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Abstract

Remedying Security Concerns at an Internet Scale

by

Frank Li

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Vern Paxson, Chair

The state of security across the Internet is poor, and it has been so since the advent of the
modern Internet. While the research community has made tremendous progress over the years in
learning how to design and build secure computer systems, network protocols, and algorithms, we
are far from a world where we can truly trust the security of deployed Internet systems. In reality,
we may never reach such a world. Security concerns continue to be identified at scale through-
out the software ecosystem, with thousands of vulnerabilities discovered each year. Meanwhile,
attacks have become ever more frequent and consequential.

As Internet systems will continue to be inevitably affected by newly found security concerns,
the research community must develop more effective ways to remedy these issues. To that end,
in this dissertation, we conduct extensive empirical measurements to understand how remediation
occurs in practice for Internet systems, and explore methods for spurring improved remediation be-
havior. This dissertation provides a treatment of the complete remediation life cycle, investigating
the creation, dissemination, and deployment of remedies. We start by focusing on security patches
that address vulnerabilities, and analyze at scale their creation process, characteristics of the re-
sulting fixes, and how these impact vulnerability remediation. We then investigate and systematize
how administrators of Internet systems deploy software updates which patch vulnerabilities across
the many machines they manage on behalf of organizations. Finally, we conduct the first systematic
exploration of Internet-scale outreach efforts to disseminate information about security concerns
and their remedies to system administrators, with an aim of driving their remediation decisions.
Our results show that such outreach campaigns can effectively galvanize positive reactions.

Improving remediation, particularly at scale, is challenging, as the problem space exhibits
many dimensions beyond traditional computer technical considerations, including human, social,
organizational, economic, and policy facets. To make meaningful progress, this work uses a di-
versity of empirical methods, from software data mining to user studies to Internet-wide network
measurements, to systematically collect and evaluate large-scale datasets. Ultimately, this disser-
tation establishes broad empirical grounding on security remediation in practice today, as well as
new approaches for improved remediation at an Internet scale.
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Chapter 1

Introduction

The Internet has revolutionized our world, from democratizing information to supporting a global
economy to providing crucial everyday online services. However, this technological innovation
has not come without drawbacks. In large, the Internet and the systems connected to it were not
designed and developed with security at the forefront. As a result, billions of systems are connected
to the Internet today riddled with security concerns, and the frequency and consequences of attacks
exploiting these security holes continue to grow.

This drawback has not gone unnoticed or unaddressed. The security community has made
tremendous strides over the years in learning how to more securely design and implement com-
puter systems, network protocols, and algorithms. For example, as a community, we have hard-
ened software programs through static and dynamic analysis, fuzzing, and formal methods. We
have better protected networks through intrusion detection systems, firewalls, and cryptographic
protocols. We have explored and improved the usability of security techniques to be more readily
applied in practice.

Despite all the advances and innovations in computer security, we are still far from a world
where the systems we use are fully secure. Each year, thousands of new vulnerabilities are dis-
covered and publicly disclosed [191], affecting software throughout the computing ecosystem.
Damaging attacks regularly headline news articles, demonstrating that the threat of exploitation is
real. In reality, we may never actually reach an ideal security state. Our software ecosystem is ever
evolving and growing at a remarkable pace, permeating into every aspect of our society beyond
core technology sectors. In addition, security problems often arise due to interactions with hu-
man actors or between systems managed by different stakeholders. It will be challenging, perhaps
infeasible, for us to ever develop security methods that can perfectly handle this scale, diversity,
complexity, and constant evolution. Even with such developments, there remain significant hur-
dles including enforcing the universal adoption of such security approaches, as well as addressing
legacy designs that are essentially baked into the existing Internet.

Thus, for the foreseeable future, Internet systems will continue to be inevitably affected by
newly found security issues, and we must effectively remedy these emergent security concerns
once uncovered. However, the prevalence today of security attacks that successfully exploit known
security vulnerabilities makes it painfully clear that we do not understand yet how to effectively
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do so. This dissertation aims to fill this gap by conducting extensive empirical measurements to
understand how remediation occurs in practice for Internet systems, and exploring methods for
spurring improved remediation behavior. Advancing remediation at scale is challenging, though,
as the problem space expands beyond traditional computer technical considerations, including hu-
man, social, organizational, economic, and policy facets. To make meaningful progress, this work
uses a diversity of empirical methods to provide a treatment of the complete remediation life cycle,
from the creation to the dissemination to the deployment of security remedies.

In Part I, we start by investigating remedies themselves, to gain insights into what factors con-
tribute to continued vulnerability and what barriers prohibit effective remediation. In particular, we
consider how software development and system administration aspects impact vulnerability reme-
diation, essentially looking at both the creation and application of security remedies. In Part II, we
turn our focus to the dissemination of remediation information, and explore improving remediation
behavior at scale through a techno-social approach. We systematically investigate Internet-scale
outreach campaigns that distribute information on security concerns and their remedies, aiming to
drive the remediation decisions of system administrators across the Internet. Ultimately, our work
develops an empirically-grounded understanding of security remediation in practice today, as well
as new directions for better remediation at an Internet scale.

1.1 Part I: Understanding How Security Concerns are
Remedied

In the first part of this dissertation, we consider the remedies themselves that address security con-
cerns, focusing on security patches. Applying security patches is one of the most significant facets
of managing security, in principle immunizing systems from the thousands of vulnerabilities dis-
covered each year. Prior work has correlated prompt patching with reductions in security incidents,
providing rare empirical support for the security contributions of a particular behavior [39]. How-
ever, in practice, attackers still regularly exploit at scale vulnerabilities that already have patches,
highlighting that security patches do not yet effectively fulfill their immunization role.

This first part strives to understand the barriers that limit the effectiveness of security patches.
So far, our grasp of these barriers has been largely anecdotal. This limitation stems from the
challenges in obtaining large-scale and representative data on security updating behavior across
Internet systems and their administrators. This work develops sound means for collecting such
data, using a variety of empirical methods to provide a more systematic and holistic comprehension
of security patching considerations.

Chapter 3 - A Large-Scale Empirical Analysis of Security Patches: To understand how
vulnerabilities are remedied by security patches in practice, we first consider how such fixes are
developed. Prior work, particularly from the software engineering community, has studied bug
fixes in general. However, there has been little investigation into how fixes vary across different
classes of bugs. Given the vital role of timely security patches in combating security concerns,
in this chapter, we conduct a large-scale empirical analysis specifically focused on the security
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patch development process and the characteristics of the resulting fixes. To perform the analysis,
we collect and combine data across multiple disparate sources, including vulnerability databases,
various online references (e.g., bug reports, security advisories, email archives), security patches
themselves, and the associated software repositories. The resulting dataset, containing over 4K se-
curity fixes across a diverse set of 682 open-source software projects, allows us to conduct a deep
analysis of the patch development life cycle, including investigations into the timeliness of patch
development and the reliability of the security fixes. We also characterize the complexity of se-
curity fixes and their impact on code bases, in comparison to other non-security bug patches. We
identify how aspects of the patch development process can influence the effectiveness of secu-
rity fixes, and observe that security patches exhibit complexity and locality characteristics more
amenable to program analysis and automatic repair than other bug fixes. The work in this chapter
appeared at the ACM Conference on Computer and Communications Security (CCS) [114].

Chapter 4 - Examining How System Administrators Manage Software Updates: We next
turn our attention to the application of released security patches, particularly by system administra-
tors remediating their hosts. For many Internet hosts, a system administrator operating on behalf
of an organization manages the host’s security, and hence its software updates. While recent user
studies have examined the software updating behavior of end users, administrators have not been
rigorously and systematically studied, in part due to challenges in obtaining data on their actions.
However, they are an important and distinct population, whose technical sophistication and unique
responsibilities in maintaining their organizations’ security distinguish them from end users. In
this chapter, we conduct a user study that comprehensively encapsulates system administrator up-
dating practices. We administer surveys and conducted semi-structured interviews with over 100
administrators in total. Our analysis identifies the major components of their update processes,
and reveals technical, social, and organizational hurdles that impede their effectiveness. Our find-
ings provide empirical evidence of unique pain points encountered when managing updates for
multiple machines in an organization, illuminating avenues for improvements catered towards ad-
ministrators. The study in this chapter appeared at the USENIX Symposium on Usable Privacy
and Security (SOUPS) [115], receiving the Distinguished Paper Award.

1.2 Part II: Promoting Remediation through Internet-Scale
Outreach

Part I of this dissertation investigates the remedies themselves and how they are developed and
applied, specifically focused on security patches. A step remains between those two actions: those
affected must learn about the security issues and their remedies, and decide to take action. Part II
investigates this stage of the remediation life cycle, where information on remedies is disseminated.

Recent advances in Internet scanning have allowed us to analyze the security posture of Inter-
net systems at an unprecedented scale. However, when a widespread problem is uncovered, such
as a security misconfiguration, we resort to ad hoc and inefficient methods for disclosing the infor-
mation to the affected parties. For example, we often propagate information through papers and
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reports, website postings, social media, mailing lists, and occasionally news outlets, in hopes of
reaching those managing afflicted hosts. This process is slow and untargeted, lacks comprehensive
coverage, and often fails when administrators do not recognize that their hosts are affected.

We need better methods for distributing security information and promoting remedies. In this
part, we investigate leveraging our Internet scanning capabilities to identify vulnerable hosts and
directly reach out to their administrators, notifying them about the security problem and their vul-
nerable systems to encourage remediation. While conceptually simple, an effective administrator
notification method would provide us with an approach for proactively combating emergent secu-
rity concerns at scale, in an efficient, comprehensive, and targeted fashion. However, how best to
notify in practice is far from clear. Moreover, a common assumption held in the security commu-
nity, largely fueled by historical anecdotes and beliefs that users neither care about nor can manage
security, is that such outreach efforts are futile. Challenging this assumption, the studies in this
dissertation have been among the first to systematically explore Internet-scale outreach efforts to
spur positive remediation behavior, finding that security notifications can be surprisingly effective.
As a result, other security researchers in academia, industry (e.g., Google), and government orga-
nizations (e.g., national CERTs) have begun conducting similar notifications for newly identified
security problems.

Studying how to conduct effective administrator notification campaigns is difficult, requiring
the careful design of controlled Internet-scale experiments that respect ethical considerations. An-
other fundamental complication is that notification effects may differ depending on the security
issue at hand. As illustrated by the studies included in this dissertation, our exploration has moved
us towards a general understanding of administrator security notifications by experimenting across
a variety of different security issues, finding consistent results.

Chapter 7 - The Matter of Heartbleed: In this chapter, we perform an extensive analysis
of the Internet’s response to the notorious Heartbleed bug [128]. As part of this investigation, we
conduct a large-scale A/B experiment to investigate if we can promote patching by sending email
vulnerability notifications to network administrators. We find that we increased the patching rate by
nearly 50% for those notified compared to those in the control.1 Through surveying the contacted
administrators, we learn that they were often unaware of their vulnerable hosts until our messages,
and hence would not have patched otherwise. Throughout our outreach campaign, administrators
reacted positively to our notifications, with a majority voicing support for similar efforts in the fu-
ture. The success of this first foray into vulnerability notifications spurred our further investigation
into this space. This chapter’s work was published in the ACM Internet Measurement Conference
(IMC) [65], and was awarded Best Paper.

Chapter 8 - Remedying Web Hijacking: In this chapter, we build upon our initial foray into
Internet-wide outreach and evaluate the effectiveness of Google’s notifications sent to webmas-
ters of compromised websites. Hijacked websites are a unique problem as recovering from the
compromise is a particularly challenging task, and webmasters may fail to successfully clean sites
up even if notified. Despite the obstacles, we find that webmasters were twice as likely to clean
up their sites when notified, and they recovered in half the time. In total, nearly 80% of notified

1For ethical reasons, we did notify the control group after the experiment.



CHAPTER 1. INTRODUCTION 5

websites remediated, indicating that notifications can drive a significant majority of recipients to
rectify even complex security situations. This work, published at the World Wide Web Conference
(WWW) [113], has stimulated the expansion of Google’s notification efforts to other domains,
such as HTTPS website misconfigurations.

Chapter 9 - Exploring Effective Vulnerability Notifications: The prior studies established
that administrator security notifications can significantly increase remediation levels. But how does
one most effectively communicate information about security problems? To answer this question,
in this chapter we conduct controlled multivariate notification experiments across multiple popula-
tions, evaluating variables such as whom to contact, amount of message detail, inclusion of exter-
nal references, and translation of messages into local languages. For experiment populations, we
conduct Internet-scale network scans to identify hosts exhibiting one of three widespread network
service misconfigurations (overly open IPv6 firewalls, DDoS amplifiers, and exposed industrial
control systems).

We again find that our outreach promoted remediation at a significant fraction of notified con-
tacts, and that our notifications were well received. Different notification regimens did result in
varying outcomes. The best observed process, consistent across the misconfigurations, was send-
ing detailed notifications to WHOIS abuse contacts with a link to an information website, without
translations. We were initially surprised that message translation resulted in less effective notifica-
tions, but through surveying message recipients, we identified that this was due to an issue of trust.
They expected English from a US institution and were more suspicious of a translated message.
These results provide evidence-based recommendations for conducting administrator security no-
tifications today. The work in this chapter appeared at the USENIX Security Symposium [112].
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Part I

Understanding How
Security Concerns are Remedied
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Chapter 2

Remediation Introduction
and Related Work

2.1 Introduction
Thousands of software vulnerabilities continue to be discovered year after year [191], plaguing
the security of Internet systems. When these security concerns arise, system administrators should
take action to remedy the issues before attackers discover and exploit the security hole. In practice,
we recognize that administrators must not be doing so effectively, as devastating attacks leverag-
ing known vulnerabilities are successfully conducted frequently. These attacks have resulted in
headline-grabbing data breaches [146], as well as compromise of Internet systems at scale.

To improve how we remedy emergent security problems, we must understand what factors
contribute to continued vulnerability and what barriers limit effective remediation. In Part I of
this dissertation, we look to expand our understanding of these facets by investigating remedies
themselves, specifically focusing on security patches that seek to eliminate security vulnerabilities.
(We briefly note that there are other types of security issues, such as security misconfigurations and
compromise incidents, each with different forms of remedies.)

In Chapter 3, we start by performing a large-scale empirical study of security patches, ex-
ploring how their development processes and characteristics can impact remediation. We develop
a method for collecting thousands of security patches affecting a large set of open-source soft-
ware projects, providing a more diverse and expansive dataset than considered in prior work. This
dataset affords us the opportunity to conduct a deep analysis of the patch development process,
including investigation into the life span of vulnerabilities in code bases, the timeliness of secu-
rity fixes, and the reliability and safety of the security patches produced. We also characterize the
security fixes themselves in comparison to non-security bug patches, considering characteristics
such as the complexity of the patches as well as their impact on code bases. The findings of this
work provide empirical grounding on the real-world characteristics of security patches and their
development process, as well as the impact on patching behavior.

In Chapter 4, we turn to the application of security patches through software updates by sys-
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tem administrators. System administrators are typically the primary caretakers of organizations’
Internet systems, managing their operation and security. To improve how we remedy security
concerns, it is vital that we understand better how administrators manage updates in practice, and
identify avenues for improvements in existing processes. To date, we have little empirical ground-
ing on administrator updating behavior. Existing studies have focused on the behavior of end
users, who are a drastically different user population; system administrators are often technically
sophisticated and operate with expanded responsibilities managing machines on behalf of an or-
ganization. In this chapter, we conduct an extensive user study of system administrator software
updating through surveying and interviewing over 100 administrators. Our findings demonstrate
that while the high-level stages of software updating are similar between end users and admin-
istrators, the considerations and actions at each stage are significantly different, highlighting the
value in a study focused on administrators. Our study also identified challenges that administrators
encountered and limitations of existing procedures at each stage of the updating process, providing
insights on paths forward for improving administrator updating.

Together, the chapters of Part I explore both the development and application of vulnerabil-
ity remedies for Internet systems. By establishing an empirically-grounded understanding of how
remediation operates in practice, we identified problems with existing processes and ways to poten-
tially improve them moving forward, providing guidance for the security community in advancing
remediation methods in the future. In Part II of this dissertation, we then explore how informa-
tion on remedies is distributed, and investigate a class of approaches for driving better remediation
behavior at an Internet scale through outreach campaigns.

2.2 Related Work
Here we outline prior work related to the investigations explored in Part I. We first consider related
work analyzing security vulnerabilities and how they are remedied through security patches, rele-
vant to our study of security patch development in Chapter 3. Then we survey existing studies on
how these remedies are deployed through software updates, related to our exploration of system
administrator software updating in Chapter 4.

2.2.1 Developing Security Patches
A body of work has investigated aspects of the vulnerability and patching life cycle. Frei et al. [74]
and Shahzad et al. [175] conducted similar analyses based on public documentation from vulner-
ability databases and security advisories. For example, they compared a vulnerability’s public
disclosure date with announcement dates for fixed releases available for distribution, finding them
concurrent in 60% of cases. Ozment et al. [156] investigated the evolution of vulnerabilities in
the OpenBSD OS over time, observing that it took on average 2.6 years for a release version to
remedy half of the known vulnerabilities. Huang et. al. [97] manually analyzed 131 cherry-picked
security patches from five open-source projects, demonstrating that there exist cases where patch
development was lengthy and error-prone. Nappa et al. [141] shed light on the patch deployment
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process from an end-user perspective, analyzing when security updates were available to clients
and how quickly clients patched. In Chapter 3, we extensively explore new aspects of patch de-
velopment dynamics that require merging information collected from vulnerability databases with
that gleamed from software source code, such as vulnerability life spans in the code base and the
timeliness of patching the code base relative to public disclosure. In addition, we aim to generate
generalizable insights by studying a diverse set of over 650 open-source projects.

