of PLCHound is largely insensitive to this
seed by running the algorithm from scratch using three different
initial queries. All three of which include a simple variation of the
device’s model number and/or device family identifier against a
port commonly used for a popular network protocol.

We first examine the seed query from Section 5.2, as written
below. This query attempts to find devices that advertise the model
number within the main body of the EIP banner. At the time of
writing, this simplistic query returns 8 hosts. PLCHound used this
seed to synthesize 456 additional queries (18minimally as calculated
by Z3) and discovered 7,042 currently online devices.

same_service(port=44818 AND banner:“750-881”)

For the second seed query, we attempted to find devices that
include the vendor name and model family within the main body of
the SNMP banner. This query, included below, discovered 39 devices
at the time of writing. PLCHound used this seed to synthesize 563
additional queries (20 minimally) and discovered 7,216 currently
online devices.

same_service(port=161 AND banner:“WAGO 750”)

The final seed query attempted to discover devices with the
formal controller name inside the main body of the CODESYS
banner, as listed below. At the time of writing, this query found 20
hosts. PLCHound used this seed to synthesize 525 additional queries
(21 minimally) and discovered 7,227 currently online devices.

same_service(port=2455 AND banner:“pfc200”)

All three runs of the algorithm followed a similar path during
their journey to find these ∼7,200 devices, as shown in Figure 9.
Even more compelling, all three resulting datasets share 95.58% of
devices, thus confirming that the algorithm reliably converges to
the same approximate ground truth, regardless of starting point.
Therefore, the operator of PLCHound does not need to concern
herself with finding an optimal or advanced seed query.

Figure 9: Device Count for Different Seed Queries

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

Generalizability Across Different Vendors. While WAGO is a
prime example of a modern PLC vendor (official partner of Amazon
Web Service IoT Greengrass [67], Docker compatible runtime [64],
Linux-based apps [65], etc.), established ICS vendors such as Allen-
Bradley (Rockwell Automation) and OMRON still hold a large mar-
ket share world-wide [4]. Traditionally, devices by these vendors
only offered modest network connectivity (i.e., few protocols and
limited features), however, their newer PLCs are starting to rival
WAGO in terms of Internet-capable feature sets [63].

Since PLCHound leverages the complex network footprint of
modern PLCs to automaticallymap out the fragmented field-deployed
population, it inherently works best against vendors that produce
highly programmable devices that speak many protocols. That said,
PLCHound is still able to discover previously unstudied pockets of
devices made by all vendors using its automated approach. Similar
to the WAGO case study from Section 5.2, we created an EIP-based
seed query to capture Allen-Bradley (Rockwell Automation) PLCs.

Without any human-intervention, PLCHound used this EIP seed
to automatically synthesize highly accurate queries for discover-
ing Allen-Bradley devices speaking HTTP, SNMP, and MODBUS.
Notable queries are listed below:

same_service(extended_service_name="HTTP" AND
http.response.html_title=/1766-L32[A-Z]2[A-Z]?A

[A-Z]\/[0-9]?1[0-9]?\.0[0-9] /)

Note how the above synthesized HTTP-based query has been
automatically honed to include flexible regexes in substrings re-
sponsible for indicating the firmware version and specific chipset.

Similar to the HTTP-query, the below synthesized SNMP-based
query was refined to allow variable firmware versions and chipset
identifiers.

same_service(extended_service_name="SNMP" AND
snmp.oid_system.desc=/Allen-Bradley 1766-L32[A-Z]2[A-Z]?A

[A-Z]\/[0-9]?1[0-9]?\.0[0-9] MicroLogix1400 Series [A-Z] Revision
[0-9]?1[0-9]?\.[0-9] /)

In total, PLCHound, was able to find several thousand Allen-
Bradley PLC devices that have been left out of prior work (1,228
more than EIP-based prior work [25] and 6,748 more than Modbus-
based prior work [6]). We also conducted a similar experiment with
OMRON PLCs, again successfully discovering unstudied pockets
of the field-deployed population. The full results are presented in
Figure 10. We randomly sampled 50 hosts from each vendor and
manually confirmed that they are all true positives, thus demon-
strating that the low false positive rate calculated in Section 5.2
likely holds true across vendors 1. Note that it is difficult to mean-
ingfully compare the total host count between different studies
for several reasons. The first reason being that most prior work
only attempted to find devices that speak a specific protocol, which
severely undercounts the true population. Another reason why
comparisons are difficult is because snapshots of currently-online
devices vary drastically over time and can be heavily skewed by
external factors such as the search engine’s caching tolerance and
scan frequency [11]. In fact, many prior works actually combine
the results from multiple search engines, which in effect merges

1Supported by a 95% confidence interval, as calculated in Section D of the Appendix.

multiple cached records together to produce an aggregate of hosts
over time, not an instantaneous snapshot (and may even double-
count hosts due to IP-churn). Lastly, many studies did not perform
any false-positive analysis and used overly broad queries. Despite
these challenges, this comparison, while imperfect, is still a useful
metric for gauging how our solution could enhance other research
projects.

Figure 10: PLCHound with three different vendors

These results demonstrate that the traditional ICS asset discov-
ery method of using a simple keyword against a single protocol
fails to capture the complex and fragmented field-deployed popula-
tion. The effectiveness of PLCHound to find elusive devices using
nuanced network signatures will only increase over time as estab-
lished vendors continue to embrace the emerging industrial IoT
connectivity trend.

5.3 Security Applications
We can use the rich dataset of devices generated by PLCHound to
answer interesting security questions that prior work struggles to
accurately assess. Since most prior work uses simplistic manually-
developed queries to find devices that speak a single specific proto-
col, they inherently contain a bias that may skew their analysis. As
demonstrated in Section 5.2, our approach converges on a ground
truth snapshot of devices, regardless of the protocol used in the
seed query. Thus, our dataset represents a more objective truth
that provides insight into how these devices actually manifest in
practice. In this section, we use the results from the motivating
example to address four unique security applications.

Unstudied Vulnerable Populations. The Purdue Enterprise
Reference Architecture (PERA) dictates that level 1 controllers (e.g.,
PLCs) be separated from non-critical zones such as insecure busi-
ness networks [68]. Under this model, network isolation prevents
untrusted entities from communicating with PLCs. Unfortunately,
as we have seen in this paper, real-world ICSs oftentimes violate
this standard and accidentally expose their PLCs to attackers via
the public Internet.

Prior work has used datasets of PERA-violating PLCs to per-
form remote vulnerability analysis [70], ransomware susceptibility
models [25], and proactive outreach campaigns [55]. As we demon-
strated in Section 5.2, the traditional approach to ICS asset discovery
(i.e., manually chosen static string against a commonly used ICS
port) can drastically undercount the true field-deployed population.
The sheer magnitude of devices unintentionally left-out of these
studies suggests that prior work may have been less comprehensive
than originally thought. Our results with PLCHound indicate that
there is a vast population of unstudied vulnerable devices. This

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

data serves as a reminder that ICSs should always change default
passwords and keep firmware up-to-date regardless of assumed
network protections, since true airgaps prove challenging to deploy
and maintain in practice.

Field-Deployed PLC Attack Surface. The diverse dataset pro-
duced by PLCHound allows us to accurately characterize the true
field-deployed PLC attack surface. Towards this goal, we review the
collection of hosts discovered in Section 5.2 and discuss insights
provided by studying their PLC-originating banners. Specifically,
we analyze which protocols and ports are most commonly exposed
and use them to postulate upstream industrial firewall rules. The top
five most common PLC-originating protocols, in decreasing order,
are: HTTP (73.98%), CODESYS (29.79%), HTTPS (28.78%), MODBUS
(12.32%), and SSH (11.35%). The majority of hosts only expose a
single PLC-originating protocol (56.61%), followed by 26.00% expos-
ing two, 9.17% exposing three, 6.84% exposing four, and less than
2% exposing five or more. This tendency can be visually observed
using the top five PLC protocols in Figure 11.

39.9%

14.1%

1.7%

1.6%

3.1%

0.6%
0.4%

2.6%

1.8%

6.3%

0.1%

0.2%0.1%

0.1%
1.1%

0.1%

0.9%

16.0%

0.3%

0.2%

1.6%

0.3%

0.1%

0.1%

0.1%

0.1%

0.4%

0.0%

3.4% 0.0% 0.1%

HT
TP

CODESYS

H
T
T
P
S

MO
DBU

S

SSH

Figure 11: Field-Deployed PLC Attack Surface

This data offers an intuitive explanation for why PLCHound
is able to find so many more devices than prior work - a small
number of devices are extremely exposed, causing them to be picked
up by trivial queries, while the vast majority of devices are only
partially exposed, thus can only be picked up by advanced queries.
A deeper investigation into these exposed protocols reveal that
many services are using a non-standard port. This practice appears
to vary substantially by protocol, with 76.47% of HTTP not using
port 80, 61.15% of SSH not using port 22, 31.68% of HTTPS not
using port 443, 31.07% of FTP not using port 21, and 0% of EIP,
MODBUS, or CODESYS using a non-standard port, as shown in
Table 1. This observation strongly suggests that networking devices
within ICS plants (e.g., industrial routers, switches, gateways) often
perform port-forwarding on the standard IT protocols, however
tend to leave the ICS-specific protocols untouched.

We can also use this data to speculate about real-world indus-
trial firewall configurations. With the exception of CODESYS (a
closed-source proprietary protocol), the majority of devices are only
exposing protocols common in a standard IT office environment
(HTTP, HTTPS, SSH). This disproportional representation of IT

Table 1: Non-Standard Port usage of PLC Protocols
Protocol Standard Port Percent Compliant
HTTP 80 23.53%
SSH 22 38.85%
HTTPS 443 68.32%
FTP 21 68.93%
EIP 44818 100%
MODBUS 502 100%
CODESYS 2455 100%

protocols in our dataset, combined with the lack of port-forwarding
on ICS protocols, suggests that many industrial firewalls are likely
blocking ingress traffic on ports commonly used for ICS (e.g., 502
and 44818), however fail to block traffic on other ports. Unfortu-
nately, this is an inadequate protection for modern PLC devices,
since they also speak (and can be attacked using) a plethora of
non-ICS protocols.

Unfortunately, this inadequate network isolation results in 95.88%
of identified WAGO PLCs to expose either HTTP or HTTPS, caus-
ing them to be vulnerable to CVE-2022-45140. Additionally, the
latest firmware as of the time of writing is also vulnerable to CVE-
2022-45137, CVE-2022-45138, and CVE-2022-45139 via the HTTP(s)
protocols. As ICS vendors continue to add webserver functionality
to their devices (an emerging trend revealed by prior work [47]),
the exploitability via non-ICS protocols will only continue to rise.
This analysis reveals the urgent need for ICS facilities to adapt a
more modern approach to network isolation to protect all PLC-
originating protocols.

Non-PLC Attacker Entry Points. Interestingly, studying the
inverse of Section 5.3 (i.e. the non-PLC attack surface within these
hosts) also provides fascinating insight into the real-world mani-
festation of ICS plants. We can again review the collection of hosts
discovered in Section 5.2, except this time review the banners that
did not originate from the PLC. This analysis reveals co-located
devices that may be potential entry points into the privileged ICS
network. Once behind the industrial firewall, an adversary could
potentially pivot (or simply send malicious instructions) to the PLC
using an unauthenticated real-time protocol to attack the ICS 2.

The most common PLC co-located protocols, in decreasing order,
are: HTTP (65.07%), HTTPS (26.15%), IKE (10.33%), FTP (8.95%), SSH
(6.05%), and PPTP (3.82%). A best-effort manual inspection reveals
that the most common shared components that engender these
banners are the PowerLogic Power Meter [56] (present in 8.40% of
all hosts), Four-Faith Industrial Router [30] (6.60%), Pure-FTPd [50]
(4.75%), OpenSSH [50] (3.90%), and Fritz Box Router [7] (3.45%).

Using this data, we perform a brief security analysis to determine
which non-PLC known vulnerabilities impact the largest percentage
of PLC-owning hosts. We specifically focus on “high” (CVSS v3.0 >
7.0) or greater Remote Code Execution (RCE) vulnerabilities, since
this is the type of issue best suited for infiltrating the network. To
extract version numbers, we either rely on the data already present
in the collected banner (passive) or send a single unauthenticated
HTTP(s) GET request (active). We identified that 7.30% of hosts are
vulnerable to CVE-2021-22713 (PowerLogic ION7650 FW<V416),
3.41% are vulnerable to CVE-2023-38408 (OpenSSH V5.5-9.3), and
2Additional pivoting steps inside the network may be required, depending on LAN
topology and trust relationships.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

0.26% are vulnerable to CVE-2019-12168 (Four-Faith Wireless Mo-
bile Router F3x24 v1.0), as summarized in Table 2. Collectively,
these three vulnerabilities cover 10.15% of all hosts in our dataset.

Table 2: PLC and Co-located CVEs
CVE ID CVSS Impacted Device Percent Vuln.
CVE-2022-45137 6.1 PLC 95.88%
CVE-2022-45138 9.8 PLC 95.88%
CVE-2022-45139 5.3 PLC 95.88%
CVE-2022-45140 9.8 PLC 95.88%
CVE-2021-22713 7.5 Power Meter 7.30%
CVE-2023-38408 9.8 SSH Server 3.41%
CVE-2019-12168 7.2 Industrial Router 0.26%

This data shows that it is feasible for adversaries to use known
vulnerabilities impacting other, non-PLC, services to potentially
circumvent network-based defenses and gain privileged access to
the industrial plant, and perhaps even the PLC itself.

Industrial End-User Security Choices. The holistic multi-prot-
ocol dataset produced by PLCHound allows us to gain insight into
how PLC customers actually configure their devices in practice. By
analyzing these configuration settings, we can ascertain the level of
security consciousness demonstrated by customers. To evaluate this
property, we analyze three different types of PLC communication,
namely web, file transfer, and remote shell, each of which offer a
plaintext and an encrypted option. While the encrypted option
provides security benefits, it can also be more difficult to configure
and manage, especially in ICS environments where third party
Certificate Authorities (CA) are oftentimes unreachable. Therefore,
we consider any intentional effort to support encryption to be a
conscious security-minded choice.

The first method of communication is web, which, in the context
of PLCs, enables customers to access onboard administrative web-
pages andweb-basedHMIs. Of these customers, 74.45% chose HTTP
and 25.54% chose HTTPS. The second method of PLC communica-
tion is file transfer, which is typically used to retrieve operational log
files and perform other administrative tasks. Of these customers,
55.19% chose FTP and 44.81% chose FTPes. The final method of
communication is remote shell, which allows customers to execute
arbitrary OS-level commands within the controller for maintenance
and debugging purposes. Of these customers, 89.15% chose SSH
and 10.85% chose Telnet. Table 3 summarizes the customer choices
for each communication type.