Explorations of bug remedies in general (beyond just security bugs) have been performed in
the software engineering community. Zhong and Su [212] conducted an empirical study of over
9,000 bug fixes across six Java projects. They framed their investigation around patch proper-
ties that would make them suitable for generation by automatic program repair, finding that the
majority are too complex or too delocalized to likely be automatically created. Similarly, Park
et al. [158] studied supplementary bug fixes, additional fixes produced when the initial fix was
incomplete. Their analysis covered three open-source projects and showed that over a quarter of
remedies required multiple patches. Sliwerski et. al. [176] investigated two projects and correlated
updates that required fixes with the update sizes, finding larger updates were more likely to require
subsequent fixes. Soto et. al. [178] applied common bug fix patterns to Java patches, finding that
less than 15% could be matched.

While these works are similar to our investigation in Chapter 3 in their focus on patch charac-
teristics, they mostly were conducted at a smaller scale, and do not differentiate between different
kinds of bugs. Security patches are of special interest, given their importance in protecting users
and the time sensitivity of their development. We seek to tease apart the differences between secu-
rity and non-security bug fixes, a distinction that has not been previously scrutinized extensively.
Most relevant is a case study performed by Zama et al. [208] on security and performance fixes
in Mozilla Firefox. They noted differing remediation rates and complexities between security and
performance patches. Perl et. al. [160] also analyzed Git commits that fixed vulnerabilities to
produce a code analysis tool that assists in finding dangerous code commits. They found that in-
dicative features of problematic commits include code which handles errors or manages memory,
or is contributed by a new project developer. Most recently, Xu et. al. [205] developed a method
for identifying security patches at the binary level based on execution traces, providing a method
for obtaining and studying security patches on binaries and closed-source software. These early
findings highlight the importance of considering different types of software bugs; a deep under-
standing of security patches and their development process can inform the security community in
matters related to vulnerability management.

2.2.2 Deploying Security Patches through Software Updates
Once a security patch is developed, software users much apply the patch to remediate, typically
through a software update. Understanding this process and current limitations is vital for im-
proving this remediation step. In Chapter 4, we study how system administrators apply software
updates to a multitude of Internet systems on behalf of their organizations. However, prior work
has investigated software updating, particularly from end user perspectives.
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End Users and Software Updates. Numerous works [69,71,101,123–125,141,150,193,194,
200, 201] have examined end user perceptions, attitudes, and behavior towards applying software
updates. Ion et al. [101] and Wash et al. [200] found that non-expert computer users failed to
recognize the security benefits of updates and frequently avoided installing them. Other studies
measured the time users took to apply updates and discovered that reaching half of all vulnerable
desktop [141] and mobile applications [150] took nearly 45 days and 1 week, respectively. One
set of studies has examined why users avoid or fail to install software updates, discovering a va-
riety of factors related to costs, necessity, and risks [125]. Example factors include that updates
cause unexpected changes to user interfaces [71, 124, 193, 194], that updates take a long time to
install [124, 194], that updates raise privacy concerns [69], and that updates require unnecessary
restarts of applications [71, 124, 193, 194].

Given that automatic updates are more effective than manual updates in keeping end user sys-
tems updated [62, 76, 141], another set of studies has examined user attitudes towards and experi-
ences with automatic updates [123, 201]. Rader and Wash [201] identified that automatic updates
with only partial user involvement (e.g., during restarts) often led to poor mental models of up-
dating, and consequently resulted in less secure systems. More recently, Mathur and Chetty [123]
found that negative experiences with automatic updating resulted in users disabling auto-updates
on Android devices.

While these studies have shed light on how end users deal with software updates, their findings
do not necessarily generalize to system administrators, who are more technically sophisticated and
operate with expanded responsibilities managing an organization’s Internet systems. In Chapter 4,
we investigate this vital subpopulation.

Administrators and Software Updates. Several studies [51, 106, 108, 109, 197, 198] have ex-
amined the workflows and needs of administrators to enable better security practices, but did not
focus on software updating processes specifically. Kraemer and Carayon [108] conducted inter-
views with 16 network administrators and security workers, identifying that organizational struc-
tures and policies played an important role in how they handled security. Kandogan et al. [106]
discussed various stories from IT administrators about their experiences. Krombholz et al. [109]
investigated usability problems encountered by website administrators trying to securely deploy
HTTPS. Chiasson et al. [51] devised usability and interface design principles to help system ad-
ministrators better diagnose security issues. Velasquez and Weisband [197] conducted interviews
with administrators and designed a model to understand their beliefs and attitudes. In this model,
the authors identified that both informational factors (e.g., quality) and system factors (e.g., ease
of use) informed these beliefs and attitudes. In a follow-up study [198], the same authors found
that administrators largely acquired their knowledge through practice rather than education and
certification. They recommended that software developers should design tools with administrator
technical sophistication in mind.

Closely related to our own work in Chapter 4 is the preliminary study conducted over a decade
ago by Crameri et al. [55]. Although not the primary focus of their work, these researchers con-
ducted brief surveys of 50 system administrators to learn about their updating practices. They
found that nearly 70% of administrators refrained from installing software updates and that admin-
istrators tested updates on a smaller set of machines before patching their production systems. The
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study investigated certain aspects of administrator behavior to inform the design of their update
testing system, but did not perform a comprehensive and rigorous exploration of update manage-
ment. More recently, Dietrich et al. [58] looked at how system administrator operations could
result in security misconfigurations, finding that missing and delaying software updates are among
the most commonly reported security misconfigurations.

Unlike these previous studies, our work in Chapter 4 provides an in-depth investigation of
system administrator practices for updating the machines they manage. Using a combination of
surveys and interviews, we examine a larger sample of administrators than Crameri et al. [55] and
provide more recent and in-depth insights into their complete update management process.
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Chapter 3

A Large-Scale Empirical Study
of Security Patches

3.1 Introduction
Miscreants seeking to exploit computer systems incessantly discover and weaponize new secu-
rity vulnerabilities. As malicious attacks become increasingly advanced, system administrators
continue to rely on many of the same processes as practiced for decades to update their software
against the latest threats. Given the central role that the “patching treadmill” plays in countering
emergent security concerns, it behooves the security community to understand the patch develop-
ment process and the characteristics of the resulting fixes. Illuminating the nature of security patch
development can inform us of shortcomings in existing remediation processes and provide insights
for improving current practices.

Seeking such understanding has motivated several studies exploring various aspects of vulner-
ability and patching life cycles. Some have analyzed public documentation about vulnerabilities,
such as security advisories, to shed light on the vulnerability disclosure process [74, 175]. These
studies, however, did not include analyses of the corresponding code bases and the patch develop-
ment process itself. Others have tracked the development of specific projects to better understand
patching dynamics [97, 156, 208]. While providing insights on the responsiveness of particular
projects to security issues, these investigations have been limited to a smaller scale across a few
(often one) projects.

Beyond the patch development life cycle, the characteristics of security fixes themselves are
of particular interest, given their importance in securing software and the time sensitivity of their
development. The software engineering community has studied bug fixes in general [158, 176,
178, 212]. However, there has been little investigation into how fixes vary across different classes
of issues. For example, one might expect that patches for performance issues qualitatively differ
from those remediating vulnerabilities. Indeed, Zama et al.’s case study on Mozilla Firefox bugs
revealed that developers address different classes of bugs differently [208].

In this chapter, we conduct a large-scale empirical study of security patches, investigating
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4,000+ bug fixes for 3,000+ vulnerabilities that affected a diverse set of 682 open-source software
projects. We build our analysis on a dataset that merges vulnerability entries from the National
Vulnerability Database [191], information scraped from relevant external references, affected soft-
ware repositories, and their associated security fixes. Tying together these disparate data sources
allows us to perform a deep analysis of the patch development life cycle, including investigation of
the code base life span of vulnerabilities, the timeliness of security fixes, and the degree to which
developers can produce safe and reliable security patches. We also extensively characterize the se-
curity fixes themselves in comparison to other non-security bug patches, exploring the complexity
of different types of patches and their impact on code bases.

Among our findings we identify that: security patches have less impact on code bases and result
in more localized changes than non-security bug patches; security issues reside in code bases for
years, with a third introduced more than 3 years prior to remediation; security fixes are poorly
timed with public disclosures, allowing attackers who monitor open-source repositories to get a
jump of weeks to months on targeting not-yet-patched systems prior to any public disclosure and
patch distribution; nearly 5% of security fixes negatively impacted the associated software; and 7%
failed to completely remedy the security hole they targeted. The findings of our analysis provide
us with insights that suggest paths forward for the security community to improve vulnerability
management.

Our work provides several contributions. First, we specifically focus on security vulnerabilities
and their patches. While aspects of our work have similarities to prior efforts from the software
engineering community that examined general bug fixes [158,176,178,212], we tease apart the dif-
ferences between security fixes vs. other bug fixes. Second, we develop a large-scale reproducible
data collection methodology and associated analysis that ties extensive meta-data on vulnerabili-
ties and their patches with the software source codes and change histories. As best we know, such
a diverse set of data has not been previously collected and used to explore security patch devel-
opment at scale. Conducting such an analysis at scale provides a third contribution: some prior
works have considered analyses somewhat similar, but restricted to a small handful of software
projects (often only one). We develop robust metrics that one can compute across a diverse group
of projects, supporting a range of generalizable results.

The work in this chapter appeared at the ACM Conference on Computer and Communications
Security (CCS) [114].

3.2 Data Collection Methodology
To explore vulnerabilities and their fixes, we must collect security patches and information per-
taining to them and the remedied security issues. Given this goal, we restricted our investigation to
open-source software for which we could access source code repositories and associated meta-data.
Our data collection centered around the National Vulnerability Database (NVD) [191], a database
provided by the U.S. National Institute of Standards and Technology (NIST) with information per-
taining to publicly disclosed software vulnerabilities. These vulnerabilities are identified by CVE
(Common Vulnerabilities and Exposures) IDs [133]. We mined the NVD and crawled external
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Figure 3.1: An overview of our data collection methodology. 1. We extracted vulnerability charac-
teristics from CVE entries in the NVD with external references to Git commit links. 2. We crawled
other references and extracted page publication dates to estimate public disclosure dates. 3. We
crawled the Git commit links to identify and clone the corresponding Git source code reposito-
ries, and collected security fixes using the commit hashes in the links. 4. We also used the Git
repositories to select non-security bug fixes.

references to extract relevant information, including the affected software repositories, associated
security patches, public disclosure dates, and vulnerability classifications. Figure 3.1 depicts an
overview of this process. In the remainder of this section, we describe these various data sources
and our collection methodology.

Note that throughout our methodology, we frequently manually inspected random samples of
populations to confirm that the population distributions accorded with our assumptions or expec-
tations. We chose sample sizes (typically of 100) such that they proved manageable for manual
analysis while large enough to reflect fine-grained aspects of population distributions.

3.2.1 Finding Public Vulnerabilities
We relied on the NVD to find publicly disclosed vulnerabilities. The NVD contains entries for each
publicly released vulnerability assigned a CVE identifier. When security researchers or vendors
identify a vulnerability, they can request a CVE Numbering Authority (such as the MITRE Corpo-
ration) to assign a CVE ID to it. At this point, information about the vulnerability may not yet be
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disclosed. Upon public release of the vulnerability information, the CVE ID along with its asso-
ciated vulnerability information gets added to the CVE list, which feeds the NVD. NVD analysts
investigate the vulnerability further, populating an entry for the CVE ID with additional infor-
mation. In particular, they summarize the vulnerability, link to relevant external references (such
as security advisories and reports), enumerate the affected software, identify the class of security
weakness under the Common Weakness Enumeration (CWE) classifications [134], and evaluate
the vulnerability severity using the Common Vulnerability Scoring System (CVSS) [72, 189].

While there exist other vulnerability databases (e.g., securityfocus.com, IBM’s X-Force Threat
Intelligence, and securitytracker.com), we focused on the NVD as it is: (1) public, free, and easily
accessible in XML format, allowing for reproducibility and follow-on studies, (2) expansive, as
the NVD aims to catalog all publicly disclosed vulnerabilities across numerous software packages,
(3) manually vetted and curated, which in theory provides more accurate data, and (4) detailed,
containing extensive documentation of vulnerabilities (notably external references).

We utilized the NVD XML dataset [192] as snapshotted on December 25th, 2016. Its 80,741
CVE vulnerabilities served as our starting point for further data collection.

3.2.2 Identifying Software Repositories and Security Patches
Many open-source version-controlled software repositories provide web interfaces to navigate
project development (such as git.kernel.org). We frequently observed URLs to these web inter-
faces among the external references for CVE entries, linking to particular repository commits that
fixed the security vulnerability. These links afforded us the ability to collect security patches and
access the source code repositories.

As Git is arguably the most popular version control system for open-source software [169], we
focused on references to Git web interfaces. This popularity was consistent with the CVE external
references as well, where links to Git web interfaces were by far the most common. We observed
more than 5,700 unique URLs with “git” as a substring, excluding those with another common
substring “digit”. To determine if these URLs were indeed related to Git, we randomly sampled
100 URLs. The vast majority of these were associated with Git web interfaces; only two out of
the 100 URLs were non-Git URLs. In comparison, 1,144 external references contained “svn” (for
SVN), 613 contained “cvs” (for CVS), and 347 contained “hg” or “mercurial” (for Mercurial),
significantly fewer for these other popular version control systems compared to Git.

To find Git repositories and their security patches, we first reverse-engineered the URL paths
and parameters used by popular Git web interfaces. These included cgit [8], GitWeb [14],
github.com, and GitLab [13], and accounted for 95% of references with “git” as a substring. (Thus,
to consider more Git web interfaces would have required additional URL reverse-engineering while
producing diminished returns.) We also identified only an additional 128 URLs without “git” that
were consistent with a common Git web interface, suggesting that we identified the majority of
Git URLs. For the 80% of these Git URLs that linked to a particular commit (specified in Git by
a commit hash), we crawled the web interfaces’ summary/home pages and extracted the Git clone
URLs, if listed.
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In total, we retrieved 4,080 commits across 682 unique Git repositories, tied to 3,094 CVEs.
Note that these repositories are distinct, as we de-duplicated mirrored versions. It is possible that
some commits are not security fixes, as they may instead reference the change that introduced
the vulnerability, or may contain a proof-of-concept exploit instead. However, we found that this
is rarely the case. By manually investigating 100 randomly sampled commits, we found that all
commits reflect fixes for the corresponding vulnerabilities.

3.2.3 Identifying Non-Security Bug Fixes
We can gain insight into any particularly distinct characteristics of security patches by comparing
them to non-security bug fixes. However, to do so at scale we must automatically identify non-
security bug fixes. We tackled this problem using a logistic regression that models the character
n-grams in Git commit messages to identify likely bug fix commits.1

To train our commit classifier, we manually labeled 400 randomly selected commits drawn
from all Git repositories as bug fixes or non-bug fix commits (136 were bug fixes). We then
featurized a commit message into a binary vector indicating the presence of common character
n-grams in the commit message. To determine the size of n-grams, the threshold on the number
of n-grams to include, and model parameters, we ran a grid search using 10-fold cross-validation
on the training data. Our feature vector search space considered n-grams of lengths 2 to 10 and
feature vectors that included the top 10,000 to the top 250,000 most frequently occurring n-grams
for each class. Our model parameter search space considered both L1 and L2 regularization, with
regularization strengths ranging from 0.1 to 10, and the inclusion of a bias term.

Our final classifier utilized n-grams of lengths 3 to 9, with feature vectors corresponding to
the top 50,000 most common n-grams for each class. The model used L2 regularization with a
regularization strength of 1, and included a bias term. During 10-fold cross-validation, the classifier
had an average recall of 82% and precision of 91%. While the classifier is not extremely accurate,
it results in only a small fraction of false positives and negatives, which should have limited effect
on the overall distributions of patch characteristics. In Section 3.4.2, we compare characteristics of
security patches versus generic bug fixes. We manually validated that for these characteristics, the
distribution of values is similar between our manually labeled bug fixes and our classifier-collected
bug patches, indicating that our results for classifier-labeled bug fixes should be representative of
randomly selected true bug fixes.

With our classifier, we collected a dataset of bug fixes by randomly selecting per repository
up to 10 commits classified as bug fixes. (Fewer for repositories with less than 10 total commits.)
We chose to select 10 commits per repository as that provided us with a large set of over 6,000
bug fixes (similar to our number of security fixes) balanced across repositories. Note that in our
classifier training, security fixes were labeled as bug fixes. However, only 6% of bug fixes in our

1We also explored other commit features for classification, such as the number of files and lines affected by a
commit, the type of commit changes (addition, deletion, modification), the day of week the commit was made, and the
time since the previous commit. However, these did not provide adequate discriminating power.
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training data (a random sample) were security-related, thus our dataset consists almost entirely of
non-security bug fixes.2

3.2.4 Processing Commits
For each commit we collected (both security and non-security patches), we extracted the historical
versions of affected files both before and after the commit. The diff between these file versions is
the patch itself. In addition, it is often useful to consider only changes to functional source code,
rather than documentation files or source code comments. We processed the commit data using a
best-effort approach (as follows) to filter non-source code files and remove comments, providing
an alternative “cleaned” commit to analyze.

To do so, we mapped the top 30 most frequently occurring file extensions to the program-
ming or templating languages associated with them, if any (e.g., an extension of .java corresponds
to Java, whereas we assume .txt reflects non-source code). These included C/C++, PHP, Ruby,
Python, SQL, HTML, Javascript, Java, and Perl. We stripped comments and trailing whitespaces
under the assumed programming language’s syntax for source code files, and filtered out all other
files. This provided a cleaned snapshot of files involved in a commit, from which we computed a
cleaned diff.

This method is ultimately best-effort,3 as we handled only the top 30 extensions and relied on
extensions as file type indicators. However, we note that these top 30 extensions accounted for
95% of commit files, and incorporating additional extensions would have resulted in diminishing
returns given that each extension potentially required a new cleaning process. Also, in a random
sample of 100 files with a top 30 extension, all extensions corresponded correctly to the expected
file type. This is unsurprising given these projects are open-source and often involve a number
of developers, which likely discourages a practice of using non-intuitive and non-standard file
extensions.