Table 3: PLC User Security Choices
Communication Percent Plaintext Percent Encrypted
Web 74.45% 25.54%
File Transfer 55.19% 44.81%
Remote Shell 10.85% 89.15%

These results reveal that most customers prefer to use the un-
encrypted variations of protocols to access web and file transfer,
however, prefer to use the encrypted method for accessing remote
shell. After examining the PLC user experience closely in our lab,
we offer a potential explanation for this behavior. Both HTTPS
and FTPes utilize the SSL/TLS Handshake, where a digital certifi-
cate is presented to the client (typically a web browser and file
explorer). In a normal IT environment, this certificate is verified
by a third-party CA, so the client can confirm the connection is

safe. However, in an ICS environment, these embedded devices use
self-signed certificates that, by-default, invoke an error message
when the client attempts to connect. Depending on the client appli-
cation, dismissing these errors can be non-trivial and may require
disabling security settings. SSH encryption, on the other hand, does
not rely on a third party CA, so no error or warning message is
ever displayed to the client. This hypothesis is in-line with prior
work studying the impact of customer friction on the adoption of
security mechanisms [32].

6 Discussion
In this section, we discuss the scope of PLCHound’s scans, inherent
limitations with its approach, and other possible uses for our solu-
tion. We also address how we handled ethical considerations when
building and verifying PLCHound.

6.1 Scope, Limitations, & Future Work
Same as prior works [6], PLCHound attempts to find the entire
family of devices made by a particular vendor. In practice, these
devices are primarily PLCs and PLC-adjacent devices, such as hard-
ware add-ons and local HMIs. All of these devices are typically
relevant to security analyses, since they tend to share firmware
code and can be impacted by the same vulnerabilities. Note that
while our solution does not automatically exclude honeypots, prior
work provided methods to accurately identify common honeypot
frameworks if desired [25].

It is important to acknowledge that PLCHound’s conservative
approach to query synthesis (i.e., requiring highly-descriptive sig-
natures) may result in hosts that only expose nondescript banners
to be left out of the dataset. These FNHs are indistinguishable
from TNHs and therefore are unable to be discovered using our
queries. For example, some PLCs use the popular embedded-system-
compatible third party component, Dropbear [13], as their SSH
server software. Unfortunately, since all Dropbear banners are iden-
tical and many irrelevant embedded devices also use Dropbear,
PLCHound will be unable to craft a query to identify PLCs that only
expose SSH. This limitation is not unique to PLCHound and also
impacts manual asset discovery.

While PLCHound was built using observations about how ICSs
manifest in practice, it is possible that our solution could be adapted
to discover non-ICS devices, so long as they speak multiple pro-
tocols and have a large fragmented network footprint. Possible
candidates for future work include household IoT devices (e.g.,
smart doorbells) and Internet-connected vehicles (e.g., automobiles,
marine vessels). We hope that future researchers can utilize our
robust entity resolution methodology, perhaps with slight modifica-
tions to our stopword list and cluster scoring algorithim, to uncover
previously unstudied populations of devices in other domains.

6.2 Ethics & Responsible Disclosure
We approached this project with a strong belief that visibility into
exposed ICS devices is crucial to securing public infrastructure.
With this mission in mind, we created PLCHound to enhance sanc-
tioned and ethical security research. Given that publicly available
scan datasets, offered by services such as Shodan and Censys, are
already widely used in academic works [6, 27, 39, 70], we hope that

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

our solution can directly aid in ongoing projects to improve the
security posture of industrial systems. That being said, we under-
stand that identifying exposed and vulnerable ICS devices raises
ethical concerns that need to be addressed.

The first point we would like to emphasize is that PLCHound is
fully passive and offline. Since our solution relies on an existing
database of scan data, there is no risk that running our tool could
cause any direct harm to real-world systems. However, as part of the
manual inspection process from Section 5.2, we performed one-time
active probing using the best-practice safeguards recommended
by prior work [62]. To ensure that our probing process did not
interfere with any live systems, we limited our testing to only
sending a single non-mutating request to a non-critical protocol
(i.e. HTTP GET) and did not perform any authentication attempts.
Full details regarding the caution exercised during active probing
can be found in Appendix C.

We are also taking steps to reduce the possibility of PLCHound
misuse by restricting access to our software implementation. Like
all Internet measurement tools, such as ZMap [26] and custom web-
crawlers [37], there is an inherent risk that bad actors could use
the solution to identify potential victims for exploitation. While the
risk of malicious utilization of Shodan and Censys existed prior to
our tool, we acknowledge that PLCHound removes certain barriers
to entry, such as domain-expertise and engineering effort, that
may have prevented wide-spread abuse. Therefore, we decided to
not release PLCHound’s code, and to instead, only provide output
queries to vetted academic researchers upon request.

Finally, we performed an extensive outreach campaign to notify
the ICSs discovered in Section 5.3 that their PLCs were publicly-
facing with known vulnerabilities. We utilized the third-party ser-
vice, IPInfo [3], to collect contact information and conducted a
large-scale email disclosure campaign through our local Office of
Information Technology (OIT). Although we cannot definitively
attribute end-user actions to our notification efforts, a follow-up
scan, performed one month after the outreach, showed that 34.3% of
the contacted IP addresses no longer exposed a PLC device. These
results are in-line with prior work on the effectiveness of outreach
campaigns [40]. Lastly, we co-authored a security advisory with
the vendor of the targeted PLC to inform the community about the
underestimated dangers of network misconfigurations [66].

7 Conclusion
In this paper, we present the first method for automatic ICS asset
discovery using active scan data. We experimentally evaluated that
our solution, PLCHound, is able to accurately infer the existence
of ICS devices using subtle indicators and temporally-resistant
signatures with a 98.67% true positive rate. The fully-automated
query synthesis approach allows PLCHound to dig through large
datasets of scan data collected by scanners such as Censys and
Shodan without any domain expertise or human interaction to
find up to 37x more devices than prior work. We use this data to
perform a holistic field-deployed security analysis and reveal that
ICS facilities are indeed highly vulnerable and readily-accessible.
As ICS vendors continue to embrace the industrial IoT connectivity
trend, our automated approach becomes even more invaluable 3.
3An extended version of this paper is available at https://ryanpickren.com/plchound.

https://ryanpickren.com/plchound

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

References
[1] 2023. Censys Search. https://search.censys.io/. Accessed: 2023-08-17.
[2] 2023. Shodan. https://www.shodan.io/. Accessed: 2023-08-17.
[3] 2024. ipinfo.io. https://ipinfo.io/.
[4] Arizton Advisory and Intelligence. [n. d.]. PLC Market - Global Outlook and Fore-

cast 2020-2025. https://www.arizton.com/market-reports/plc-market-analysis.
[5] Simon Daniel Duque Anton, Daniel Fraunholz, Daniel Krohmer, Daniel Reti,

Daniel Schneider, and Hans Dieter Schotten. 2021. The global state of security in
industrial control systems: An empirical analysis of vulnerabilities around the
world. IEEE Internet of Things Journal 8, 24 (2021), 17525–17540.

[6] Travis Ashley, Sri Nikhil Gupta Gourisetti, Newton Brown, and Christopher
Bonebrake. 2022. Aggregate attack surface management for network discovery
of operational technology. Computers & Security 123 (2022), 102939.

[7] AVM. [n. d.]. FritzBox | Our top models. https://en.avm.de/products/fritzbox/.
[8] Tim Berners-Lee and Daniel W. Connolly. 1995. Hypertext Markup Language -

2.0. https://www.rfc-editor.org/info/rfc1866. https://doi.org/10.17487/RFC1866
[9] Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry Mullins. 2014.

Evaluation of the ability of the Shodan search engine to identify Internet-facing
industrial control devices. International Journal of Critical Infrastructure Protection
7, 2 (2014), 114–123.

[10] Tim Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange Format.
https://www.rfc-editor.org/info/rfc8259. https://doi.org/10.17487/RFC8259

[11] Censys. [n. d.]. Censys Internet Scanning Intro. https://support.censys.io/hc/en-
us/articles/360059603231-Censys-Internet-Scanning-Intro.

[12] Censys. [n. d.]. Data Definitions. https://search.censys.io/search/
definitions?resource=hosts.

[13] Censys. [n. d.]. Dropbear SSH. https://matt.ucc.asn.au/dropbear/dropbear.html.
[14] Censys. [n. d.]. Report on Hosts. https://search.censys.io/search/

report?resource=hosts.
[15] Censys. [n. d.]. Search with Labels. https://support.censys.io/hc/en-us/articles/

13446586006292-Search-with-Labels.
[16] Centre for the Protection of National Infrastructure. [n. d.]. Firewall Deployment

for SCADA and Process Control Systems. https://www.energy.gov/sites/prod/
files/Good%20Practices%20Guide%20for%20Firewall%20Deployment.pdf.

[17] Joao M Ceron, Justyna J Chromik, Jair Santanna, and Aiko Pras. 2020. Online
discoverability and vulnerabilities of ICS/SCADA devices in the Netherlands.
arXiv preprint arXiv:2011.02019 (2020).

[18] CISA. [n. d.]. NERC Critical Infrastructure Protection (NERC CIP).
https://niccs.cisa.gov/education-training/catalog/captiva-solutions-llc/nerc-
critical-infrastructure-protection-nerc-cip.

[19] CODESYS. [n. d.]. CODESYS WEBVISU. https://www.codesys.com/products/
codesys-visualization/webvisu.html.

[20] Cybersecurity Infrastructure Security Agency. 2023. Exploita-
tion of Unitronics PLCs used in Water and Wastewater Systems.
https://www.cisa.gov/news-events/alerts/2023/11/28/exploitation-unitronics-
plcs-used-water-and-wastewater-systems.

[21] Daniel Stenberg. 2022. curl: Command Line Tool and Library for Transferring
Data with URLs. https://curl.se/.

[22] Leonardo de Moura and Nikolaj Bjørner. 2023. Z3 Theorem Prover. https:
//github.com/Z3Prover/z3.

[23] Defense Use Case. 2016. Analysis of the cyber attack on the Ukrainian power
grid. (2016), 1–29.

[24] Alessandro Di Pinto, Younes Dragoni, and Andrea Carcano. 2018. TRITON: The
first ICS cyber attack on safety instrument systems. In Proc. Black Hat USA. 1–26.

[25] Michael Dodson, Alastair R Beresford, and Daniel R Thomas. 2020. When will
my PLC support Mirai? The security economics of large-scale attacks against
Internet-connected ICS devices. In 2020 APWG Symposium on Electronic Crime
Research (eCrime). IEEE, 1–14.

[26] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. 2013. {ZMap}: fast
internet-wide scanning and its security applications. In 22nd USENIX Security
Symposium (USENIX Security 13). 605–620.

[27] Ismail Erkek and Erdal Irmak. 2021. Cyber security of internet connected ics/scada
devices and services. In 2021 International Conference on Information Security and
Cryptology (ISCTURKEY). IEEE, 75–80.

[28] Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. https://www.rfc-editor.org/info/rfc7230. https:
//doi.org/10.17487/RFC7230

[29] Python Software Foundation. 2023. functools — Higher-order functions and
operations on callable objects. https://docs.python.org/3/library/functools.html.

[30] Four-Faith. [n. d.]. Four-Faith. https://www.fourfaith.com/.
[31] Thomas Hanka, Matthias Niedermaier, Florian Fischer, Susanne Kießling, Peter

Knauer, and Dominik Merli. 2021. Impact of active scanning tools for device
discovery in industrial networks. In Security, Privacy, and Anonymity in Computa-
tion, Communication, and Storage: SpaCCS 2020 International Workshops, Nanjing,
China, December 18-20, 2020, Proceedings 13. Springer, 557–572.

[32] Cormac Herley. 2009. So long, and no thanks for the externalities: the rational
rejection of security advice by users. In Proceedings of the 2009 workshop on New
security paradigms workshop. 133–144.

[33] George F Jenks. 1967. The data model concept in statistical mapping. International
yearbook of cartography 7 (1967), 186–190.

[34] Kaspersky. [n. d.]. Industrial Control Systems and Their Online Availabil-
ity. https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/
07/07190427/KL_REPORT_ICS_Availability_Statistics.pdf.

[35] Anastasis Keliris and Michail Maniatakos. 2016. Remote field device fingerprint-
ing using device-specific modbus information. In 2016 IEEE 59th international
Midwest symposium on circuits and systems (MWSCAS). IEEE, 1–4.

[36] Ralph Langner. 2011. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
& Privacy 9, 3 (2011), 49–51.

[37] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2018. Thou shalt not depend on me: Analysing the
use of outdated javascript libraries on the web. arXiv preprint arXiv:1811.00918
(2018).

[38] Mathieu Leplatre. 2023. jenkspy: Optimal Jenks-Caspall Natural Breaks classifi-
cation in pure Python. https://github.com/mthh/jenkspy.

[39] Eireann P Leverett. 2011. Quantitatively assessing and visualising industrial
system attack surfaces. University of Cambridge, Darwin College 7 (2011), 21.

[40] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey,
Damon McCoy, Stefan Savage, and Vern Paxson. 2016. You’ve got vulnerability:
Exploring effective vulnerability notifications. In 25th USENIX Security Sympo-
sium (USENIX Security 16). 1033–1050.

[41] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[42] Ariana Mirian, Zane Ma, David Adrian, Matthew Tischer, Thasphon Chuenchujit,
Tim Yardley, Robin Berthier, Joshua Mason, Zakir Durumeric, J Alex Halderman,
et al. 2016. An internet-wide view of ics devices. In 2016 14th Annual Conference
on Privacy, Security and Trust (PST). IEEE, 96–103.

[43] Tin Q Nguyen, Sage E Pickren, Neena M Saha, and Laurie E Cutting. 2020.
Executive functions and components of oral reading fluency through the lens of
text complexity. Reading and writing 33 (2020), 1037–1073.

[44] nmap.org. [n. d.]. NMAP. https://nmap.org/.
[45] Leapfrog Online. 2023. rstr: Random string module for Python. https://

github.com/leapfrogonline/rstr.
[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[47] Ryan Pickren, Tohid Shekari, Zonouz Saman, and Raheem Beyah. 2024. Compro-
mising Industrial Processes using Web-Based Programmable Logic Controller
Malware. In NDSS. 1–18.

[48] Iuliu Popovici. 2023. RegExTractor: A simple tool to extract regular expressions
from text. https://github.com/iuliux/RegExTractor.