3.2.5 Estimating Vulnerability Public Disclosure Dates
Determining the public disclosure date of a vulnerability is vital to understanding the timeline
of a vulnerability’s life cycle. NVD entries contain a CVE publication date that corresponds to
when the vulnerability was published in the database, not necessarily when it was actually publicly
disclosed [190]. To obtain a more accurate estimate of the public disclosure date, we analyzed the
external references associated with CVEs. These web pages frequently contain publication dates

2 We also investigated developing a commit message classifier to automatically distinguish between security and
non-security fixes, using as ground truth the manually-labeled commits as well as randomly selected CVE-related
security fixes. Given the base rate challenge arising due to the relative rarity of security fixes, we found that the
classifiers we tried did not provide nearly enough accuracy. We did not consider using patch characteristics (such as
those explored in Section 3.4.2) as features as we aimed to understand how security and non-security bug fixes differed
along these properties, thus using such features would provide skewed populations.

3 We also evaluated using the Linux “file” utility, but found it suffered from frequent errors.
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Domain # References

1. openwall.com 2,413
2. ubuntu.com 2,055
3. lists.opensuse.org 1,784
4. securityfocus.com 1,505
5. rhn.redhat.com 1,328
6. bugzilla.redhat.com 1,158
7. debian.org 830
8. lists.fedoraproject.org 673
9. oracle.com* 573
10. mandriva.com* 540
11. vupen.com* 482
12. xforce.iss.net* 422
13. marc.info 305
14. support.apple.com 259
15. securitytracker.com 235
16. lists.apple.com 235
17. seclists.org 204
18. bugs.wireshark.org 143
19. bugs.php.net 127
20. security.gentoo.org 102

Table 3.1: List of the 20 most common externally referenced sites for CVEs corresponding to our
collected security Git commits. We crawled references to these sites for publication dates to better
estimate vulnerability public disclosure dates, although not all web pages were still active. Note
that 4 sites (marked with asterisks) were no longer active, did not provide publication dates, or
employed anti-crawling measures.

for information pertaining to vulnerabilities, which can serve as closer estimates of the public
disclosure dates.

For the CVEs corresponding to our collected security commits, we identified the top 20 most
commonly referenced sites that may contain publication dates, listed in Table 3.1. Of these, two
sites were no longer active (mandriva.com and vupen.com), one did not provide fine-grained dates
(oracle.com), and IBM’s Threat Intelligence X-Force site employed aggressive anti-crawling mea-
sures. For the remaining 16 sites, we constructed per-site parsers that extracted the date of the
relevant publication for a given page. These pages include security advisories (such as from De-
bian and Redhat), mailing list archives (e.g., marc.info, openwall.com/lists), other vulnerability
database entries (e.g., securityfocus.com, securitytracker.com), and bug reports (such as Bugzilla
bug tracking sites). We restricted our crawling to the top 20 sites, as each site required developing
a new site parser, and we observed diminishing returns as we added more sites.

We crawled about 13,600 active external references in total, extracting a publication date from
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Figure 3.2: CDF of the number of days the estimated disclosure date precedes the CVE publication
date.

94% of pages. This provided at least one date extracted from an external reference for 93% of
CVEs, with multiple dates extracted for 73% of CVEs. To confirm the soundness of this strategy,
we randomly sampled 100 crawled pages, finding all relevant dates were correctly extracted.

We estimate the earliest disclosure date as the earliest amongst the extracted reference dates
and the CVE publication date. While this is a best-effort approach, we observe that it yields
significantly improved disclosure estimation. Figure 3.2 plots the CDF of the number of days the
estimated disclosure date precedes the CVE publication date. For approximately 8% of CVEs,
we did not extract an earlier external reference date, resulting in no improvement for disclosure
estimation. However, the median difference is nearly a month (27 days). At the extreme, we
witness differences on the order of years. These correspond to vulnerabilities that are assigned
CVE IDs and publicly disclosed, but are not published to the NVD until much later. For example,
CVE-2013-4119 is a vulnerability in FreeRDP that was first discussed on an OpenWall mailing list
in July, 2013 and assigned a CVE ID. However, its NVD entry was not published until October,
2016, resulting in a large discrepancy between the CVE publication date and the true disclosure
date. Thus, our method provides us with significantly improved disclosure date estimates.

3.2.6 Limitations
Vulnerability databases (VDBs) can provide rich sources of data for analysis of security issues and
fixes. However, we must bear in mind a number of considerations when using them:

1. Vulnerability Granularity: By relying on the NVD, we can only assess vulnerabilities at
CVE ID granularity. While CVE IDs are widely used, alternative metrics exist for determin-
ing what qualifies as a distinct vulnerability [52].
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2. Completeness: No VDB is complete, as they all draw from a limited set of sources. How-
ever, by using a VDB as expansive as the NVD, we aim for our analysis to provide mean-
ingful and generalizable insights into vulnerabilities and security fixes.

3. Quality: The NVD data is manually curated and verified when a vulnerability is assigned
a CVE ID, which ideally improves the data quality. However, given the sheer number of
vulnerabilities reported, the NVD may contain errors. Throughout our analysis, we aim to
identify and investigate anomalous data as part of our methodology for reducing the impact
of faulty information.

4. Source Bias: A VDB may be biased towards certain vulnerabilities or types of software, de-
pending on their vulnerability data sources. Given the extensive range of software considered
by the NVD, we anticipate that our findings will remain largely applicable to open-source
software.

5. Reporting Bias: Security researchers may exhibit bias in what security issues they investi-
gate and report, potentially affecting a VDB’s set of vulnerabilities. For example, researchers
may focus more on publishing high-severity issues, rather than low impact, hard-to-exploit
vulnerabilities. Additionally, researchers may favor investigating certain vulnerability types,
such as SQL injections or buffer overflows. As a result, we can find raw vulnerability counts
ineffective for comparing trends in the security status of software, and we avoid drawing
conclusions from such analysis.

In addition to the above considerations, our data collection methodology introduces bias to-
wards open-source software projects, particularly those using Git for versioning. Thus, our find-
ings might not directly apply to other software systems, such as closed-source ones. However, our
dataset does provide a diverse sample of 682 software projects.

Finally, our methodology and analyses do rely on some approximations. With a diverse dataset
of different types of vulnerabilities across numerous projects, we argue that approximations will
often prove necessary, as more accurate metrics would require perhaps intractable levels of manual
effort. For example, evaluating a vulnerability’s life span requires understanding the context about
the vulnerability type and the code logic. An automated approach, if feasible, likely still requires
developing a different method for each vulnerability class, and perhaps each type of project. Prior
case studies [103, 107, 156] that considered vulnerability life spans relied on manual identification
of vulnerability introduction, limiting their scope of investigation. When we do use approxima-
tions, we use conservative methods that provide upper/lower bounds in order to still obtain mean-
ingful insights. However, we acknowledge that these bounds may not fully reflect observed effects
or properties.

3.3 Data Characterization
In this section, we explore the characteristics of the selected CVEs and the collected Git software
repositories.
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Figure 3.3: Timeline of CVEs with collected security fixes, grouped by publication month.

3.3.1 Vulnerability Publication Timeline
In total, we collected 4,080 security fixes for 3,094 CVEs (implying multiple security fixes for
some CVEs, an aspect we explore further in Section 3.4.1.3). The earliest CVE with a collected
security patch was published on August 4, 2005, and the most recent on December 20, 2016. In
Figure 3.3, we plot the timeline of these CVEs, bucketed by the publication month. We observe
that our CVE dataset spans this 11 year period, although it exhibits skew towards more recent
vulnerabilities. Note that, as discussed in Section 3.2.6, these raw counts do not imply that our
studied software projects have become more vulnerable over time. Rather the increase may reflect
other factors such as additional reporting by security researchers.

3.3.2 Affected Software Products
The NVD also enumerates software products affected by a particular vulnerability for all CVEs in
our dataset. We observe a long tail of 856 distinct products, with the top 10 listed in Table 3.2.
The number of products affected exceeds the number of software projects we collected because
a CVE vulnerability in one project can affect multiple products that depend on it. Similarly we
note that many of the top affected products are Linux distributions, as a vulnerability that affects
one distribution frequently occurs in others. This bias in our CVE dataset towards Linux-related
vulnerabilities informs us of the importance of per-repository analysis, in addition to aggregate
analysis over all CVEs. Such analysis equally weighs the influence of each software project on
any computed metrics.
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Top Products # CVEs

1. Linux Kernel 917
2. Ubuntu 211
3. FFmpeg 187
4. Debian 170
5. Wireshark 146
6. openSUSE 134
7. PHP 125
8. Android 121
9. Fedora 105
10. QEMU 77

Table 3.2: The top 10 software products by the number of associated CVE IDs.

3.3.3 Vulnerability Severity
The NVD quantifies the severity of vulnerabilities using a standardized method called CVSS (ver-
sion 2) [72,189]. While the CVSS standard is imperfect [138], it provides one of the few principled
ways to characterize vulnerability risk and potential impact. We use this score as is, however ac-
knowledging the difficulties in objectively assessing vulnerability severity.

All CVEs in our dataset are assigned CVSS severity scores, ranging from 0 to 10. In Figure 3.4,
we depict the distribution of CVSS severity scores for these vulnerabilities, rounded to the nearest
integer. These scores reflect the severity of the vulnerability, with 0 to 3.9 deemed low severity, 4.0
to 7.9 labeled medium, and 8.0 to 10.0 regarded as highly severe. We observe that the NVD data
consists of vulnerabilities ranging across all severity scores. However, there is a substantial skew
towards medium and high scores, which may be the visible effect of security researchers favoring
reports of higher-value vulnerabilities (related to the limitations outlined in Section 3.2.6).

3.3.4 Vulnerability Categories
The Common Weakness Enumeration (CWE) is a standard for identifying the class of software
weaknesses that resulted in a particular security issue [134]. The final NVD annotation we con-
sider is the vulnerability’s CWE identifiers, indicating the vulnerability categories. A CWE ID is
assigned for 87% of CVEs in our dataset. In total, there are 45 unique CWE IDs associated with
our vulnerabilities. Table 3.3 enumerates the most common software weaknesses, including fre-
quent security problems such as buffer overflows and cross-site scripting errors. However, again
we observe that our vulnerabilities span a wide variety of security issues.

3.3.5 Vulnerability Distribution over Repositories
Our selected CVE vulnerabilities were unevenly distributed over 682 Git projects, as visible in
Figure 3.5. Our dataset contains one vulnerability for the majority of projects, and a heavy skew
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Figure 3.4: Distribution of CVSS severity scores, which are on a scale of 0 to 10, rounded to the
nearest integer.

CWE ID Weakness Summary Num. CVEs

1. 119 Buffer Overflow 539
2. 20 Improper Input Validation 390
3. 264 Access Control Error 318
4. 79 Cross-Site Scripting 273
5. 200 Information Disclosure 228
6. 189 Numeric Error 221
7. 399 Resource Management Error 219
8. 362 Race Condition 72
9. 89 SQL Injection 61
10. 310 Cryptographic Issues 42

Table 3.3: Top 10 CWE software weaknesses by the number of CVEs.

towards a smaller set of projects (e.g., the Linux kernel has over 900 CVE-related commits). Due
to this skew, our analysis must consider per-repository averages, in addition to aggregates.

Figure 3.5 also illustrates the total number of commits in repository logs. We see that our
repositories have varying levels of development, ranging from 3 commits for the “Authoring
HTML” Drupal module to over 100,000 commits for projects such as the Linux kernel, Libre-
Office, MySQL server, and the PHP interpreter.
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Figure 3.5: CDFs of the number of CVE commits and all commits for our collected Git reposito-
ries.

3.3.6 Repository Size
We can characterize a repository’s size by the number of files it has, or the number of lines in those
files. In Figure 3.6, we plot the CDFs of these metrics, for both the original repositories and their
cleaned versions (as described in Section 3.2.4). Our selected projects vary widely in their sizes
along both metrics. We find small projects affected by vulnerabilities, such as the SQL injection
bug (CVE-2013-3524) in phpVMS’s “PopUpNews” module, consisting of 4 PHP files with 103
lines of code. On the other extreme, the Linux kernel contains 20 million lines of code across
44,000 files.

3.4 Analysis Results
Our collected dataset consists of a diverse set of security vulnerabilities across numerous software
projects, for which we have downloaded the source code repositories and amassed a set of both se-
curity and non-security bug fixes. The combination of the meta-data about patched vulnerabilities
and the direct visibility into the corresponding source codes (as well as their history of changes)
affords us with a unique perspective on the development life cycle of security fixes, as well as on
the characteristics of the security patches themselves (in comparison to non-security bug fixes). In
this section, we discuss our corresponding analysis and findings.

When exploring differences between two groups, we determine the statistical significance of
our observations using permutation tests with 1,000 rounds. For each group we use a summary
statistic of the area under the CDF curve for the investigated metric. In each round of a permutation
test, we randomly reassign group labels to all data points (such that group sizes remain constant),
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Figure 3.6: CDFs of the number of files and file lines in our collected repositories and their cleaned
versions.

recompute the summary statistic for each group, and determine if the summary statistic difference
between the newly formed groups exceeds that of the original groups. If the null hypothesis holds
true and no significant difference exists between the groups, then the random permutation will
only reflect stochastic fluctuations in the summary statistic difference. We assess the empirical
probability distribution of this measure after the permutation rounds, allowing us to determine the
probability (and significance) of our observed differences. We compute all of the reported p-values
via this approach, and using a significance threshold of α = 0.05.

3.4.1 Patch Development Life Cycle
From a software project’s perspective, a vulnerability advances through several events throughout
its life, such as its introduction into the code base, its discovery and the subsequent patch devel-
opment, the public disclosure of the security issue, and the distribution of the fix. Prior studies
have analyzed the vulnerability life cycle from a public perspective [74,141,175], observing when
a vulnerability became disclosed to the public and when the corresponding patch was publicly dis-
tributed. However, these works have not delved into the project developer side of the remediation
process and the life cycle of the patch development itself. Such an exploration can help illuminate
the responsiveness of developers to patching vulnerabilities, how long fixes are available before
they are actually distributed publicly, and how successfully developers resolve security issues.
Here, we investigate the patch development process by connecting the vulnerability information
available in the NVD with the historical logs available in Git repositories.
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3.4.1.1 Vulnerability Life Spans in Code Bases

Upon a vulnerability’s first discovery, we might naturally ask how long it plagued a code base
before a developer rectified the issue. We call this duration the vulnerability’s code base life span—
a notion distinct from the vulnerability’s window of exposure as investigated in prior work [74,
175], which measures the time from the first release of a vulnerable software version to the public
distribution of its patch. As the development and distribution of a patch often occur at different
times (a factor we explore in Section 3.4.1.2), the code base life span reflects the window of
opportunity for attackers who silently discover a vulnerability to leverage it offensively, before any
defensive measures are taken.

Reliably determining when a vulnerability was born in an automated fashion is difficult, as it
requires semantic understanding of the source code and the nature of the vulnerability. However,
we can approximate a lower bound on age by determining when the source code affected by a
security fix was previously last modified. We note that this heuristic does assume that security fixes
modify the same lines that contained insecure code, which may not always be the case. However,
we assessed whether this is a robust approximation by randomly sampling 25 security patches. We
observed that only 1 did not touch an originally insecure code region, enabling us to conclude that
the vast majority of security fixes do modify the culprit code regions.

We analyzed the cleaned versions of security commit data to focus on source code changes.
For all lines of code deleted or modified by a security commit, we used Git’s “blame” functionality
to retrieve the last time each line was previously updated (the blame date).4 We conservatively
designate the most recent blame date across all lines as the estimated date of vulnerability intro-
duction. Then, the duration between this date and the commit date provides a lower bound on the
vulnerability’s code base life span.

How long do vulnerabilities live in code bases? Figure 3.7 illustrates the distribution of the
lower bound estimates for vulnerability life spans. We plot the distribution for the aggregate of all
CVEs, conservatively using the shortest life span for CVEs with multiple commits. To consider
potential bias introduced by the uneven distribution of CVEs across repositories (discussed in Sec-
tion 3.3.5), we also group commits by their repositories and plot the distributions of the minimum,
median, and maximum life span per repository. The aggregate CVE distribution largely follows
that of the per-repository median, although it exhibits skew towards longer life spans.

We observe that vulnerabilities exist in code bases for extensive durations. Looking at per-
repository medians, we see that 50% had life spans exceeding 438 days (14.4 months). Further-
more, a quarter of repository medians and a third of all CVEs had life spans beyond three years.
The longest surviving vulnerability was CVE-2015-8629 in the Kerberos 5 project, patched in
January, 2016. The information disclosure vulnerability was first introduced over 21 years ago.

We observe that 6.5% of our CVEs had a life span lower bound of less than 10 days. Manual
inspection identified these as cases where our lower bound was overly conservative, as the vulner-

4 Note that we cannot similarly process newly added lines, as they did not exist prior to the commit. We ignore
the 22.8% of commits with only additions.
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Figure 3.7: CDFs of CVE vulnerability life spans, for all CVEs and when grouped by software
repositories.

ability was introduced at an earlier date. Recent commits happened to touch the same area of code
involved in the security fix, resulting in our under-approximation.

Our results concur with prior findings that vulnerabilities live for years, generalized across nu-
merous types of software. Manual evaluation of Ubuntu kernel vulnerabilities [103, 107] found
that the average vulnerability’s code base life span was approximately 5 years. Similarly, Ozment
and Schechter [156] manually analyzed vulnerabilities in OpenBSD, finding the median vulnera-
bility lifetime exceeded 2.6 years, although they noted that OpenBSD emphasizes secure coding
practices. We observe that our typical life span estimates are lower than these previous ones, which
may be due to our consideration of software projects beyond Linux variants, or our conservative
approximation method.

Do more severe vulnerabilities have shorter lives? One might hypothesize that more severe
vulnerabilities reside in code bases for shorter periods, as their more visible impact may correlate
with more likely discovery and quicker remediation. To explore this aspect, we correlate CVSS
severity scores with life spans, computing a Spearman’s correlation coefficient of ρ = −0.062.
This indicates that there is no substantial (monotonic) correlation between a vulnerability’s severity
and its life span. Even if developers are more motivated to remedy severe vulnerabilities, their
expediency pales in comparison to the time scale of the initial vulnerability discovery, which our
analysis shows is uncorrelated with severity. We note this generalizes an observation that Ubuntu
vulnerability life spans likewise did not correlate with severity [107].