[49] Davide Pozza, Riccardo Sisto, Luca Durante, and Adriano Valenzano. 2006. Com-
paring lexical analysis tools for buffer overflow detection in network software.
In 2006 1st International Conference on Communication Systems Software & Mid-
dleware. IEEE, 1–7.

[50] Pure-FTPD. [n. d.]. Pure-FTPD. https://www.pureftpd.org/project/pure-ftpd/.
[51] Bob Radvanovsky. [n. d.]. Project SHINE: 1,000,000 Internet-Connected SCADA

and ICS Systems and Counting. https://www.tofinosecurity.com/blog/project-
shine-1000000-internet-connected-scada-and-ics-systems-and-counting.

[52] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics
20 (1987), 53–65.

[53] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513–523.

[54] Serhad Sarica and Jianxi Luo. 2021. Stopwords in technical language processing.
Plos one 16, 8 (2021), e0254937.

[55] Takayuki Sasaki, Akira Fujita, Carlos H Ganán, Michel van Eeten, Katsunari
Yoshioka, and Tsutomu Matsumoto. 2022. Exposed infrastructures: Discovery,
attacks and remediation of insecure ics remote management devices. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2379–2396.

[56] Schneider. [n. d.]. PowerLogic Energy Meters. https://www.se.com/us/en/
product-range/1717-powerlogic-energy-meters/.

[57] scikit. [n. d.]. Tokenizing text with scikit-learn. https://scikit-learn.org/stable/
tutorial/text_analytics/working_with_text_data.html#tokenizing-text-with-
scikit-learn.

[58] Yakov Shafranovich. 2005. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. https://www.rfc-editor.org/info/rfc4180. https:
//doi.org/10.17487/RFC4180

[59] Zain Shamsi, Ankur Nandwani, Derek Leonard, and Dmitri Loguinov. 2014. Her-
shel: single-packet os fingerprinting. ACM SIGMETRICS Performance Evaluation
Review 42, 1 (2014), 195–206.

[60] Shodan. [n. d.]. Shodan Explore | Industrial Control Systems. https://
www.shodan.io/explore/category/industrial-control-systems.

[61] Robyn Speer. 2022. rspeer/wordfreq: v3.0. https://doi.org/10.5281/zenodo.7199437

https://search.censys.io/
https://www.shodan.io/
https://ipinfo.io/
https://www.arizton.com/market-reports/plc-market-analysis
https://en.avm.de/products/fritzbox/
https://www.rfc-editor.org/info/rfc1866
https://doi.org/10.17487/RFC1866
https://www.rfc-editor.org/info/rfc8259
https://doi.org/10.17487/RFC8259
https://support.censys.io/hc/en-us/articles/360059603231-Censys-Internet-Scanning-Intro
https://support.censys.io/hc/en-us/articles/360059603231-Censys-Internet-Scanning-Intro
https://search.censys.io/search/definitions?resource=hosts
https://search.censys.io/search/definitions?resource=hosts
https://matt.ucc.asn.au/dropbear/dropbear.html
https://search.censys.io/search/report?resource=hosts
https://search.censys.io/search/report?resource=hosts
https://support.censys.io/hc/en-us/articles/13446586006292-Search-with-Labels
https://support.censys.io/hc/en-us/articles/13446586006292-Search-with-Labels
https://www.energy.gov/sites/prod/files/Good%20Practices%20Guide%20for%20Firewall%20Deployment.pdf
https://www.energy.gov/sites/prod/files/Good%20Practices%20Guide%20for%20Firewall%20Deployment.pdf
https://niccs.cisa.gov/education-training/catalog/captiva-solutions-llc/nerc-critical-infrastructure-protection-nerc-cip
https://niccs.cisa.gov/education-training/catalog/captiva-solutions-llc/nerc-critical-infrastructure-protection-nerc-cip
https://www.codesys.com/products/codesys-visualization/webvisu.html
https://www.codesys.com/products/codesys-visualization/webvisu.html
https://www.cisa.gov/news-events/alerts/2023/11/28/exploitation-unitronics-plcs-used-water-and-wastewater-systems
https://www.cisa.gov/news-events/alerts/2023/11/28/exploitation-unitronics-plcs-used-water-and-wastewater-systems
https://curl.se/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://www.rfc-editor.org/info/rfc7230
https://doi.org/10.17487/RFC7230
https://doi.org/10.17487/RFC7230
https://docs.python.org/3/library/functools.html
https://www.fourfaith.com/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/07/07190427/KL_REPORT_ICS_Availability_Statistics.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/07/07190427/KL_REPORT_ICS_Availability_Statistics.pdf
https://github.com/mthh/jenkspy
https://nmap.org/
https://github.com/leapfrogonline/rstr
https://github.com/leapfrogonline/rstr
https://github.com/iuliux/RegExTractor
https://www.pureftpd.org/project/pure-ftpd/
https://www.tofinosecurity.com/blog/project-shine-1000000-internet-connected-scada-and-ics-systems-and-counting
https://www.tofinosecurity.com/blog/project-shine-1000000-internet-connected-scada-and-ics-systems-and-counting
https://www.se.com/us/en/product-range/1717-powerlogic-energy-meters/
https://www.se.com/us/en/product-range/1717-powerlogic-energy-meters/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html##tokenizing-text-with-scikit-learn
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html##tokenizing-text-with-scikit-learn
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html##tokenizing-text-with-scikit-learn
https://www.rfc-editor.org/info/rfc4180
https://doi.org/10.17487/RFC4180
https://doi.org/10.17487/RFC4180
https://www.shodan.io/explore/category/industrial-control-systems
https://www.shodan.io/explore/category/industrial-control-systems
https://doi.org/10.5281/zenodo.7199437

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[62] Mike Thelwall and David Stuart. 2006. Web crawling ethics revisited: Cost,
privacy, and denial of service. Journal of the American Society for Information
Science and Technology 57, 13 (2006), 1771–1779.

[63] PLC Technician Training. [n. d.]. Latest Advancement in PLC Technology. https:
//www.plctechnician.com/news-blog/latest-advancement-plc-technology.

[64] WAGO. [n. d.]. Container Virtualization with Docker. https://www.wago.com/
us/open-automation/modular-software/linux/docker.

[65] WAGO. [n. d.]. Control Included: Embedded Linux. https://www.wago.com/us/
embedded-linux.

[66] WAGO. [n. d.]. High Number of Unreported Errors in Controllers Accessible via
the Internet. https://www.wago.com/global/open-automation/cybersecurity/
georgia-institute-warns-about-underestimated-risks.

[67] WAGO. [n. d.]. WAGO Products Join AWS Partner Device Catalog and AWS IoT
Greengrass. https://www.wago.com/us/aws-partner.

[68] Timothy Williams. 1998. The Purdue enterprise reference architecture and
methodology (PERA). Handbook of life cycle engineering: concepts, models, and
technologies 289 (1998).

[69] Yixiong Wu, Jianwei Zhuge, Tingting Yin, Tianyi Li, Junmin Zhu, Guannan Guo,
Yue Liu, and Jianju Hu. 2021. From Exposed to Exploited: Drawing the Picture
of Industrial Control Systems Security Status in the Internet Age.. In ICISSP.
237–248.

[70] Binbin Zhao, Shouling Ji, Wei-Han Lee, Changting Lin, Haiqin Weng, Jingzheng
Wu, Pan Zhou, Liming Fang, and Raheem Beyah. 2020. A large-scale empir-
ical study on the vulnerability of deployed IoT devices. IEEE Transactions on
Dependable and Secure Computing 19, 3 (2020), 1826–1840.

[71] ZoomEye. [n. d.]. ZoomEye. https://www.zoomeye.org/.

https://www.plctechnician.com/news-blog/latest-advancement-plc-technology
https://www.plctechnician.com/news-blog/latest-advancement-plc-technology
https://www.wago.com/us/open-automation/modular-software/linux/docker
https://www.wago.com/us/open-automation/modular-software/linux/docker
https://www.wago.com/us/embedded-linux
https://www.wago.com/us/embedded-linux
https://www.wago.com/global/open-automation/cybersecurity/georgia-institute-warns-about-underestimated-risks
https://www.wago.com/global/open-automation/cybersecurity/georgia-institute-warns-about-underestimated-risks
https://www.wago.com/us/aws-partner
https://www.zoomeye.org/

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

...

...

...

False Negative Banner (FNB)

False Positive Banner (FPB)

True Positive Banner (TPB)

True Negative Banner (TNB)

False Positive Host (FPH)

False Negative Host (FNH)

True Positive Host (TPH)

True Negative Host (TNH)

A - Accuracy Metrics Legend

B - Scenario Explanations

...D
is

co
ve

re
d

by
 Q

ue
ry

19.198.248.49

167.181.34.253

215.291.13.460

221.148.142.150

254.204.48.127

PLC banner in our dataset;
Increase via accurate queries

Non-PLC banner not in our dataset;
Avoid via accurate queries

TPB in TPH

Non-PLC banner collocated with
discovered PLC; Not problematic if
identified

FPB in TPH

FNB in FNH
PLC banner not in our dataset;
Discover via more robust queries

TNB in TNH

Non-PLC banner incorrectly in our
dataset; Reduce via more
descriptive queries

FPB in FPH

Figure 12: Accuracy Terminology

A Cluster Scoring Details
The first feature (“trustworthiness”) was built from the intuition
that datapoints discovered by high-confidence queries are more
trustworthy than datapoints discovered by medium-confidence
queries. In essence, we want a method for rewarding non-matched
banner components that have been clustered together with highly-
matched banner components. To achieve this goal, we first assign
queries a numeric confidence value, with the seed query being
assigned 1.0 and future queries assigned via a process described
in Section 3. To incorporate this query score into the cluster, we
simply take an average across all queries that found the enclosed
datapoints.

The second feature (“entropy”) was built from the observation
that banners that originated from the PLC tend to only contain
subtle differences (within the same “type”), where banners from
miscellaneous other devices tend to vary drastically. We utilize the
cluster’s standard deviation value to incorporate this feature.

These two features are then linearly combined with the averages
of the Match, Cross-Protocol, and Super lexical analysis scores.
The coefficients for this linear combination were experimentally
discovered via manual ranking and linear regression. The final
result is then normalized so that a 1 indicates a high likelihood of
belonging to the PLC and a 0 indicates a low likelihood.

B Cyclical Behavior
PLCHound’s intentionally conservative approach to query synthesis
often causes new queries to only capture a slightly larger population
than previous queries. As a result of this design, the running total
collection of hosts tends to grow slowly over time, especially as
PLCHound refines areas of the device profile with high entropy
(e.g., the public IP address within the HTTP request URI banner
component).

Since several of PLCHound’s calculations are computationally
expensive (e.g., component clustering and grammar induction), we
choose to only repeat the core algorithm once the running total has
significantly changed and the results are likely to be meaningfully
different. Thus, we sort the query queue by score to ensure the
best queries are near to the top of the list, and pop off as many
queries as needed (which may or may not have been synthesized
this iteration) to increase the running total host count by at least
10%.

The core algorithm then repeats, with new keywords being ex-
tracted and new candidates being selected. This process exposes the
algorithm to previously unseen examples, from which it can gen-
eralize additional patterns while honing the device profile. As this
cycle continues, PLCHound learns more and more about the field-
deployed population, enabling it to create advanced queries that
reveal previously unstudied pockets of field-deployed ICS devices.

During this iterative process, PLCHound will automatically refine
its queries to include the entire lineage of firmware versions, various
user settings, and ultimately, highly-correlated peripheral devices
such as hardware add-ons. Eventually, PLCHound will uncover all
available signatures from the real-world population, at which point
the algorithm halts, and the user can examine the comprehensive
collection of devices.

C Manual True Positive Analysis
After we isolated the 127 hosts that warranted a deeper investiga-
tion, we used manual inspection to verify their identity. Figure 12.A
visually illustrates how accuracy metrics relate to banners and hosts
in our dataset. The various banner/host combinations that occur
during the algorithm are explained in Figure 12.B.

First, we then leveraged Censys’s History API to check if these
hosts recently contained an unambiguous signature that is no longer
online due to external factors (e.g., customer reconfiguration, up-
dated firewalls rules, etc.). Specifically, we look for the vendor name
and/or model number in any banner within the past 30 days. If this
is found, then we can say with high confidence that these hosts are
indeed true positives. This step identified 22 of the 127 suspicious
hosts as confirmed true positives. The remaining 105 hosts (1.49%)
without such a signature are considered potential false positives
that require additional scrutiny.

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 4: Queries Synthesized after First Iteration

Query (Truncated)
same_service(extended_service_name="FTP" AND transport_fingerprint.raw="16000,64,true,M,1452,false,false")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.issuer.email_address="info@wago.com")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.subject_dn="C=DE, ST=NRW, L=Minden, O=WAGO Kontakttechnik GmbH &
Co. KG, OU=WAGO Product Lifecycle Management Group, CN=750-88x Server Certificate, emailAddress=info@wago.com")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.subject.organization="WAGO Kontakttechnik GmbH & Co. KG")
same_service(extended_service_name="HTTP" AND http.response.headers:(key:Server AND value.headers:"WAGO_Webs"))
same_service(extended_service_name="HTTPS" AND http.response.body="... <title>WAGO Ethernet Web-Based Management </title>\r\n </head>\r\n
<frameset rows=\"150,*\">\r\n <noframes>\r\n <body>\r\n Your browser does not support frames. Fallback to simple ...")
same_service(extended_service_name="HTTPS" AND banner="HTTP/1.1 200 OK\r\nLast-Modified: Sat Jan 1 01:00:00 2000\r\nServer:WAGO_Webs\r\nContent-
Type: text/html\r\nContent-Length: 661\r\n")
same_service(extended_service_name="SNMP" AND snmp.oid_system.contact="support@wago.com")
same_service(extended_service_name="SNMP" AND snmp.oid_system.desc="WAGO 750-881 PFC ETHERNET")
same_service(extended_service_name="HTTP" AND http.response.html_title=" WAGO Ethernet Web-Based Management ")
same_service(extended_service_name="HTTPS" AND http.response.html_tags="<title>WAGO Ethernet Web-Based Management </title>")
same_service(extended_service_name="EIP" AND banner=/cB\<[\S\s][\S\sA-Z]\(q[\S\s]4[A-Za-z][\S\s]WAGO 750-881 PFC ETHERNET/)
same_service(extended_service_name="EIP" AND banner=/.*750-881.*/)
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.subject.email_address="info@wago.com")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.issuer.organization="WAGO Kontakttechnik GmbH & Co. KG")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.issuer.common_name="WAGO PLM CA")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.subject.organizational_unit="WAGO Product Lifecycle Management Group")
same_service(extended_service_name="HTTP" AND http.response.html_tags="<title>WAGO Ethernet Web-Based Management </title>")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.issuer.organizational_unit="WAGO Product Lifecycle Management Group")
same_service(extended_service_name="EIP" AND banner="c...\u0001\t4\u0000\\\ufffd!\ufffd\u001aWAGO 750-881 PFC ETHERNET\u0000\ufffd")
same_service(extended_service_name="CODESYS" AND transport_fingerprint.raw="16000,64,true,M,1452,false,false")
same_service(extended_service_name="HTTPS" AND http.response.html_title=" WAGO Ethernet Web-Based Management ")
same_service(extended_service_name="EIP" AND transport_fingerprint.raw="16000,64,true,M,1452,false,false")
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.issuer_dn="C=DE, ST=NRW, L=Minden, O=WAGO Kontakttechnik GmbH &
Co. KG, OU=WAGO Product Lifecycle Management Group, CN=WAGO PLM CA, emailAddress=info@wago.com")
same_service(extended_service_name="MODBUS" AND transport_fingerprint.raw="16000,64,true,M,1452,false,false")
same_service(extended_service_name="HTTP" AND banner="HTTP/1.1 200 OK\r\nLast-Modified: Sat Jan 1 01:00:00 2000\r\nServer: WAGO_Webs\r\nContent-
Type: text/html\r\nContent-Length: 661\r\n")
same_service(extended_service_name="HTTPS" AND http.response.headers:(key:Server AND value.headers:"WAGO_Webs"))