Do different types of vulnerabilities have varying life spans? Different classes of vulnera-
bilities may exhibit varying life spans, as some vulnerabilities might prove more challenging to
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Weakness Summary Median Life Span

1. SQL Injection 230.0
2. Cross-Site Scripting 290.0
3. Improper Input Validation 350.0
4. Access Control Error 373.0
5. Cryptographic Issues 456.0
6. Resource Management Error 480.0
7. Information Disclosure 516.5
8. Race Condition 573.0
9. Numeric Error 659.5
10. Buffer Overflow 781.0

Table 3.4: Median vulnerability life span in days for the top 10 software weakness categories, as
classified by CWE.

uncover. In Table 3.4, we summarize the vulnerability life spans for CVEs exhibiting the top 10
software weaknesses as classified by CWE (as discussed in Section 3.3.4). We observe that vulner-
ability life spans vary widely based on the software weakness class. Web-oriented vulnerabilities
like SQL injection and cross-site scripting have significantly shorter life spans compared to er-
rors in software logic and memory management. In comparison, race conditions, numeric errors,
and buffer overflows remain undiscovered for two to three times as long. (Balancing across soft-
ware repositories did not change the findings.) We conjecture that the life span variation across
different vulnerability types results from both the type of software affected and the nature of the
vulnerability. For example, web-oriented issues may appear on websites visited by thousands of
users, increasing the likelihood that some problematic scenario arises that uncovers the vulnera-
bility. Also, certain vulnerabilities such as cross-site scripting and SQL injection may be isolated
to a small portion of code where reasoning about and identifying issues is more straightforward
(compared to other problems such as race conditions).

3.4.1.2 Security Fix Timeliness

The timeliness of a security fix relative to the vulnerability’s public disclosure affects the remedia-
tion process and the potential impact of the security issue. On the one hand, developers who learn
of insecurities in their code base through unanticipated public announcements have to quickly react
before the attackers leverage the information for exploitation. On the other hand, developers who
learn of a security bug through private channels can address the issue before public disclosure, but
the available patch may not be released for some time due to a project’s release cycle, expanding
the vulnerability’s window of exposure.

We explore this facet of remediation by comparing the patch commit date for CVEs in our
dataset with public disclosure dates (estimated as described in Section 3.2.5). We note that disclo-
sures are not necessarily intertwined with patch releases, although this is the case for the majority
of disclosures [74]. In Figure 3.8, we depict the CDFs of the number of days between disclosure
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Figure 3.8: CDFs of the number of days between a vulnerability’s public disclosure and its fix,
plotted for all CVEs and grouped by software repositories.

and patching. We plot this for all CVEs, using the earliest patch commit date if a CVE has multiple
commits associated with it. We additionally group CVEs by their software repositories, and plot
the distribution across repositories. Here, we observe that the aggregate distribution over all CVEs
largely matches the distribution over per-repository medians, although the per-repository medians
exhibit a slight skew towards smaller absolute values.

How frequently are vulnerabilities unpatched when disclosed? In Figure 3.8, vulnerabilities
publicly disclosed but not yet fixed manifest as positive time difference values. This occurred for
21.2% of all CVEs. We cannot determine whether these vulnerabilities were privately reported to
project developers but with no prior action taken, or disclosed without any prior notice. However,
over a quarter (26.4%) of these unpatched security issues remained unaddressed 30 days after
disclosure, leaving a window wide open for attacker exploitation. This generalizes the observation
made by Frei [73], who found that approximately 30% of Windows vulnerabilities were unpatched
at disclosure and some remained so for over 180 days.

How frequently are vulnerabilities fixed by disclosure time? The predominant behavior in
Figure 3.8, occurring for 78.8% of all CVEs, is that the security fixes were committed by public
disclosure time, manifesting as negative or zero time differences. This suggests that the majority
of vulnerabilities were either internally discovered or disclosed to project developers using private
channels, the expected best practice.

Are vulnerability patches publicly visible long before disclosure? From Figure 3.8, we see
that nearly 70% of patches were committed before disclosure (having negative time difference val-
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Figure 3.9: CDFs of the number of days after public disclosure until a CVE has a patch committed,
grouped by the CVE severity class.

ues). The degree to which security commits precede disclosures varies widely, which upon manual
inspection appears to arise due to the different release cycles followed by various projects (and
variations within each project’s development timeline). This behavior highlights the security im-
pact of an interesting aspect of the open-source ecosystem. Open-source projects are not frequently
in a position to actively distribute security updates. Rather, we observe that projects roll security
fixes into periodic version releases that users must directly download and install, or updates are
pulled downstream for incorporation by software distribution platforms (such as package reposi-
tories maintained by Linux OS variants). Announcements about the releases or updates, and the
security fixes they contain, follow shortly after.

Unfortunately, this development and deployment process also provides a window of opportu-
nity for exploitation. Given the public nature of open-source projects and their development, an
attacker targeting a specific software project can feasibly track security patches and the vulnera-
bilities they address. While the vulnerability is addressed in the project repository, it is unlikely to
be widely fixed in the wild before public disclosures and upgrade distribution. From Figure 3.8,
we note that over 50% of CVEs were patched more than a week before public disclosure, giving
attackers ample time to develop and deploy exploits.

Are higher severity vulnerabilities patched quicker? All vulnerabilities are not equal, as they
vary in exploitation complexity and requirements, as well as security impact. One might expect
these factors to affect the patch development process, as developers may prioritize fixing certain
vulnerabilities over others. To explore whether a vulnerability’s severity (scored using CVSS)
affects patch timeliness behavior, we cluster CVEs by their severity categories (low, medium, and
high). We find that severity significantly affects whether a fix is developed before or after public
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disclosure. 88.1% of high severity CVEs were patched prior to public announcements, compared
to 78.2% of medium severity bugs and 58.8% of low severity issues. These differences indicate
that project developers prioritize higher impact vulnerabilities when determining if and when to
address them.

While one might also expect earlier disclosures for more severe vulnerabilities, we observe no
significant differences (p > 0.12) across severity categories when investigating the time by which a
patch precedes disclosure (for vulnerabilities fixed by disclosure time). This fits with the common
model used by many open-source projects of rolling security patches (of all severity levels) into
recurrent releases and announcements. When exploring the time after disclosure until patching
(for vulnerabilities unpatched at disclosure), we find that highly severe vulnerabilities get patched
more quickly, as shown in Figure 3.9. This difference is significant (p < 0.013), indicating project
developers respond quicker to more serious disclosed-yet-unpatched vulnerabilities.

3.4.1.3 Patch Reliability

The patch a developer creates to address a vulnerability may unfortunately disrupt existing code
functionality or introduce new errors. Beyond the direct problems that arise from such patches, end
user trust in generally applying patches (or in the software itself) can erode, as we will examine
from discussions with system administrators in Chapter 4. To assess how successful developers
are at producing reliable and safe security fixes, we attempted to identify instances of multiple
commits for the same CVE, and classify the causes.

How frequently are security patches broken (e.g., incomplete or regressive)? In total, 11.5%
of CVEs had multiple associated commits for a single repository in the NVD data. However, if an
initial patch introduced an error or was incomplete, the NVD entry might not have been updated
with the follow-on fix. After the NVD entry is published, NVD analysts are unlikely to continue
tracking a CVE unless new updates are reported to them. Thus, we attempted to identify further
commits that may be associated with a CVE using repository Git logs.

For each security patch commit and its commit hash H, we searched the repository’s Git log for
any other commits that had a commit message including the CVE ID or the 7-character prefix of
the commit hash. We considered this prefix as it is used as the Git short version of the commit hash,
and matches any longer hash prefixes. This method finds related commits which were not distinct
patches, such as merge, rebase, and cherry-pick commits. To filter these, we ignored commits with
diffs identical to an earlier one, and commits with multiple parents (e.g., merges). Note that we
could only identify multiple patches when commit messages contained this explicit linkage, so our
analysis provides a lower bound.

Using this approach, we identified a total of 682 CVEs with multiple commits, 22.0% of all
CVEs. Not all multi-commit fixes are necessarily problematic though, as project developers may
split a fix into multiple commits that they push to the repository in close succession. We observed
that 242 CVEs had all fixes committed within 24 hours. Given the limited time window for poten-
tial newly introduced problems, we designate these as piecewise fixes and non-problematic.
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CVE Commits
Label #. CVEs Median Num.

Follow-On Commits
Median Fix

Inter-Arrival Time

Incomplete 26 (52%) 1.0 181.5 Days
Regressive 17 (34%) 1.0 33.0 Days
Benign 14 (28%) 1.5 118.5 Days

Table 3.5: Summary of our manual investigation into 50 randomly sampled CVEs with multiple
commits. Note that a CVE may have commits in multiple categories. Follow-on commits include
all commits associated with the original patch.

We randomly sampled 50 of the remaining 440 CVEs and manually investigated if the fixes
were problematic. Table 3.5 summarizes our results. We identified 26 (52%) as incomplete, where
the initial fix did not fully patch the vulnerability, requiring a later patch to complete the job. We la-
beled 17 (34%) as regressive, as they introduced new errors that required a later commit to address.
The overlap included 4 CVEs (8%) with both incomplete and regressive patches. Other follow-on
fixes were benign, such as commits for added documentation, testing, or code cleanup/refactor-
ing. 11 CVEs (22%) had only these benign additional commits (although 3 other CVEs had both
benign and problematic commits). Note that our random sample was not biased towards any par-
ticular project, as it spanned 42 repositories.

Extrapolating from the random sample to the remaining 440 CVEs with non-piecewise multi-
ple commits (accounting for 14.2% of all CVEs), we estimate that about 7% of all security fixes
may be incomplete, and about 5% regressive. These findings indicate that broken patches occur
unfortunately frequently, and applying security patches comes with non-negligible risks. In addi-
tion, these numbers have a skew towards underestimation: we may not have identified all existing
problematic patches, and recent patches in our dataset might not have had enough time yet to
manifest as ultimately requiring multiple commits.

We note that our observed frequency of failed security fixes is similar to or lower than that
observed by prior studies on general bug fixes. Gu et al. [92] observed that 9% of bug fixes were
bad across three Java projects while Yin et al. [207] found that between 15%–25% of general bug
patches for several Linux variants were problematic. As our detection of problematic security
fixes skews towards underestimation, it is undetermined whether security fixes are more or less
risky than other bug fixes. However, it is clear that security patches do suffer failures similarly to
non-security bug fixes.

How long do problematic patches remain unresolved? As shown in Table 3.5, for both in-
complete and regressive patches in our sample, we find the median number of additional patches
required to rectify the original broken patches to be only one commit. The typical incomplete fix
takes half a year to remedy, and patches problematic enough to require reverting typically take a
month to repair. Thus, problematic security patches can remain unresolved for extensive durations
of time.
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Figure 3.10: CDFs of the total number of line changes, for all security and non-security bug fixes,
and the median of security commits grouped by repository.

3.4.2 Patch Characteristics
While numerous works have investigated general software patches [158, 176, 178, 212], few have
considered what distinguishes security patches from other non-security bug fixes. Intuitively, the
software conditions resulting, for example, in buffer overflow and SQL injection vulnerabilities can
differ greatly from those that produce performance and concurrency bugs. Thus, the characteristics
of their fixes may likewise prove different. Indeed, Zama et al. [208] conducted a case study on
security and performance fixes for Mozilla Firefox, observing differences in the remediation for the
two bug types. These characteristics are important to understand as they may reflect our ability to
expeditiously generate patches, verify their safety, or assess their impact on applications. Here, we
compare our collection of security and non-security bug fixes to help illuminate their differences,
considering facets such as the complexity of fixes and the locality of changes.

3.4.2.1 Non-Source Code Changes

Do security and non-security bug fixes always modify source code? Given the nature of bug
fixes, one might expect them to universally involve source code changes. We explore this hy-
pothesis by contrasting our commit data with their cleaned versions (source code comments and
non-source code files removed). We find that the hypothesis does not hold: a non-trivial fraction
of commits involved no code changes. For non-security bug fixes, 6.1% involved erroneous con-
figurations, build scripts with broken dependencies or settings, incorrect documentation, and other
non-source code changes.

More surprising, we find that 1.3% of security fixes also did not touch source code. In some
cases, the commit added a patch file to the repository without applying the patch to the code
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base. However, numerous CVE vulnerabilities do not reside in the source code. For example,
CVE-2016-7420 was assigned to the Crypto++ Library for not documenting the security-related
compile-time requirements, such that default production builds may suffer information disclosure
vulnerabilities. Similarly, the fix for CVE-2016-3693 involved changing a project library depen-
dency to a new version, as the inclusion of the older versions allowed attackers to access sensitive
system information.

Thus, bug fixes are not exclusively associated with source code modifications, although this
is significantly more likely with non-security bug fixes than with security patches. For further
analysis on commit characteristics, we focus on the cleaned versions, excluding the commits that
did not modify code.

3.4.2.2 Patch Complexity

How complex are security patches compared to other non-security bug fixes? We can assess soft-
ware complexity using various metrics, although some, such as cyclomatic complexity [127],
require deep analysis of a code base. Given the number and diversity of software projects we
consider, we chose lines of code (LOC) as a simple-albeit-rudimentary metric, as done in prior
studies [97, 140, 176, 208].

Are security patches smaller than non-security bug fixes? In Figure 3.10, we plot the CDFs
of the total LOC changed in cleaned commit diffs, for all security and non-security patches, as
well as the median security fix per repository. This conservative metric sums the LOC deleted or
modified in the pre-commit code with those modified or added post commit, providing an upper
bound on the degree of change. We see that compared to per-repository medians, the aggregate of
security commits skews towards fewer total LOC changed. Under this metric, security commits
overall are statistically significantly less complex and smaller than non-security bug patches (p ≈
0). The median security commit diff involved 7 LOC compared to 16 LOC for non-security bug
fixes. Approximately 20% of non-security patches had diffs with over 100 lines changed, while
this occurred in only 6% of security commits. When considering per-repository medians, our
conclusions differ only slightly, in that non-security bug fixes have a slightly larger portion of very
small commits with diffs less than 9 LOC, but are typically larger.

Do security patches make fewer “logical” changes than non-security bug fixes? As an alter-
native to our raw LOC metric, we can group consecutive lines changed by a commit as a single
“logical” change. Under this definition, several lines updated are considered a single logical up-
date, and a chunk of deleted code counts as a single logical delete. We depict the CDFs of the
number of logical actions per commit in Figure 3.11, although we omit a plot for logical updates
as it closely resembles that of all logical changes. In all cases, we observe that per-repository me-
dians skew less towards very small numbers of logical actions compared to security commits in
aggregate. Across all logical actions, we observe that security commits involve significantly fewer
changes (all p < 0.01). Nearly 78% of security commits did not delete any code, compared to 66%
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Figure 3.11: CDFs of the number of logical changes introduced by a commit, for all security and
non-security bug fixes, and for the median amongst security commits grouped by repository. We
omit a plot for logical updates, which looks very similar to that for all logical changes because
logical updates predominate. Note the varying minimum y-axis values.

of non-security bug-fix commits. Between 30% to 40% of all commits also did not add any code,
indicating the majority of logical changes were updates.

Do security patches change code base sizes less than non-security bug fixes? Another metric
for a patch’s complexity is its impact on the code base size. The net number of lines changed
by a commit reflects the growth or decline in the associated code base’s size. In Figure 3.12,
we plot the CDFs of these size changes. We observe that significantly more non-security bug
patches result in a net reduction in project LOC, compared to security fixes: 18% of non-security
bug fixes reduced code base sizes compared to 9% of security patches. For all commits, ap-
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Figure 3.12: CDFs of the net number of line changes, for all security and non-security patches,
and the median of security commits grouped by repository.

proximately a quarter resulted in no net change in project LOC, which commonly occurs when
lines are only updated. Overall, projects are more likely to grow in size with commits, as the
majority of all commits added to the code base. However, security commits tend to contribute
less growth compared to non-security bug fixes, an observation that accords with our earlier results.

These findings support the notion that security fixes are generally less complex than other bug
fixes. We note that this generalizes the same conclusion drawn for Mozilla Firefox by Zama et
al. [208].

3.4.2.3 Commit Locality

Finally, we can quantify the impact of a patch by its locality. We consider two metrics: the number
of files affected and the number of functions affected.

Do security patches affect fewer source code files than non-security bug fixes? Figure 3.13
illustrates the CDFs of the number of files touched by fixes. From this, we see that security patches
modify fewer files compared to non-security bug fixes, a statistically significant observation (p ≈
0). In aggregate, 70% of security patches affected one file, while 55% of non-security bug patches
were equivalently localized. Fixes typically updated, rather than created or deleted, files. Only 4%
of security fixes created new files (vs. 13% of non-security bug fixes), and only 0.5% of security
patches deleted a file (vs. 4% of non-security bug fixes).
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Figure 3.13: CDFs of the number of files affected, for all security and non-security bug fixes, and
the median of security fixes grouped by repository.

Do security patches affect fewer functions than non-security bug fixes? To pinpoint the
functions altered by patches, we used the ctags utility [11] to identify the start of functions in our
source code. We determined the end of each function under the scoping rules of the corresponding
programming language, and mapped line changes in our commit diffs to the functions they
transformed. Figure 3.14 shows the CDFs of the number of functions affected by patches. We
find that 5% of non-security bug fixes affected only global code outside of function boundaries,
compared to 1% of security patches. Overall, we observe a similar trend as with the number of
affected files. Security patches are significantly (p ≈ 0) more localized across functions: 59% of
security changes resided in a single function, compared to 42% of other bug fixes.

In summary, our metrics indicate that security fixes are more localized in their changes than
other bug fixes.

3.5 Discussion
In this chapter, we have conducted a large-scale empirical analysis of security patches across over
650 projects. Here we discuss the main takeaways, highlighting the primary results developed and
their implications for the security community moving forward.

Need for more extensive or effective code testing and auditing processes for open-source
projects: Our results show that vulnerabilities live for years and their patches are sometimes
problematic. Using a lower bound estimation method, our exploration of vulnerability life spans
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Figure 3.14: CDFs of the number of functions modified, for all security and non-security bug
patches, and the median of security fixes grouped by repository.

revealed that over a third of all security issues were first introduced more than 3 years prior to reme-
diation. The issues do not cease once a patch is created; almost 5% of security patches negatively
impacted the software, and over 7% did not completely remedy the security hole.

These findings indicate that the software development and testing process, at least for open-
source projects, is not adequate at quickly detecting and properly addressing security issues. There
are several important implications due to these shortcomings. An attacker who discovers a zero-
day vulnerability can retain its viability with reasonable confidence for on the order of years.
While large-scale exploitation of a zero-day may result in its detection and subsequent remediation,
targeted attacks may persist unnoticed. Similarly, a subtle backdoor inserted into a code base
will also likely survive for a prolonged period, with only commit code reviews (if performed) as
the final barrier. The not infrequent occurrences of broken security patches also have negative
implications on user patching behavior. Applying a patch has often been viewed as risky, and
negative experiences with problematic updates (particularly regressive ones) can drive users away
from remedying security bugs in a timely fashion (as we will see regarding system administrator
updating in Chapter 4).

A natural avenue for future work is to develop more effective testing processes, particularly
considering usability, as developers are unlikely to leverage methods that prove difficult to deploy
or challenging to interpret. One example of such research is VCCFinder [160], a code analysis tool
that assists with finding vulnerability-introducing commits in open-source projects. In addition,
software developers can already make strides in improving their testing processes by using existing
tools more extensively. For example, sanitizers such as ASan [78], TSan [78] and UBSan [27]
help detect various errors that may result in security bugs. Fuzzers (such as AFL [2]) also assist in
identifying inputs that trigger potentially exploitable issues.
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The transparency of open-source projects makes them ripe for such testing not only by the
developers, but by external researchers and auditors as well. Community-driven initiatives, such
as those supported by the Core Infrastructure Initiative [10], have already demonstrated that they
can significantly improve the security of open-source software. For example, the Open Crypto
Audit Project [20] audited the popular encryption software TrueCrypt, while Google’s OSS-Fuzz
program [85] offers continuous fuzzing of critical open-source infrastructure for free, already dis-
covering and reporting hundreds of bugs. Further support of such efforts, and more engagement
between various project contributors and external researchers, can help better secure the open-
source ecosystem.

Need for refined bug reporting and public disclosure processes for open-source projects:
Our analysis of the timeliness of security fixes revealed that they are poorly timed with vulner-
ability public disclosures. Over 20% of CVEs were unpatched when they were first announced,
perhaps sometimes to the surprise of project developers. While we observed that these were more
likely to be low-severity vulnerabilities, many were still medium- and high-severity bugs, unfixed
for days to weeks post-disclosure. This gap provides attackers with the knowledge and time to
strike.

In the opposite direction, we discovered that when security issues are reported (or discovered)
privately and fixed, the remedy is not immediately distributed and divulged, likely due to soft-
ware release cycles. Over a third of fixed vulnerabilities were not publicly disclosed for more
than a month. While operating in silence may help limit to a small degree the dissemination of
information about the vulnerability, it also forestalls informing affected parties and spurring them
to remediate. Given the transparency of open-source projects, attackers may be able to leverage
this behavior by tracking the security commits of target software projects (perhaps by training a
classifier or keying in on common security-related terms in commit messages). From the public
visibility into these commits, attackers can identify and weaponize the underlying vulnerabilities.

However, the open-source nature of projects need not be a liability when patching vulnerabil-
ities. Transparent bug reporting instructions, containing the proper point of contact, the required
diagnostic information, the expected remediation timeline, and potential incentives (such as bug
bounties or “hall of fame” status), can expedite the vulnerability reporting process. Fixes for
vulnerabilities can also be disclosed in better coordination with public disclosures. For exam-
ple, the Internet Systems Consortium (ISC), maintainer of the open-source DNS software BIND
and DHCP implementations, has established explicit disclosure policies that embargo publicly re-
vealing security patches until near public disclosure time [18]. Instead, ISC customers, OEMs,
operating system maintainers, and other vendors who re-package ISC open-source software are
privately notified about vulnerabilities and their patches prior to public disclosure. A controlled
disclosure process informs some of the most heavily affected parties before public disclosure, pro-
viding adequate time to prepare properly, while reducing the leakage of vulnerability information
pre-disclosure. Additionally, Internet-scale outreach efforts to notify end-systems affected by a
vulnerability could spur expedient remediation. We explore this topic in Part II of this dissertation.
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Opportunities for leveraging characteristics of security patches: Our comparison of security
patches with non-security bug fixes revealed that security fixes have a smaller impact on code
bases, along various metrics. They involve fewer lines of code, fewer logical changes, and are
more localized in their changes. This has implications along various patch analysis dimensions.

Tying back to broken patches, the lower complexity of security patches can perhaps be lever-
aged for safety analysis customized for evaluating just security fixes. Also, as these remedies
involve fewer changes, automatic patching systems may operate more successfully if targeting se-
curity bugs. Zhong and Su [212] observed that general patches are frequently too complex or too
delocalized to be amenable to automatic generation. However, security patches may be small and
localized enough. From a usability angle, we may additionally be able to better inform end users of
the potential impact of a security update, given its smaller and more localized changes. The need
for more exploration into the verification and automated generation of security patches is quite
salient as our ability to respond to security concerns has remained relatively unchanged, while the
attack landscape has grown ever more dangerous.

3.6 Conclusion
In this chapter, we conducted a large-scale empirical study of security patches, evaluating over
4,000 security fixes across a diverse set of 682 software projects. The investigation centered around
a dataset we collected that merges vulnerability entries from the NVD, information scraped from
relevant external references, affected source code repositories, and their associated security fixes.
Using these disparate data sources, we analyzed facets of the patch development life cycle. In
addition, we extensively characterized the security patches themselves, contrasting them with non-
security bug fixes.

Our findings have revealed shortcomings in our ability to quickly identify vulnerabilities and
reliably address them. Additionally, we have observed that the timing of public disclosure does not
closely align with the date a patch is applied to the code base, providing windows of opportunity
for attacker exploitation. Our characterization of security fixes shows they are less complex and
more localized than other non-security bug fixes, perhaps making them more amenable to soft-
ware analysis and automatic repair techniques. By leveraging these insights, we hope the security
community can progress in improving the remediation process for security vulnerabilities.
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Chapter 4

Examining How System Administrators
Manage Software Updates

4.1 Introduction
System administrators serve as “keepers of the machines,” entrusted by organizations to oversee
their computers, many of which are vital to an organization’s operations. Their duties include
regularly applying software updates in a timely manner to ensure organizational safety against
crippling attacks. Failure to patch known vulnerabilities can lead to devastating consequences [53]
such as the colossal 2017 Equifax data breach which exposed sensitive personal data on over
140 million individuals [146].

While prior studies have investigated how end users deal with software updates [69, 71, 101,
123–125, 141, 150, 193, 194, 200, 201], there has been less attention on system administrators,
whose technical sophistication and unique responsibilities distinguish them from end users. Indus-
try reports and guides on administrator patching exist (e.g., Sysadmin 101 [166]), but these lack
peer-review and transparent, rigorous methods. Prior academic work on system administrators is
often dated and focuses on aspects of administrator operations other than updating (e.g., on general
tools used [38]) or specific technical (rather than user) updating aspects. Given the critical role that
system administrators play in protecting an organization’s machines, it behooves us to better un-
derstand how they manage updates and identify avenues for improved update processes. Therefore,
in this chapter, we set out to answer two primary research questions: (1) what processes do system
administrators follow for managing updates, and (2) how do administrator actions impact how ef-
fectively they perform system updates. To answer these questions, we surveyed 102 administrators
and conducted semi-structured interviews with 17 of them. Note that here we study administrator
software updating in general, beyond just focusing on security-related updates. We do so because
many software updates bundle security patches with other changes, and administrators may not
explicitly distinguish between different update types.

Our study determined that system administrators proceed through software updates through
five main stages: (1) learning about updates from information sources, (2) deciding to update
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based on update characteristics, (3) preparing for update installation, (4) deploying an update, and
finally (5) handling post-deployment update issues that may arise. By analyzing the factors that
system administrators consider and the actions that they perform, we identified challenges that they
encounter and limitations of existing procedures at each stage of the updating process. We observed
problems with comprehensively obtaining relevant information about available updates, effectively
testing and deploying updates in a timely fashion, and recovering from update-induced errors.
We also witnessed how organizational and management influences, such as through policies and
decisions, can impact the administrator’s ability to handle updates effectively at multiple stages,
sometimes for better, sometimes for worse. In addition, we note that while high-level aspects
of software update workflows for system administrators mirror those of end users [124, 194], we
found that the particular factors considered and the actions taken by system administrators are
significantly different across all stages of the update process. This difference highlights the value
of specifically studying the administrator population.

Our evidence-based study extends the research literature on updating practices to system ad-
ministrators, a unique population. In particular, our work makes two primary contributions: first,
we provide empirical grounding on how administrators update multiple machines for their orga-
nizations, examining the consequences of their actions at depths beyond prior explorations [55].
This evidence includes insights into how their actions impact how effectively they perform soft-
ware updates to better secure their systems. Second, we make data-driven recommendations for
improving administrator update processes through better systems for managing updates, better de-
signed updates, and a shift in organizational policies.

The study in this chapter appeared at the USENIX Symposium on Usable Privacy and Security
(SOUPS) [115], receiving the Distinguished Paper Award.

4.2 Method
To investigate how system administrators manage updates at scale, we conducted a qualitative
study of current administrators responsible for managing updates in their organizations. We stud-
ied administrator software updating in general, beyond only considering security-related updates,
as many software updates bundle security patches with other changes, and administrators might
not differentiate between different update types. Our study proceeded in two phases. In phase
one, we administered a large-scale survey of administrator updating practices, whose design was
informed by pilot interviews. In phase two, we conducted semi-structured interviews with ad-
ministrators. We specifically sought participants who had been working at an organization with
five employees or more for a period of at least one year, to ensure they had job familiarity. We
restricted participation to those over 18 years old residing in the United States (US). Both study
phases received Institutional Review Board (IRB) approval. Our survey and interview questions
are listed in Appendix A.
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4.2.1 Preliminary Phase: Pilot Interviews
In Fall 2015-Spring 2016, to inform the design of our large-scale study, we recruited seven system
administrators to participate in semi-structured pilot interviews about software updates. The inter-
view questions were developed based on prior studies on software updating [124,194] and previous
knowledge about the software update development and management process (see Appendix A.1
for details). We recruited participants via institutional mailing lists and social media, filtering for
those who explicitly dealt with software updates. All interviews were conducted over the phone via
Skype and recorded. The interviews lasted between 30-50 minutes. Participants were also asked
to fill out a background survey that contained general questions about demographics, the type of
software or programming languages used, the types of updates they handled, and any positive and
negative aspects of their job responsibilities. Participants were compensated with $20 gift cards
and a chance to win a hard drive.

Demographics: All seven participants were male and lived in the US. They were predomi-
nantly 20–40 years of age and only one participant did not have a bachelor’s degree. The majority
of participants had 1–10 years of work experience as a system administrator.

Analysis: We transcribed all pilot interviews and three coders used inductive thematic analy-
sis [174] to derive the following over-arching themes in administrator update management: finding
information about available software updates, testing and preparing for updates, deploying updates,
and monitoring for update-triggered issues post-deployment. We used these themes to design ques-
tions for our study’s two phases.

4.2.2 Phase One: Survey
Based on the pilot interviews, we constructed a survey asking about a participant’s organization
and responsibilities (e.g., size of organization, number of machines managed), how they manage
the security of their systems, how they handle each stage of the update management process, and
what works well and poorly for them (see Appendix A.2 for details). The survey consisted of 41
questions and took approximately 15 minutes to complete. We recruited system administrators
in September and October of 2017 using social media, blogs associated with our research labs,
and Reddit [22]. In addition, we recruited administrators attending the 2017 Large Installation
System Administration Conference (LISA) by distributing fliers about our survey and providing a
computer at the venue where administrators could complete the survey. As an incentive, we entered
administrators who participated into a drawing for a Samsung S8 phone. In total, 102 system
administrators completed the entire survey. We note that we recruited 22/102 survey participants
at the LISA conference and the rest from online.

Data Analysis Method: The survey consisted of multiple-choice and open-ended questions.
We focused our analysis on questions pertaining to software updating, as our survey also contained
several less relevant questions on other security practices. We analyzed open-ended questions using
open coding, identifying themes in the question responses [202]. Two researchers independently
developed a set of codes across all questions and met to converge on a final codebook. Then,
each researcher independently coded all question responses using that codebook. We had 199



CHAPTER 4. EXAMINING HOW SYSTEM ADMINISTRATORS MANAGE SOFTWARE
UPDATES 44

codes with 611 coded segments in total, discussing themes of interest such as “Testing”, “Update
Issues”, “Addressing Update Issues”, “What Works Well”, and “What is Challenging”. We use
Kupper-Hafner inter-rater agreement scores [111] to quantify the consistency of the coding, finding
an average agreement of 0.83, indicative of largely consistent coding. The survey coders met and
converged upon the final codes for all open-ended question responses.

4.2.3 Phase Two: Semi-Structured Interviews
Using the themes identified by our pilot interviews, we developed a guide for conducting semi-
structured interviews with system administrators. The guide contained questions about a partici-
pant’s demographics and job, and their update management process (see Appendix A.3 for details).
Throughout Fall 2017, we recruited 17 interview subjects through the same channels as with the
survey. All but one of our subjects participated in the survey as well. Interviews ranged from 1
to 3 hours long, were conducted in person or over Skype, and were recorded. We compensated
participants with a $20 Amazon gift card.

Data Analysis Method: Using transcriptions of the recorded interviews, we developed a code-
book for the responses through regular peer review meetings, based on the themes of interest for
the interviews such as “Job Responsibilities”, “Update Importance”, and the various update stages,
including “Seeking Update Information”, “Deployment”, “Testing”, and “Update Issues”. The
codes were initially created by one team member and refined by group discussions and consen-
sus [202]. Two coders independently coded the interview responses using the resulting codebook
using inductive thematic analysis [174]. We had 347 codes with 1447 coded segments in total.
Calculating inter-rater reliability for such qualitative coding of non-survey data has been shown
to be difficult because of the nature of assigning multiple codes to data and inherent biases of
coders [36]. For completeness, however, we randomly sampled 6/17 transcripts and computed an
average agreement percentage between the two independent coders of 0.77, indicating high con-
sistency. We discussed points of disagreement and ensured that the resulting themes discussed in
this chapter were in line with both team members’ interpretations of the data.

4.2.4 Participant Demographics
Here we present the demographics of the 102 survey respondents and 17 interview subjects.

4.2.4.1 Respondent Characteristics

The population was male-dominated; only 6/102 survey and 2/17 interview subjects were female.
The most common age bracket was 26-35 years old, containing 43/102 survey participants and 8/17
interview subjects. Other common age brackets were 36-45 years old (24 survey and 4 interview
participants), and 46-55 years old (14 survey and 2 interview subjects). Most administrators had
some higher education; 57/102 survey and 10/17 interview participants had a bachelor’s degree
while 37 survey and 5 interview participants had some college education but no degree. Salaries
varied widely, evenly distributed primarily between $35,000 to $150,000 (accounting for 93/102
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survey and 14/17 interview participants). Survey respondents had a median of 11 years of experi-
ence, ranging from 1 to 35 years. In contrast, interview subjects had a lower median experience of
6 years, although the range was similar (1-34 years).

4.2.4.2 Organization Characteristics

About half of our study participants (56/102 in the surveys and 8/17 from the interviews) worked
at larger organizations with over 500 employees. In comparison, only 13/102 survey and 2/17
interview participants worked for small organizations with fewer than 50 employees. In total,
22 survey respondents did not indicate the number of hosts they managed (all interview subjects
did provide a response). However, the remaining typically oversaw many machines: only 12/102
survey and 3/17 interview participants maintained fewer than 100 hosts, while 36 survey and 8
interview subjects indicated they administered between 100-499 machines and 22 survey and 5
interview participants said they handled over 1000 machines. Servers were the most common type
of machine managed, handled by 96/102 survey respondents. Over half of the administrators also
dealt with desktops (63), routers (60), and laptops (57). Our participants maintained primarily
Linux (73) and Windows (71) machines, and less so Macs (44).

4.2.5 Limitations
Studying system administrators is challenging as they are a specialized population that is difficult
to recruit compared to end users. Thus, our study’s approach may have limitations.

1. As administrators are often paid well, our study’s participation compensation may not have
influenced their decisions to contribute. Instead, those more ideologically motivated may
have donated their time.

2. Due to our recruitment method, our study participants may not be representative of system
administrators in general. For example, we only studied individuals from the US, so our
findings may not apply globally. Similarly, we only recruited administrators fully employed
by an organization, which does not capture those working part-time or as contractors.

3. Our results reflect our study’s sample, which skewed towards certain demographics (e.g.,
males). Similarly, we recruited many of our participants via Reddit and the LISA confer-
ence. These subpopulations may exhibit certain skewed characteristics. For example, those
attending the LISA conference may operate with a larger budget (covering conference ex-
penses).

4. Our surveys and interviews contained open-ended questions. During our analysis, we pro-
vide the number of study subjects who gave a particular response to these open-ended ques-
tions (and indicate when results are obtained from such questions). However, we caution that
such counts are not necessarily reliable indicators of real-world prevalence. In particular, we
cannot assume a respondent does not act a certain way just because they do not mention such
behavior, as they may have simply focused on alternative discussion topics.

5. Our study is an exploratory one that focuses on the processes system administrators use to
manage software updates. However, we did not investigate all updating aspects in depth. For
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example, we did not explicitly solicit recommendations from our study participants on how
to improve updating tools and methods, nor did we tease apart the differences in updating
between different types of updates, organizations, or machines. Moving forward, our study
can help inform the design of broader quantitative explorations of these updating dimensions
at scale.