Unfortunately, the validity of the remaining hosts cannot be
verified using the passive techniques thus far (i.e., relying on an
existing third-party network scan dataset). Thus, we must actively
probe these hosts ourselves to induce a more descriptive signature.
We approach this task with extreme caution, since these devices are
likely controlling real-world equipment in live industrial plants.

Of the 105 potential false positive hosts remaining, the top 5 most
commonly-used protocols, in decreasing order, were CODESYS,
HTTP, FTP, MODBUS, and HTTPS. We conservatively considered
the banners behind these services to be nondescript because they
did not explicitly list the vendor name or model number, however
they still contained reasonable indicators of the target device. Below
is a breakdown of what was present in each banner type.
• CODESYS: A cryptographic signature (Hershel+ [59]) indicating
a specific operating system is running a CODESYS Server

• HTTP: A URI path indicative of the third-party WebVisu [19]
web-based HMI software (used by several different PLC vendors)

• FTP: A cryptographic signature (Hershel+ [59]) indicating a
specific operating system is running a Nucleus RTOS FTP Server

• MODBUS: A cryptographic signature (Hershel+ [59]) indicating
a specific operating system is running a MODBUS Server

• HTTPS: A URI path indicative of the third-party WebVisu [19]
web-based HMI software (used by several different PLC vendors)

While we can confidently deduce that all 105 ambiguous hosts
do indeed belong to some sort of ICS embedded device, we cannot
say with 100% certainty that they fall in the scope of our original
scan (i.e. the family of devices made by the target vendor). Thus,
we must somehow induce a more descriptive signature from these
hosts. For ethical reasons, we limited ourselves to only testing the
protocols that are not used for real-time critical operations (to avoid
potentially interrupting any essential tasks [31]). We also chose
to not attempt to authenticate against any of these devices, even
though doing so may confirm their identity (e.g., using the default
WAGO FTP password). After much deliberation, we decided that
sending a single unauthenticated HTTP(s) GET request to a known-
path URI was a solid compromise between inducing a descriptive
signature and being relatively unintrusive (since these devices are
undoubtably already receiving similar traffic from common we-
bcrawlers). We also included contact information for our project
in the HTTP User-Agent header, however we did not receive any
inquisitions, likely due to the innocuous nature of the probe.

Specifically, we took the 45 out of the remaining 105 hosts that
exposed either HTTP or HTTPS and sent a single GET request to
the “/wbm” URI path. This path typically contains the homepage for
the default “Web Based Management” portal website, assuming it
was not disabled by the customer or otherwise blocked by external
factors (e.g., webapp firewall). Of these 45 hosts, 11 responded with

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Pickren, Animesh Chhotaray, Frank Li, Saman Zonouz, & Raheem Beyah

Table 5: 18 Minimal Queries Synthesized during WAGO PLC Case Study w/ EIP-based Seed Query

Query (truncated) Suspicious (Y/N)
same_service(extended_service_name="FTPes" AND tls.certificates.leaf_data.issuer.organization="Wago Kontakttechnik GmbH & Co. KG") N
same_service(extended_service_name="HTTPS" AND tls.certificates.leaf_data.issuer_dn=/C\\=DE, ST\\=[A-Z][a-zA-Z]{2,6}, [A-Z][A-Z]?\\=[A-Z][a-zA-
Z\\S\\s0-9]+, O\\=W[a-zA-Z]{3,3} Kontakttechnik GmbH \& Co\\. KG, [A-Z][A-Z]?\\=[A-Z][A-Z\\S\\s0-9 a-z]+, emailAddress\\=info\\@wago\\.com/)

N

same_service(extended_service_name="HTTP" AND http.response.headers:(key:Server AND value.headers:"WAGO_Webs")) N
same_service(extended_service_name="HTTP" AND http.response.html_title=/[]?WAGO Ethernet Web-[a-zA-Z]ased Management[]?/) N
same_service(extended_service_name="FTP" AND transport_fingerprint.raw="16000,64,true,M,1452,false,false") Y
same_service(extended_service_name="MODBUS" AND transport_fingerprint.raw="16000,64,true,M,1452,false,false") Y
same_service(extended_service_name="HTTPS" AND http.response.headers:(key:Server AND value.headers:"WAGO_Webs")) N
same_service(extended_service_name="CODESYS" AND transport_fingerprint.raw="16000,64,true,M,1452,false,false") Y
same_service(extended_service_name="HTTP" AND banner="HTTP/1.1 307 Temporary Redirect\\r\\nLocation: /webvisu/webvisu.htm\\r\\nContent-Length:
0\\r\\nDate: <REDACTED>\\r\\nServer: lighttpd\\r\\n")

Y

same_service(extended_service_name="HTTP" AND banner=/HTTP\\/1\\.1 200 [A-Z\\S\\s]{0,4}D[a-z]{2}[a-z]{0,2}e[a-z\\S\\s]{2,2} [\\S\\s]{0,3}[A-Z][a-zA-
Z\\S\\s]{6,9}[\\r\\n][\\r\\n]Server\\: WAGO_Webs[\\r\\n][\\r\\n][A-Z][a-z]{2}[a-z]{0,3}t-[A-Z]?[a-z]{2}[a-z]{0,4}e[a-z]?\\: text\\/html[\\r\\n][\\r\\n]Pragma\\: no-
cache[\\r\\n][\\r\\n]Expires\\: 0[0-9 \\S\\s]*[\\r\\n][\\r\\n]Cache-Control\\: [a-z]{2}