4.3 Overview of Findings
From the responses to our system administrator surveys and interviews on general software updat-
ing, we determined that administrator update workflows consisted of five primary stages. These
five stages, as illustrated in Figure 4.1, are: (1) learning about updates from information sources,
(2) deciding to update based on update characteristics, (3) preparing for update installation, (4) de-
ploying the update, and finally (5) handling post-deployment update issues that may arise. For each
stage, our analysis determined the factors that system administrators considered and the actions
that they conducted (also listed in Figure 4.1). This data affords us insights into the challenges that
administrators encountered when updating and limitations of existing procedures. In Section 4.10,
we discuss recommendations for improving administrator update processes grounded in our find-
ings. We also compare how update workflows differ for system administrators versus end users in
Section 4.10.1, identifying significant differences.

In the following sections on update stages, we explore how system administrators proceed
through each stage and the security implications of their behaviors. Throughout the results, we
designate quotes from survey respondents with S and interview participants with P.

4.4 Stage 1: Learning About Updates
In both our surveys and interviews, participants reported that—before deploying software
updates—they first had to learn about available updates and then make decisions about which
updates to handle. We note that while automatically initiated updates circumvent the need to find
and digest information, many of our study participants did not find them universally suitable. Thus,
for our participants, it was still important to process update information efficiently. Note that in
Part II of this dissertation, we will explore ways to improve security information dissemination at
an Internet scale.

4.4.1 Update Processes
We asked our study participants about how they discovered the updates they applied. In our survey,
we asked a closed-ended question with 11 possible options and a free-form response (as shown in
Table 4.1), while our interview question was open-ended. In total, 99/102 survey participants
and all 17 interview subjects responded. The types of information sources discussed by interview
subjects overlapped with our survey question options, but we note that the distributions among
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Stages of the
Sys Admin Update Process

1. Learning About Updates

- React to update notifications
- Proactive search for new updates
- No awareness when updates automatically initiated 

2. Deciding to Update

- Applicable to managed machines
- Benefits outweigh risks
- Update type and severity
- Update reliability
- Organization policies/compliance

3. Preparing for Update Installation

- Make backups/snapshots
- Prepare machines (e.g., configs, dependencies)
- Testing

4. Deploying Updates

- Time update to avoid disruptions
- Coordinate with internal organization members
- Receive organization approval
- Manual or automatically initiated 
- Automation used for deploying to multiple machines

5. Handling Post-Deployment Issues

- Monitor/log system statuses
- Gather user feedback
- Decision by organization policy/management
- Uninstall update
- Revert to prior software version
- Rollback to snapshot/backup
- Find workaround/troubleshoot

Figure 4.1: Our study identified five primary stages of the update process for system administrators.
We list the salient considerations for each stage.
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Table 4.1: Sources used for discovering available updates.

Source for Update Availability # Survey Responses # Interview Responses

1. Security advisories 80 (78%) 4 (24%)
2. Direct vendor notifications 72 (71%) 11 (65%)
3. Professional mailing lists 54 (53%) 7 (41%)
4. Online forums 53 (52%) 7 (41%)
5. Alerts from software 41 (40%) 10 (59%)
6. News 40 (39%) 5 (29%)
7. Blogs 39 (38%) 5 (29%)
8. Third-party services 28 (28%) 0 ( 0%)
9. RSS feeds 22 (22%) 3 (18%)
10. Project mailing lists 21 (21%) 0 ( 0%)
11. Social media 18 (18%) 1 ( 6%)
12. Other 9 ( 9%) 3 (18%)
13. No Answer 3 ( 3%) 0 ( 0%)

survey and interview participants differed, likely due to the open-ended nature of the interview
question.

As shown in Table 4.1, our participants relied on various types of information sources. Most
survey respondents reported a median of 5 different types of sources, and a quarter reported using
seven or more types. (We do not report the same counts for interview data given that open-ended
responses are not necessarily comprehensive nor indicative of prevalence, as discussed in Sec-
tion 4.2.5.) This large quantity of source types suggests that update information is highly dispersed,
requiring administrators to diligently peruse a variety of outlets to stay informed on available up-
dates. Some interview participants described sourcing information in this manner as non-ideal, as
typified by P5’s discussion on discovering updates that patched newly identified vulnerabilities:
“There’s not always a canonical place to go for a web advisory. When these vulnerabilities get
found on the Internet, they might affect you, it could be announced on the Apache web server mail-
ing list, it could be on the Ubuntu server list, it could be a topic on Server Fault. There’s a lot
of places.” Also, not all sources were ideal. For example, P13 stated that “sometimes if there’s a
really critical vulnerability, email’s not the most real-time method of getting things going.”

4.4.2 Impact on Updating Effectiveness
Our study participants revealed that they each relied on a diverse set of methods for retrieving
update information from multiple sources. Due to the lack of a centralized source of information,
we note that it is possible that some system administrators may lack the full coverage of relevant
information if they miss an important source. We also observed that administrators used some
sources that require active retrieval and digestion, such as news articles, blog posts, forums, and
social media. These sources may require more time and effort, compared to sources that push
information directly to the administrators, such as direct vendor notifications or mailing lists. Our
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study ultimately does not concretely reveal how comprehensive or effective administrators are at
update information retrieval, but suggests that this is a nontrivial task for many.

4.5 Stage 2: Deciding to Update
For the second stage of their updating process, administrators in our study filtered update informa-
tion to decide if they should deploy an update. This was a nontrivial task because of the profusion
of update information from a variety of sources.

4.5.1 Update Processes
In our survey, we asked respondents about which types of updates they most frequently apply.
In our interviews, we asked our participants how they determined which updates to deploy, and
which types of updates they considered important. From the responses, we observed five primary
factors that our participants discussed for assessing the cost-benefit trade-off of applying available
updates. Our interview question was open-ended, so this set of factors may not be comprehensive
or indicative of prevalence, as discussed in Section 4.2.5.

1. Update Type: In a closed-ended question, we asked our survey participants which up-
dates they regularly installed: security or non-security related updates. In total, 97/102 admin-
istrators regularly installed security updates, whereas only 63/102 administrators did likewise for
non-security related updates. (3 respondents did not answer.) We similarly asked our interview
subjects an open-ended question about their views on which updates were important or not. Most
interview participants (15/17) said that they considered security updates to be vital, but they dis-
agreed on the importance of other updates; 7 administrators considered them important, whereas
5 administrators did not, often feeling they could be disruptive. For example, in a quote that is
typical of what we heard, P16 explained: “Least important, anything that’s like feature updates or
considered upgrades. I don’t really want new features, because new features mean new problems,
so I just want to get the security stuff tucked away.” Thus, our study participants typically found
security updates important to apply.

2. Update Severity: In an open-ended interview question on how administrators decided to
apply an update, the severity of the issues addressed by an update was a factor discussed by 9/17
interview participants. In a canonical example, P13 prioritized updates to “Only critical security
ones...It mostly depends on the severity and what the risk is.”

3. Update Relevance: When discussing their process for deciding to apply an update, five
interview participants (29%) explicitly described update information overload, where much of
the information they acquired did not apply to their machines. As a result, they said that they
had to tediously filter out unnecessary information (or possibly avoid overly verbose feeds alto-
gether). For example, P6 thought that “Sometimes there’s an overabundance of information...there
are some products, things like that, that we don’t use here. So I have to actively filter that out
myself.” Others described receiving multiple emails about specific upgrades (e.g., Linux patches
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simultaneously released in batches) and how these emails were easily lost or hard to process in an
overflowing inbox.

4. Update Reliability: Three interview subjects brought up known update issues as another
factor in determining whether to update. For example, P11 cared about the update quality, saying
“a reliability score of an update would be my number one [update characteristic].”

5. Organizational Factors: In many cases, organizational or management policies and deci-
sions influenced or even dictated the update decision. We discuss in more detail in Section 4.9.

4.5.2 Impact on Updating Effectiveness
We found that system administrators prioritized updates that fixed security (or other severe) bugs.
However, many software updates bundle bug fixes with feature or performance changes, including
popular software such as the Mozilla Firefox Browser [12] and the Apache HTTP web server [5].
This entanglement suggests that it is challenging for administrators to specifically address the most
urgent software problems without contending with other potential changes. Additionally, certain
update characteristics (e.g., update reliability) were important to our study participants in deciding
whether to apply an update. However, updates may not contain information to assess such charac-
teristics (e.g., Firefox [12], Apache HTTP daemon [5]), or provide too much irrelevant information
(described by study subjects as information overload), making it challenging for administrators to
make informed updating decisions.

4.6 Stage 3: Preparing for Update Installation
After identifying appropriate updates (potentially containing security patches), our study partic-
ipants reported that they had to make preparations for installation, which fell into three over-
arching categories. First, administrators frequently made backups/snapshots in case problems
arose through the updating process. Second, they prepared machines when necessary, such as by
changing configurations or dependencies. These actions were often necessary due to the manual
nature of many updates. Finally, they often extensively tested updates for unintended side-effects
or bugs. Here, we focus on the testing considerations of administrators as we cover the other two
considerations in the remaining sections.

Threat of Bad Updates: We asked our survey and interview participants to describe their
experiences with problems caused by updates on the machines they managed. In a closed-ended
survey question, we asked how frequently an administrator encountered a problematic update. Of
the 98/102 survey respondents that answered, all but 2 said that they had encountered bad updates;
54 indicated this happened infrequently, 36 found problems every few update cycles, and 6 said
most update cycles produced complications. When asked an open-ended question on whether they
tested updates and why, our interview subjects expressed the same sentiments on update risk; 8/17
recounted running into a recent faulty update. While the participants’ recollections may not have
been entirely accurate, it reflected a general sentiment among them that updating comes with non-
trivial risks that they should manage. Furthermore, we found in Chapter 3 that the development of
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security patches is often unreliable in reality, producing faulty fixes. Sliwerski et. al. [176] found
similar results for bug fixes in general. Thus, administrator concerns are justified. In the worst case,
the negative experiences drove administrators towards fewer updates: “I stopped applying updates
because it was becoming more of a problem to apply them than not to. Production machines, they
don’t get updates” (P12). Such behavior can leave hosts riddled with security vulnerabilities and
ripe for compromise. To combat the risks of bad updates, many of our study participants engaged
in the time-consuming process of update testing.

4.6.1 Update Processes
Both our surveys and interviews contained an open-ended question asking respondents about what
testing they do for updates, if any, and why. The majority of our participants (83/102 survey re-
spondents and all 17 interview subjects) indicated they tested updates. (Seven survey participants
did not respond.) Among those who tested, 22 survey participants and 3 interview subjects dis-
cussed only ad hoc testing methods (e.g., testing basic software functionality) without discussing
any strategies in detail. For the remaining administrators, we found that testing strategies varied
but fell into two general classes: staggered deployments and dedicated testing setups. Regardless
of the chosen strategy, testing was often a pain point for administrators: in open-ended survey
questions on what works well and poorly in an administrator’s updating process, only 14/102 sur-
vey respondents recounted positive testing experiences, and 12 reported that developing a reliable
testing workflow was the most difficult aspect of updating. Thus, many of our study participants
found it challenging to develop a dependable testing process.

1. Staggered deployments. When staggering update deployment (as illustrated in Figure 4.2),
administrators in our study described separating their machines into multiple groups, deploying
updates to a group at a time, and waiting some time between each stage of deployment to observe
if update issues arise. In an example that summarizes this approach, S72 said that they first “install
on non-important machines and let them bake for 1+ months.” This strategy, which merges update
testing and deployment, was the most commonly used among our study participants, leveraged by
43/102 of the survey respondents and 11/17 of the interview subjects.

We identified three different ways that participants used to grouped machines in each stage.
First, 22 survey respondents and 4 interview subjects categorized machines into priority levels,
testing updates first on lower priority machines. A second approach (10 survey respondents and
2 interview subjects) was to test first on the machines of end users who opted into assisting with
update testing. For example, P10 talked about deploying updates to volunteers for a week prior to
company-wide rollout, a strategy many spoke of using because: “They’re very good at reporting
things that have gone wrong.” A final less-frequently used strategy was to pick pilot groups at
random, only discussed by one survey participant and two interview subjects. While P11 selected
machines completely at random, independent of the user, P5 chose randomly with more nuance:
“Usually, it’s randomly picking something that I know is active but not the most active machine
out there. If I pick something that nobody’s using for anything, then, that’s not a good place to test
it. But, it’s also not one of our highest risk servers.”
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An Organization’s Machines

Stage 1 
(e.g., Admin 
Machines)

Stage 2
(e.g., Developer
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Machines)

Figure 4.2: Staggered Deployment Testing: The system administrator allocates machines into
stage groups, and updates stage by stage, waiting between each stage for update issues to manifest.
If they arise, the administrator halts deployment and investigates the issues. For example, an
administrator at a software company might first group only machines that they use as the first stage,
then group developer machines as a second stage, and form a final stage of production machines.

Our survey participants typically did not indicate how they monitored for update problems
during staggered deployment, although four respondents mentioned gathering user feedback from
those who piloted updates. Interview participants told us that they monitored how well updates
were applied through monitoring software (6/17), lack of error messages (6/17), checking the
machines for compliance (2/17), and user feedback (1/17).

2. Dedicated testing environments. Our survey participants often mentioned a dedicated
testing setup, where they used machines provisioned specifically for testing (30/102 survey re-
spondents) or relied on a testing or quality assurance (QA) team (9/102). (Five survey respondents
used both approaches.) Figure 4.3 illustrates this process. Among interview participants, 8/17 used
dedicated test servers, with two also having a QA team. S29 captured the gist of this approach: “We
test in a lab/test environment that has similar functions as our production environment. We do this
to ensure we get accurate and reliable results that won’t break our end users’ applications.” Sim-
ilarly, S19 gave an example of how QA teams conducted testing: “For some third-party software
(issue tracking, artifact management, etc.), our QA department has scripts to exercise business-
critical functionality.” We note that 16 survey respondents and 5 interview subjects with dedicated
testing also used staggered deployment, suggesting that often participants felt that dedicated testing
was not sufficient by itself.

Most of our study participants did not elaborate on the specific evaluation done in dedicated
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An Organization’s Machines

Testing Stage
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Figure 4.3: Dedicated Testing Environments: The system administrator evaluates an update in
an environment configured specifically for testing (e.g., test servers). If they do not discover update
issues, they fully deploy the update (potentially via staggered deployment).

testing setups, although some mentioned automated software testing and manual investigation to
confirm that critical software functionality remained. We note that no more than three survey or
interview participants explicitly mentioned any particular method though, so further exploration
on dedicated testing details is warranted.

4. No testing at all. A minority of survey respondents (10/102) did not test updates at all, and
an additional two respondents indicated that they skipped testing on some of their systems as it
was infeasible, without discussing testing on other systems. No interview subjects avoided testing.
Three of the survey respondents who skipped testing did not provide their reasons. However,
two survey respondents indicated they lacked the time, and three others deemed updates in their
environment to be low-risk enough to deploy without testing. For example, S43 acknowledged,
“It is a poor habit but I don’t ever experience any issues with Microsoft updates, so I see no
reason to wait before applying them.” In another instance, a survey respondent skipped updates
because testing on a diverse set of hosts seemed impractical, stating that with “Too many different
environments, would need to test a dozen different ways before deployment” (S34). The final test-
less respondent S37 stated that they skipped testing because “security patches are a requirement,
if it breaks something it gets fixed downstream.”
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4.6.2 Impact on Updating Effectiveness
Those participants who used the staggered deployment testing strategy avoided the need for dedi-
cated testing resources (although some used both strategies). However, we note that an important
downside of staggered deployment for participants was that it could significantly delay updates to
hosts in later stages. Some study participants indicated this delay could be on the order of weeks
or months. Notably, administrators often spoke of updating production machines last, which is
particularly concerning as these servers often directly interacted with external entities and hence,
potential attackers.

Some of our administrators preferred dedicated testing environments for evaluating updates
in a low-risk setting. However, we note this strategy requires additional computing resources or
employees specifically for testing. In addition, we heard from participants about the challenges in
replicating nuances of real-world deployments in testing environments. Ultimately, update testing
was a challenging endeavor for most of the administrators in our study, driving some to even bypass
testing.

4.7 Stage 4: Deploying Updates
Our study participants had to develop methods for deploying updates across the many machines
under their purview.

4.7.1 Update Processes
Specifically, our study participants had to determine how to deploy updates and when to do it.

1. How to Deploy? In a closed-ended survey question, we asked survey participants whether
they deployed updates manually, wrote their own programs or scripts to deploy updates, used third-
party update management software, enabled automatic updates, or deployed in an alternate fashion
(with a free-form response). Based on the 99/102 survey respondents who answered, we observed
that administrators often lacked a single unified system for deploying updates. While 34 survey
participants used a single method, the rest used multiple, with a median of 2 methods. We asked
interview subjects an open-ended question on how they install updates, and interview participants
also reported a mixture of deployment methods.

A majority of survey respondents used third-party update managers1 (64/102), as did 12/17 of
the interview subjects. P14 described their use of the update management software Ansible [4],
explaining “with Ansible you would just specify a list or subsection of a list of machines to run a
particular command or update and it would run all of those in parallel on each of the machines and
return the status of the request.” Some interview participants felt these tools could be improved to
take snapshots of their systems and better indicate missing updates for specific machines.

1Tools mentioned included Ansible [4], SCCM [129], Chef [9], Spiceworks [23], Puppet [21], Terraform [26],
and WSUS [130].
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Almost half of our participants (50/102 survey respondents and 7/17 interview subjects) created
custom scripts or programs to automate the deployment process, while 44/102 survey participants
and 2/17 interviewees enabled automatic updates for some software packages. Manual updates
were still frequent though, conducted by 40/102 survey respondents and 4/17 interview subjects.
One consequence of the heavy use of scripting and manual actions was the issue of legacy systems
and processes. For example, P7 illustrated one scenario, saying “If there’s a legacy system in place
and Jeff the sysadmin is the only dude who even knows how to run the scripts for that, or whatever
service is running on there, you know, God forbid Jeff gets hit by a bus.”

On Automation: In response to open-ended survey questions on what aspects of an adminis-
trator’s update management process work well and which are challenging, many study participants
spoke of the importance of automation in the update deployment process. In a representative
quote, S62 explained: “Automating the process is essential for any environment with more than
10 endpoints as it greatly reduced the time involved and also improves the frequency of patch ap-
plication.” S19 agreed in their response to the same survey question, stating “There is no way
our small team could manage this many machines without [automation].” However, implementing
automation often required significant effort. P15 stated they did not initially automate due to “just
the amount of time it would take to implement all the automation.” This participant did later deploy
automation, stating it took them “three months, to get it right.”

Even with the benefits of automation, our survey participants also highlighted that many situ-
ations still required manual actions, some in preparation for update installation (as mentioned in
Section 4.6). For example, S14 sometimes still performed manual updates because “Major OS
updates require more manual intervention, such as updating custom scripts, updating or rewriting
configuration files, or updating third-party tools.” In the interviews, some subjects mentioned that
automation was not always desirable since update issues could arise unexpectedly.

Dependency and compatibility concerns posed particular problems for automation. In a pro-
totypical example, S62 struggled with “Maintaining compatibility with software that depends on
platforms like Java/.Net/etc. Vendors tend to lag behind the platform by at least 1-2 release cycles
preventing us from updating to the latest version.” Additionally, host heterogeneity (e.g., different
software versions) complicated update deployment as illustrated by the following typifying exam-
ple: S86 found deploying updates difficult when “pushing to multiple versions of Linux with only
one tool.”

Thus, while automatic updates and deployment automation was helpful and important for our
study participants, they often could not fully automate updates across their machines due to some
of the above reasons.

2. When to Deploy? In open-ended interview questions on how administrators deployed
updates and whether they had to notify anyone about the update, our interview subjects frequently
discussed the need to minimize disruptions for users and updated machines. (Our survey did not
contain equivalent questions.) One strategy for mitigating disruptions (used by 13/17 interview
subjects) was to update along a predictable schedule, such as P10’s weekly patching program, so
that users were not caught off-guard by the update timing. Another strategy mentioned by 12/17
interview participants was to update during off-hours. We also observed that organization and
management decisions could dictate when updates occurred (described in Section 4.9).
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In many cases, communication and coordination with those affected by an update were vital.
This sentiment is best exhibited by P10’s (who followed a weekly update schedule) discussion of
their coordination efforts: “On a given week, your machine might get software and it might reboot.
We have a communication program that goes along with that, that we send out to the units about
what’s happening this week.” In a contrasting but similar example of coordination, P5 told us that
they based update timing on user preferences: “You send out an email to people and see what time
works best for them. Usually, they can identify a time that is going to be idle for them or lower use
than regular.”

4.7.2 Impact on Updating Effectiveness
Challenges in implementing automation for update deployment forced many of our participants
to perform manual updates. In addition, administrators in our study often eschewed automatic
updates so they could make proper preparations. We note that these manual actions could result in
slower update rollouts leaving machines exposed to bugs and vulnerabilities for a longer duration.
Also, manual updates may require further effort and be more prone to human error, potentially
resulting in misconfigurations or functionality regressions. For our participants, the need to time
updates in coordination with organization members or policies further widened the vulnerability
window for machines.

4.8 Stage 5: Handling Update Issues After Deployment
Unfortunately, update testing did not always prevent issues from arising post-deployment. As
found in Chapter 3 and by Sliwerski et. al. [176], a non-trivial fraction of security and general
bug fixes are indeed problematic. We asked our survey participants an open-ended question on
how they became aware of problems caused by installed updates. In total, 56/102 survey partici-
pants found out about some update issues through user or client complaints, while 21 discovered
problems through monitoring updated hosts. We further asked both our survey and interview par-
ticipants open-ended questions about how they handled these post-deployment problems.

4.8.1 Update Processes
Of the 93/102 survey respondents that answered, only 3 indicated they lacked a process for man-
aging post-deployments issues. From the interviews, 11/17 subjects reported recently running into
post-deployment problems.

For the administrators that did deal with update complications, the most common approach
was to uninstall an update. In total, 48/102 survey participants used this strategy, with 6 mention-
ing that they did so with custom scripts and 20 using third-party software or an update manager
to do so (the rest did not specify). Similarly, 6/17 interviewees mentioned having to uninstall
updates to resolve update problems. Another common approach was to revert to a previous snap-
shot or backup of the software or system. This strategy, used by 35/102 survey respondents and
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7/17 interview subjects, did require proactive steps in preparation for update installation (namely,
making a backup), as mentioned in Section 4.6. In an example of the forethought required of ad-
ministrators, S5 discussed their backup strategy: “I take an image of the entire disk once a month
for non-critical machines and daily for critical machines.” Other rollback strategies mentioned
less frequently during the surveys and interviews included downgrading to an earlier version of
the software (possibly undoing several update cycles), manually negating an update’s changes, or
reverting to a mirrored/parallel environment.

The prior strategies all involve returning to a pre-update state, which can leave machines with-
out patches for new vulnerabilities. Some administrators preferred to keep the updates in place,
with 15/102 survey participants and 1/17 interviewees saying they attempted to find workarounds
for problematic updates. Of these, 4 survey participants said they never roll back, focusing on
keeping updates in place while managing any issues. Also, 7/102 of our survey participants relied
on vendor assistance in resolving update issues.

4.8.2 Impact on Updating Effectiveness
After deploying an update, if problems arose, our study participants tended to revert to a functional
but insecure prior state, demonstrating that they prioritized functionality over security. This behav-
ior also suggests that system administrators found it difficult to identify workarounds or fixes for
update problems, whether by themselves or via the software vendors.

4.9 Across Stages: Organization and Management Influence
A significant theme that emerged from our study participants was the important role that an orga-
nization’s internal policies and management could play in update decisions. This theme provides
new evidence extending the work by Dietrich et al. [58], who also observed that organizational
factors impacted how administrators handled system misconfigurations.

We briefly note that we explored whether organizational structure, such as the number of em-
ployees or machines managed, affected our participant’s update management practices, particularly
related to different testing and deployment strategies. To do so, we compared the distributions of
the organization size and the number of machines managed between those adopting different up-
dating behaviors. We used the Mann-Whitney-Wilcoxon test [120], with a p-value threshold of
α = 0.05, to determine if the distributions statistically significantly differed. However, we did
not identify any significant differences; thus, the organizational structure did not appear strongly
correlated with any particular update process.

4.9.1 Update Processes
Across responses to various open-ended questions, our study participants discussed situations
where organizational policies and management affected updating practices.
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1. Free Rein. In some organizations, administrators had decision-making authority and could
apply updates as they saw fit. However, this put the onus on the administrator solely to keep
machines secure. P11’s company exemplified this approach: “I don’t have to run junk through a
bunch of red tape to do anything. I just do it, knowing the consequences; things could break, could
cause a lot of problems and lose a lot of money, but that’s just part of having the responsibilities of
that job I have. If I want to push out updates to all 1,800 machines, I don’t have to really answer
to anybody.”

2. Organizational Oversight. In other cases, administrators in our study told us they had to
get management buy-in before taking certain update actions. A quote from S26 characterizes this
setup, as they talked about applying updates only after management approval because “I will be
fired if I do so before I can convince management.” Similarly, in another representative example,
S70 discussed that their update promptness was often delayed because “Mostly the business being
incompetent and not approving the work to go ahead. If it was up to me, [updates would be in-
stalled] as soon as they are released and after testing.” This setup often made updating challenging
for participants. For example, S14 had to fight for maintaining Windows updates, as management
felt that those updates were not trustworthy. These disagreements between administrators and
management appeared to result in updating practices that the administrators in our study did not
always support.

In some cases, organizational policies dictated the actions of the administrators. A canonical
example from S37 illustrates the pressure on their update deployment timeline: “Policy and com-
pliance require deploying them within 5/10/30 days depending on severity.” In another example
quote, P15 explained that their organization’s requirements determined the priority of different
updates: “We have compliance implications around getting security updates out, so that’s one.
We have an organizational mandate to deliver a stable platform, so stability updates set priori-
tized as well.” With a potentially less secure outcome, P12’s organization decided to reduce the
frequency of machine updating, because “that’s just more of a decision that we’ve made as a
business that...it’s just better not to introduce a problem.”

Several study participants also commented on another important organizational decision: the
budget allocated for system administrator operations. For example, S21 said they lacked the time
for managing updates but “My company won’t let me buy anything to help with automatically
deploying.” Similarly, P16 said that they lacked the budget for obtaining good software to handle
updates until demonstrating their network’s insecurities to management.

4.9.2 Impact on Updating Effectiveness
Organizational freedom allowed some of our study participants to more effectively apply updates,
but placed the burden of security on their shoulders alone. We note that such freedom could result
in ad hoc decision making by administrators, potentially resulting in poor practices, or decisions
that could negatively impact other aspects of an organization, such as the reliability or availability
of an organization’s production systems.

By contrast, requiring management approval complicated the update process for many system
administrators and could delay or prevent the application of updates. Such barriers also drove
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down the updating frequency for those administrators who told us they can only request approval
for the most severe updates, and often, some skipped less severe updates to avoid the hassle of
getting approval.

4.10 Discussion
Our study of system administrator software updating identified how administrators perform up-
dates and the security implications of their behaviors. Future user studies on administrator software
updating could extend our work to develop a richer model of update decision-making processes,
investigate how updating differs for different types of updates, organizations, and machines, ex-
plore the effects of organizational policies on updates in more depth, and identify concrete steps
for improving updating tools and interfaces. In this section, we synthesize our findings to identify
how software updating differs between system administrators and end users, and how we can help
administrators better keep machines updated through recommendations grounded in our results.

4.10.1 Comparison with End User Software Updating Practices
Prior work on software updating behavior has primarily studied end users. From synthesizing and
comparing with the results from existing studies [71,123–125,193,194], we find that end users fol-
low similar stages of the updating process, but with differing considerations at each stage. Overall,
we observe that administrators performed more sophisticated tasks (e.g., testing) and had unique
aspects of their workflows as a result of managing numerous heterogeneous machines within an
organizational context (e.g., staggered deployment, organizational influences). For each of our five
updating stages (summarized in Figure 4.1), we highlight the salient differences between end user
and system administrator considerations.

• Stage 1 (Learning): Administrators relied on a diverse set of update information sources,
including those from proactive searching. In comparison, end users primarily learned about
updates through notifications or alerts from within their software and rarely sought updates
by themselves [124, 194].

• Stage 2 (Deciding): Like end users, administrators in our study considered the benefits and
risks of an update [71,124,125,193,194]. However, our participants had the additional facet
of determining if and which updates affected the potentially heterogeneous hosts in their
organization. Some administrators also had to abide by organization policies.

• Stage 3 (Preparing): We observed that update-induced issues concerned both our study
participants and end users [71, 123, 124, 193, 194]. As a result, end users either avoided up-
dating, updated after making backups, or dealt with update issues only after applying [194].
In comparison, administrators took more extensive preparatory steps, including backing up
and snapshotting systems, modifying software configurations and dependencies, and testing
updates before applying them.

• Stage 4 (Deploying): As administrators in our study deployed updates at scale, unlike end
users, they had to consider the interruptions and downtime on machines they served, often
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requiring coordination with other organization members or organization approval to take
actions. They also often employed automation to scale up their updating tasks.

• Stage 5 (Remedying): When updates caused issues, both populations employed similar
high-level remedies (e.g., uninstalling updates, finding workarounds) [194]. However, ad-
ministrators in our study had to contend with the challenge of identifying update issues
across numerous machines that they updated, requiring them to consider monitoring sys-
tems and feedback from these machines’ users. Additionally, as these issues could affect
organizational operations, organization factors influenced how administrators handled these
situations.

4.10.2 Reducing the Burden of Update Information Retrieval
In Section 4.4, we learned that information on software updates is widely dispersed across various
sources. Our findings suggest that helping administrators more easily identify relevant updates
for their machines would simplify their updating efforts and increase the likelihood of prompt
updating. One solution could be to standardize and consolidate update information at a centralized
repository (similar to efforts on aggregating vulnerability information [191]), providing a singular
destination for identifying available updates.

Another intriguing approach is through outreach campaigns that inform administrators about
severe vulnerabilities and promote updating to patch the security holes. This topic is explored in
Part II of this dissertation.

4.10.3 Simplifying Update Decision-Making
Our findings in Section 4.5 indicate that administrators prioritize updates with certain characteris-
tics (e.g., update severity). Standardizing update information (as has been done with vulnerabili-
ties [191]) to consistently include such characterizations would aid them in their decision-making.
In particular, administrators differentiate update types. Thus, there is value in splitting all-inclusive
updates into updates specific to one type of patch, as also recommended by prior work on end user
updates [124, 194]. For example, software vendors could bundle security patches separately from
feature patches. With this segregation, administrators can better prioritize the updates they ap-
ply (e.g., security fixes). However, we recognize that splitting updates could complicate software
development and release. Future work could therefore explore how best to separate and enable
updates of different types, from both the software developer and administrator standpoints.

4.10.4 Improving Update Deployment Processes
There remains a salient need for advancements in the update tools that system administrators rely
upon, as we observed that administrators encountered various hurdles throughout the preparation
and deployment of updates (Sections 4.6 and 4.7), and the handling of post-deployment problems
(Section 4.8). For example, the notion that automatic updates would solve the patching problem is
overly simplistic, as our findings demonstrate the complexities of the updating process (particularly
with situations still requiring manual actions, as discussed in Section 4.7).
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While technical developments are certainly needed, we also lack a deep understanding of the
usability of these tools. Therefore, the usable security community could contribute explorations
into how administrators use update tools and how their interfaces could be improved. For example,
our findings (in Section 4.7) indicate that many administrators use third-party update managers.
What information do they display before, during, and after update deployment, and what missing
information (such as on dependencies or affected configurations) would streamline administrator
workflows if provided?

One notable deployment issue our administrators faced was timing updates to avoid interrup-
tions to crucial system operations. We believe that dynamic software updating [94] (DSU), a
method that allows for live updates without restarts or downtime, could help with side-stepping
update timing concerns. While it has not yet been widely deployed, the approach is promising
as some major systems have adopted it, such as with the Linux kernel extension Ksplice [19].
However, we have little understanding so far of how using DSU systems affect developers writing
patches and administrators operating such systems. For example, the use of DSU systems can
result in complex data representations and less readable code, potentially impacting the software
development process. Similarly, DSU systems may not serve as a complete solution for system
administrators if they still require approval or coordination before initiating updates, even with-
out system downtime. Research into the usability of dynamic updating systems and avenues for
improvement could potentially eliminate update timing concerns for administrators in the future.

4.10.5 Shifting Organizational Culture on Software Updates
In Section 4.9, we identified that organization management and policies can impact administrator
actions, often impeding secure updating practices. A culture shift at organizations to recognize
the importance of expedient updates (particularly for security issues) would help administrators
perform their jobs more successfully. If end users and management do not readily accept that up-
dates should be routinely applied, it becomes difficult to balance system maintenance and security
with minimizing operational interruptions. Similarly, if organizations do not devote enough re-
sources for administrators to adequately perform update tasks or have some oversight for security
operations, security lapses can occur (e.g., Equifax [146]).

Resolutions to this problem are not straightforward. Existing recommendations such as NIST
SP 800-40 [144] provide some guidance on organizational structures that promote updating. How-
ever, investigating how administrators deal with data breaches (similar to studies on end users
facing breaches [213]) could provide insights into how to better facilitate practices that enable, not
hinder, security, beyond solely relying on organizational security education. Such studies could
also inform regulatory policies on security oversight. For instance, Equifax currently reports to 8
US states about their security overhaul [147]. The usable security community could offer insights
into whether such audits fit into administrator workflows and improve security overall, or whether
other policy approaches may better incentivize organizations to implement and prioritize security
best practices.
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4.11 Conclusion
System administrators play a vital role in securing machines on behalf of their organizations. One
of their primary tasks is to manage the updates on numerous hosts to counter emergent vulnerabil-
ities. However, prior work has paid less attention to how exactly they do so. In this chapter, we
examined how administrators manage software updates, determining five primary stages of updat-
ing and the various considerations and actions associated with each stage. We identified pain points
in administrator updating processes, such as when learning about updates, testing for and handling
update-caused issues, deploying updates without causing operation disruptions, and dealing with
organizational and management oversight. Based on our findings, we developed recommendations
grounded in our results, and provided research directions for better support of administrators in
keeping their hosts updated and secure.
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Chapter 5

Remediation Discussion and Conclusion

Progressing towards effective solutions to a problem as complex as Internet-scale security reme-
diation requires understanding how and why that problem manifests. In Part I, we focused on the
security patches that in theory should address the flood of software vulnerabilities constantly being
discovered. Our work established empirical grounding on how security patches are developed and
applied for Internet systems in practice, and the impacts on the remediation process. We started
with the creation of the patches. In Chapter 3, we developed a method to collect a large dataset
pertaining to security patches for open-source software projects, and analyzed the characteristics
of their development process as well as of the resulting fixes. However, a security patch is only
effective if applied to vulnerable systems before attacker exploitation. In Chapter 4, we turned our
attention to how system administrators applied security fixes through software updates to Internet
systems. Through a multi-part user study, we identified administrator software updating workflows
and some of the security implications of their decisions.

These studies have shed light on where we come up short when developing and applying se-
curity patches, as well as potential paths forward for the security (as well as the broader computer
science) community. Salient conclusions from Chapter 3 on patch development include:

• Approximately a fifth of CVE vulnerabilities are not patched prior to public disclosure, leav-
ing systems exposed without a complete remedy. These security issues skew towards less
severe ones potentially requiring less immediate attention, but still over 10% of high severity
CVEs were unpatched when publicly announced. Thus, in many cases, the timely creation
of a vulnerability fix is the root issue, indicating we either need advancements in software
development technologies to reduce the costs from developing patches or further resources
for open-source organizations to better address emergent security concerns.

• The majority of security fixes developed prior to disclosure appear publicly in open-source
software repositories on the order of weeks to months in advance of their announcements,
providing attackers with an opportunity to get a head start on learning of and exploiting
a vulnerability before defenders can take action. Attackers have effectively leveraged this
observation in practice [89], suggesting that perhaps open-source software projects in general



CHAPTER 5. REMEDIATION DISCUSSION AND CONCLUSION 64

should control information surrounding security issues and their fixes (as some organizations
have, such as Mozilla [137]).