N

same_service(extended_service_name="HTTP" AND http.response.body=/\\<HTML\\>[\\r\\n][\\r\\n]\\<HEAD\\>[\\r\\n][\\r\\n] \\<TI-
TLE\\>CoDeSys WebVisualization\\<\\/TITLE\\>[\\r\\n][\\r\\n][\\t]\\<style type\\=\\"text\\/css\\"\\>[\\r\\n][\\r\\n][\\t]\\/******* basic tags
*******\\/[\\r\\n][\\r\\n][\\t]body[\\r\\n][\\r\\n][\\t]\{[\\r\\n][\\r\\n] [\\t][\\t]margin\\: 0;[\\r

Y

same_service(extended_service_name="SNMP" AND snmp.oid_system.desc=/WAGO [0-9A-Z]{2,3}-[0-9 A-Z]*[A-Z]{3}[A-Z\\S\\s]*/) N
same_service(extended_service_name="HTTPS" AND http.request.uri=/https\\:\\/\\/[0-9]{2}[0-9]?\\.[0-9]{2}[0-9]?\\.[0-9]{2}[0-9]?\\.[0-9]{2}[\\S\\s0-
9]*\\/webvisu\\/webvisu\\.htm/)

Y

same_service(extended_service_name="HTTP" AND http.response.body=/\\<!DOCTYPE html\\>[\\r\\n][\\r\\n]\\<html\\>[\\r\\n]\\<head[\\S\\sa-z A-Z0-
9]*\\>[\\r\\n]\\<title\\>WAGO Ethernet Web-based Management\\<\\/title\\>[\\r\\n]\\<meta http-equiv\\=\\"Content-Type\\" content\\=\\"text\\/html;
charset\\=iso-8859-1\\"\\>[\\r\\n]\\<meta name\\=\\"author\\" content\\=\\"WAGO Kontakttechnik GmbH \& Co\\. K

N

same_service(extended_service_name="HTTP" AND http.response.body="<!DOCTYPE html>\\r\\n<html>\\r\\n<head>\\r\\n\\t<meta http-equiv=\\"content-
type\\" content=\\"text/html;charset=UTF-8\\" />\\r\\n\\t<script language=\\"javascript\\" src=\\"webvisu.js\\"></script>\\r\\n\\t<script language=\\"javascript\\"
src=\\"browsercontrol_ext0.js\\"></script>\\r\\n\\r\\n</head>\\r\\n<body onload=\\"new Webvisu

Y

same_service(extended_service_name="HTTP" AND http.response.body=/\\<!DOCTYPE html\\>[\\r\\n][\\r\\n]\\<html\\>[\\r\\n][\\r\\n]\\
<head\\>[\\r\\n][\\r\\n][\\t]\\<meta http-equiv\\=\\"content-type\\" content\\=\\"text\\/html;charset\\=UTF-8\\" \\/\\>[\\r\\n][\\r\\n][\\t]\\<script lan-
guage\\=\\"javascript\\" src\\=\\"webvisu\\.js\\"\\>\\<\\/script\\>[\\r\\n][\\r\\n][\\t]\\<script language\\=\\"javasc

Y

same_service(extended_service_name="HTTP" AND http.request.uri=/http\\:\\/\\/[0-9]{2}[0-9]?\\.[0-9]{2}[0-9]?\\.[0-9]{2}[0-9]?\\.[0-9\\S\\s]{0,3}[0-9]{2}[0-
9\\S\\s]*\\/webvisu\\/webvisu\\.htm/)

Y

same_service(extended_service_name="HTTP" AND http.request.uri=/http\\:\\/\\/[0-9][0-9]?\\.11\\.[0-9]{3}\\.[0-9]{3}[\\S\\s0-9]{0,4}\\/webvisu\\/webvisu\\.htm/) Y

the legitimate portal website HTML code, thus confirming their
identity in an unintrusive manner. We consider the remaining 34
HTTP(s) hosts to be “potential false positives” since this test was
inconclusive for them.

This leaves 94 (1.33%) total hosts in which we cannot say with
absolute certainty belong to the target device (although many likely
do since they run the correct operating system and speak the correct
protocols). Regardless, our tests empirically confirm that the lower
bound for PLCHound’s true positive rate is 98.67%.

D Generalizability of True Positive Rate
To support the claim that the low false positive rate calculated in
Section 5.2 holds true across vendors, we apply various statistical
significance tests using the industry-standard 95% confidence (𝑝 =

0.05). For this analysis, we make the conservative assumption that
all datapoints are independent from each other, even though in
practice, many hosts are discovered by similar, if not identical,
queries and therefore share an underlying dependence. Since all 50
of our randomly sampled hosts from each vendor were manually
confirmed to be true positives, it is highly likely that other hosts in
those datasets can be indirectly confirmed as well, given they were
found by similar queries. We intentionally do not account for this
relationship in our calculations to determine a conservative lower
bound extrapolation.

First, we apply the Wilson Score Interval, which is given by:

Lower bound =
𝑝 + 𝑧2

2𝑛 − 𝑧

√︃
𝑝 (1−𝑝)

𝑛 + 𝑧2

4𝑛2

1 + 𝑧2
𝑛

Upper bound =
𝑝 + 𝑧2

2𝑛 + 𝑧

√︃
𝑝 (1−𝑝)

𝑛 + 𝑧2

4𝑛2

1 + 𝑧2
𝑛

where:
• 𝑝 is the sample proportion of true positives (1 in this case),
• 𝑛 is the sample size (50 in this case),
• 𝑧 is the z-score corresponding to the desired confidence level
(for a 95% confidence level, 𝑧 ≈ 1.96).

Plugging in the values with a 95% confidence level:

Lower bound =
1 + 1.962

2×50 − 1.96
√︃

1×0
50 + 1.962

4×502

1 + 1.962
50

≈ 0.9286

Upper bound =
1 + 1.962

2×50 + 1.96
√︃

1×0
50 + 1.962

4×502

1 + 1.962
50

≈ 1

Thus, the 95% Wilson score interval for the true positive rate is
approximately [0.93, 1.00], indicating that with 95% confidence, the
true positive rate is at least 93% and could be as high as 100%.

Additionally, we can perform a binomial test to determine the
lowest possible true positive rate given our 95% confidence con-
straint.

Given:
• Number of true positives (𝑥): 50

Release the Hounds! Automated Inference and Empirical Security Evaluation of Field-Deployed PLCs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

• Total number of samples (𝑛): 50
• Significance level (𝛼): 0.05

We want to find the minimal hypothesized true positive rate
(𝑝min) such that the p-value is less than 𝛼 :

Find 𝑝min such that: p-value = 1−
𝑥−1∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘min (1−𝑝min)𝑛−𝑘 < 𝛼

By numerical calculation, we find that:

𝑝min ≈ 0.9418
Thus, we can confidently deduce that the true positive rate is

likely above 94%.
Since the both conservative statistical tests support the claim of

a high (>93% and >94%) true positive rate and precisely zero false
positives were identified in our samples, it is reasonable to conclude
that our experimentally verified true positive rate of 98.67% for
WAGO likely holds true across vendors.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Related Work
	2.2 Motivating Example

	3 Solution Overview
	4 Algorithm Design Details
	4.1 Stage 1: Keyphrase Extraction
	4.2 Stage 2: Candidate Selection
	4.3 Stage 3: Device Profiling

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Results
	5.3 Security Applications

	6 Discussion
	6.1 Scope, Limitations, & Future Work
	6.2 Ethics & Responsible Disclosure

	7 Conclusion
	References
	A Cluster Scoring Details
	B Cyclical Behavior
	C Manual True Positive Analysis
	D Generalizability of True Positive Rate