• A non-trivial fraction (about 10%) of patches are either incomplete or introduce new issues,
justifying the concerns users (and system administrator) have about patch reliability. Without
improvements to the production quality of security patches, we will continue to struggle
to incentivize prompt patching, particularly with fostering the widespread use of automatic
software updates. Our observation that security patches tend to be smaller and more localized
than other types of software fixes may guide the design of mechanisms that specifically cater
to the quick development of reliable security patches.

Similarly, the insights below from systematically exploring system administrator software up-
dating practices in Chapter 4 provide some explanations for the continued vulnerability of Internet
systems in practice, and areas we must focus on in future work.

• While administrators and end users use the same software mechanisms for the actual soft-
ware update and thus share similar high-level stages of the updating process, the detailed
considerations are different between the populations. These distinctions highlight the impor-
tance of studying specialized populations. In the context of Internet systems, administrators
are particularly relevant as they manage many of the publicly accessible systems.

• Administrators struggle with an information problem when dealing with updates (much more
so than end users). They must collect and process information from a disparate set of sources,
overcoming both missing helpful information as well as information overload. As a commu-
nity, we can work towards reducing the burden of information retrieval, whether it is through
standardizing and centralizing update information, or through proactive outreach campaigns
(as explored in Part II of this dissertation).

• Fear of problematic updates (justified from our security patch analysis in Chapter 3) drove
administrators to extensively evaluate updates before complete deployment. Such efforts
were still imperfect and often resulted in significant delays in patch application, particularly
to the most critical and exposed systems (e.g., public-facing production servers). As dis-
cussed earlier with patch development, the need to drive more reliable patch production and
testing is urgent if we hope to shift updating behavior en masse.

• Existing software updating technology has limitations we must continue to work towards
removing. For example, update deployment automation was vital to many administrators,
but they often still had to perform manual actions to safely and effectively apply updates
to the heterogeneous systems under their purview. Similarly, recovering from update issues
typically involved completely undoing the update’s changes, resulting in a functional but
again insecure state.

• Software updating for administrators involved more than purely technical considerations,
including organizational and economic aspects. In particular, administrators do not operate
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in isolation, but rather engage with others in the organization, including management entities.
Improving administrator updating will require factoring in these influences.

We recognize that the work discussed so far does not itself solve security problems directly.
However, we consider the work as a vital step in the scientific process. In particular, the value
of this work is in providing systematic, evidenced-based understanding of remediation behavior
in the real world, identifying areas needing improvement, and suggesting promising and/or urgent
directions to focus on (backed by data). In Part II, we investigate some of these directions to drive
better remediation behavior. However, we aim for our results to help guide the community more
widely in advancing along other dimensions in the pursuit of a more secure Internet.

On a closing note, the two chapters of Part I are both empirical security studies, but are drasti-
cally different in their methods. Chapter 3’s analysis of security patch development involved data
mining of software repositories and patch analysis. In contrast, Chapter 4’s investigation of system
administrator software updating required user studies to assess the human aspects. The diversity of
these studies highlights the complexity of the remediation problem space. There are numerous fac-
tors at play beyond traditional computer technical considerations, including human, organizational,
and economic facets. To tackle this problem space, the solution space must similarly encompass
these various dimensions, indicating that future work must recognize, respect, and pursue progress
along these various directions.
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Part II

Promoting Remediation through
Internet-Scale Outreach
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Chapter 6

Internet Outreach Introduction
and Related Work

6.1 Introduction
A secure Internet ecosystem requires continual discovery and remediation of software vulnerabil-
ities and critical misconfigurations. Security researchers discover thousands of such issues each
year, across a myriad of platforms [191]. Once a problem is uncovered, this process proceeds
through (1) identifying remedies, (2) informing those affected about the issue and the fixes, and
(3) applying the remedies to affected systems. In Part I of this dissertation, we focused on the reme-
dies themselves and investigated the first and last phases of this process, exploring the development
of patches that remedy vulnerabilities (Chapter 3) and how system administrators apply software
updates that remedy security concerns (Chapter 4). In Part II, we turn our focus to the middle
phase of this process, where information about remedies is disseminated. Thus, we conclude with
our treatment of the complete remediation life cycle.

Today, the process for informing those affected about a security issue remains at best ad hoc.
Unlike the public health community, which has carefully studied and developed best practices for
patient notification (e.g., [45,143]), the security community lacks significant insight into the kinds
of notification procedures that produce the best outcomes.1 Instead, for most software, the modern
practice of vulnerability notification remains broadcasting messages via well-known mailing lists
or websites that administrators must periodically poll and triage (as seen by the software update
information sources used by system administrators, as discussed in Chapter 4).

Developments in high-speed scanning [66, 86] and network monitoring (e.g., [181, 206]) have
significantly advanced the ease with which investigators can today often determine the affected
parties across the Internet. Thus, the question then arises of how they should best utilize that

1An exception concerns the development of online software update systems that explicitly tie together notification
and remediation, allowing precise and automated updating targeting the affected parties. Unfortunately, the vast
majority of software lacks such systems; even for those that do, operators may disable it in a number of scenarios, as
observed in our system administrator user study in Chapter 4.
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information. In the early days of the commercial Internet, performing large-scale notifications
was often assumed to be both ineffective and impractical [54, 60, 96, 136]. However, we have
little empirical grounding on the impact of such outreach efforts, particularly in today’s Internet.
With the potential to drive better remediation behavior at an Internet-scale, it behooves the security
community to investigate if these notifications can be effective, and if so, how best to conduct
the outreach efforts. At the same time, we must balance the benefits to the ecosystem (and the
associated ethical responsibilities to notify) against the burden this imposes on the reporter, which
calls for determining notification regimens that will not prove unduly taxing.

In the studies forming Part II, we describe the first systematic investigation into this techno-
social approach at improving global remediation behavior, striving to inform and drive the develop-
ment of “best practices” for the Internet community. Across these studies, we explore a multitude
of solution dimensions, although the solution space is simply too wide to comprehensively explore
in a single dissertation. Here, we aim to develop soundly supported results for the most salient
basic issues, with an eye towards then facilitating follow-on work that builds on these findings to
further map out additional considerations.

The studies described here were conducted over multiple years, one after another. They share
many similarities and goals, as they build on top of each preceding work. Thus, we will describe
these works in chronological order. We start with the first foray into evaluating Internet-scale out-
reach (Chapter 7). At this initial point, we lacked a concrete understanding of whether security
notifications have any impact. To establish some empirical grounding, we conducted a controlled
experiment on Internet-wide notifications for the critical 2014 OpenSSL Heartbleed vulnerabil-
ity [128], observing for the first time that notifications drove a significant increase (almost 50%)
in the vulnerability’s patching rate. These results were promising but limited, as the Heartbleed
incident was an unprecedented security event. To explore outreach in other contexts, we analyzed
the efforts of Google Safe Browsing and Search Quality in reaching out to operators of compro-
mised websites (Chapter 8), and found that direct communication with webmasters increased the
likelihood of cleanup by over 50%, and reduced infection durations by more than 60%. Despite the
complexity of compromise recovery, over 75% of all notified webmasters successfully recovered
their websites. Building on these positive results, we explored how best to conduct notifications
through randomized multivariate controlled experiments with vulnerability and security misconfig-
uration notifications (Chapter 9), providing data on the efficacy of different notification practices.

6.2 Related Work
Beyond the studies in Part II, several other works have considered large-scale security notifications.
Concurrent with our study of the Heartbleed bug in Chapter 7, Kührer et al. identified over 9
million public NTP amplifiers and performed a large-scale notification campaign to reduce the
number of NTP servers with the version and monlist commands enabled [110]. They posted public
advisories about both NTP commands in collaboration with a number of security organizations,
including MITRE, CERTs, and PSIRT. As the amplification factor of NTP monlist is orders of
magnitude higher than other NTP features, they also directly notified ISPs, hosting providers, data
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clearing houses, and public NTP awareness projects with regards to NTP monlist amplifiers. After
one year, they found the number of NTP version and monlist amplifiers decreased by 33.9% and
92.4%, respectively. However, unlike our work, the study lacked a control to understand the precise
impact of notification.

Others have conducted experiments to more systematically evaluate notifications and their im-
pact, many building on top of the work described in Part II. Prior to our investigations, Vasek et al.
conducted a small-scale notification experiment involving 161 infected websites [195] and found
that after 16 days, 55% of notified sites cleaned up compared to 45% of unnotified sites. They fur-
ther note that more detailed notifications outperformed reports with minimal information by 13%,
resulting in a 62% cleanup rate.

Expanding on our work, Cetin et al. also performed a small-scale notification experiment mea-
suring the role of sender reputation when notifying the owners of hijacked websites [50]. They
emailed the WHOIS contacts of 240 infected sites from email addresses belonging to an individual
independent researcher (low reputation), a university research group (medium reputation), and an
anti-malware organization (high reputation). While nearly twice as many notified sites cleaned up
within 16 days compared to unnotified ones, they found no significant differences across the vari-
ous senders. In a follow up study, Cetin et al. [49] investigated whether providing a mechanism to
verify vulnerability could encourage further remediation, focusing on a security weakness affect-
ing DNS authoritative name servers. They set up a website that demonstrated the vulnerability, and
found that those who visited their demonstration web site were more likely to fix, but only 10%
of contacts visited. They observed high bounce rates when attempting to contact the nameserver
owners, indicating a significant fraction of their notifications did not reach anyone.

Concurrent to our study on the effectiveness of different vulnerability practices (Chap-
ter 9), Stock et al. investigated the feasibility of large-scale notifications for web vulnerabili-
ties [179, 180], experimentally evaluating the effectiveness of different communication channels,
including WHOIS email contacts and service providers. Additionally, they analyzed the reacha-
bility and viewing behavior of their messages. Their results largely accord with ours, providing
a complementary study of notifications in a separate context (namely, vulnerable websites). No-
tably, they likewise observed that notifications could induce a statistically significant increase in
patching, although the raw impact may be limited.

A couple of studies have looked at notifying service providers rather than end hosts directly, ul-
timately observing mixed success. In 2013, Canali et al. [44] studied how website hosting providers
handle malware reports. For 20 hosting providers, they hosted Web sites serving malware and self-
reported each site to the corresponding hosting provider, observing that 64% of the complaints
were ignored. Similarly, Nappa et al. [142] notified 19 hosting providers about malicious servers
in their network; however, only 7 actually took steps to take down the affected servers.

Our work described in Part II complements these works, expanding our knowledge about
Internet-scale security outreach campaigns through systematic empirical evaluations.
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Chapter 7

First Foray: The Matter of Heartbleed

7.1 Introduction
In March 2014, researchers found a catastrophic vulnerability in OpenSSL, the cryptographic li-
brary used to secure connections in popular server products including Apache and Nginx. While
OpenSSL has had several notable security issues during its 16 year history, this flaw—the Heart-
bleed vulnerability—was one of the most impactful. Heartbleed allows attackers to read sensitive
memory from vulnerable servers, potentially including cryptographic keys, login credentials, and
other private data. Exacerbating its severity, the bug is simple to understand and exploit.

In this chapter, we analyze the impact of the vulnerability and track the server operator commu-
nity’s responses. Using extensive active scanning, we assess who was vulnerable, characterizing
Heartbleed’s scope across popular HTTPS websites and the full IPv4 address space. We also survey
the range of protocols and server products affected. We estimate that 24–55% of HTTPS servers
in the Alexa Top 1 Million were initially vulnerable, including 44 of the Alexa Top 100. Two
days after disclosure, we observed that 11% of HTTPS sites in the Alexa Top 1 Million remained
vulnerable, as did 6% of all HTTPS servers in the public IPv4 address space. We find that vulner-
able hosts were not randomly distributed, with more than 50% located in only 10 ASes that do not
reflect the ASes with the most HTTPS hosts. In our scans of the IPv4 address space, we identify
over 70 models of vulnerable embedded devices and software packages. We also observe that both
SMTP+TLS and Tor were heavily affected; more than half of all Tor nodes were vulnerable in the
days following disclosure.

Our investigation of the operator community’s response finds that within the first 24 hours, all
but 5 of the Alexa Top 100 sites were patched, and within 48 hours, all of the vulnerable hosts
in the top 500 were patched. While popular sites responded quickly, we observe that patching
plateaued after about two weeks, and 3% of HTTPS sites in the Alexa Top 1 Million remained
vulnerable almost two months after disclosure.

In an attempt to drive remediation of this critical vulnerability, starting three weeks after dis-
closure, we undertook a large-scale notification effort and contacted the operators responsible for
the remaining vulnerable servers. By contacting the operators in two waves, we could conduct a
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controlled experiment and measure the impact of notification on patching. We report the effects of
our notifications, observing a surprisingly high 47% increase in patching by notified operators.

We draw upon these observations to discuss both what went well and what went poorly in the
aftermath of Heartbleed. By better understanding the lessons of this security disaster, the technical
community can respond more effectively to such events in the future.

This chapter’s work was published in the ACM Internet Measurement Conference (IMC) [65],
and was awarded Best Paper.

7.2 Background
On April 7, 2014, the OpenSSL project publicly disclosed the Heartbleed vulnerability, a bug
in their implementation of the TLS Heartbeat Extension. The vulnerability allowed attackers to
remotely dump protected memory—including data passed over the secure channel and private
cryptographic keys—from both clients and servers. In this section, we provide a brief history of
OpenSSL, the Heartbeat Extension, and details of the vulnerability and its disclosure.

7.2.1 OpenSSL: A Brief History
OpenSSL is a popular open-source cryptographic library that implements the SSL and TLS proto-
cols. It is widely used by server software to facilitate secure connections for web, email, VPN, and
messaging services. The project started in 1998 and began tracking vulnerabilities in April 2001.

Over the last 13 years, OpenSSL has documented six code execution vulnerabilities that al-
lowed attackers to compromise private server data (e.g., private cryptographic keys and messages
in memory) and execute arbitrary code. The project has faced eight information leak vulnerabili-
ties, four of which allowed attackers to retrieve plaintext, and two of which exposed private keys.
Two of the vulnerabilities arose due to protocol weaknesses; the remainder came from implemen-
tation errors.

The Heartbleed bug reflects one of the most impactful vulnerabilities during OpenSSL’s history
for several reasons: (1) it allowed attackers to retrieve private cryptographic keys and private user
data, (2) it was easy to exploit, and (3) HTTPS and other TLS services have become increasingly
popular, resulting in more affected services.

7.2.2 TLS Heartbeat Extension
The Heartbeat Extension allows either end-point of a TLS connection to detect whether its peer is
still present, and was motivated by the need for session management in Datagram TLS (DTLS).
Standard implementations of TLS do not require the extension as they can rely on TCP for equiv-
alent session management.

Peers indicate support for the extension during the initial TLS handshake. Following nego-
tiation, either end-point can send a HeartbeatRequest message to verify connectivity. The
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01 length ÂńlengthÂż bytes e7f0d31...

HeartbeatRequest

02 length ÂńlengthÂż bytes dc06848...

HeartbeatResponse

type length payload random padding

Figure 7.1: Heartbeat Protocol. Heartbeat requests include user data and random padding. The
receiving peer responds by echoing back the data in the initial request along with its own padding.

extension was introduced in February 2012 in RFC 6520 [173], added to OpenSSL on December
31, 2011, and released in OpenSSL Version 1.0.1 on March 14, 2012.

HeartbeatRequest messages consist of a one-byte type field, a two-byte payload length
field, a payload, and at least 16 bytes of random padding. Upon receipt of the request, the receiving
end-point responds with a similar HeartbeatResponse message, in which it echoes back the
HeartbeatRequest payload and its own random padding, per Figure 7.1.

7.2.3 Heartbleed Vulnerability
The OpenSSL implementation of the Heartbeat Extension contained a vulnerability that allowed
either end-point to read data following the payload message in its peer’s memory by specifying a
payload length larger than the amount of data in the HeartbeatRequest message. Because the
payload length field is two bytes, the peer responds with up to 216 bytes (~64 KB) of memory. The
bug itself is simple: the peer trusts the attacker-specified length of an attacker-controlled message.

The OpenSSL patch adds a bounds check that discards the HeartbeatRequest message
if the payload length field exceeds the length of the payload. However, while the bug is easy to
conceptualize and the fix is straight-forward, the potential impact of the bug is severe: it allows
an attacker to read private memory, potentially including information transferred over the secure
channel and cryptographic secrets [68, 161, 184].

7.2.4 Heartbleed Timeline
The Heartbleed vulnerability was originally found by Neel Mehta, a Google computer se-
curity employee, in March 2014 [91]. Upon finding the bug and patching its servers,
Google notified the core OpenSSL team on April 1. Independently, a security consult-
ing firm, Codenomicon, found the vulnerability on April 2, and reported it to National Cy-
ber Security Centre Finland (NCSC-FI). After receiving notification that two groups indepen-
dently discovered the vulnerability, the OpenSSL core team decided to release a patched ver-
sion.
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Date Event

03/21 Neel Mehta of Google discovers Heartbleed
03/21 Google patches OpenSSL on their servers
03/31 CloudFlare is privately notified and patches
04/01 Google notifies the OpenSSL core team
04/02 Codenomicon independently discovers Heartbleed
04/03 Codenomicon informs NCSC-FI
04/04 Akamai is privately notified and patches
04/05 Codenomicon purchases the heartbleed.com domain
04/06 OpenSSL notifies several Linux distributions
04/07 NCSC-FI notifies OpenSSL core team
04/07 OpenSSL releases version 1.0.1g and a security advisory
04/07 CloudFlare and Codenomicon disclose on Twitter
04/08 Al-Bassam scans the Alexa Top 10,000
04/09 University of Michigan begins scanning

Table 7.1: Timeline of Events in March and April 2014. The discovery of Heartbleed was
originally kept private by Google as part of responsible disclosure efforts. News of the bug spread
privately among inner tech circles. However, after Codenomicon independently discovered the bug
and began separate disclosure processes, the news rapidly became public [91, 153].

The public disclosure of Heartbleed started on April 7, 2014 at 17:49 UTC with the version
1.0.1g release announcement [153], followed by the public security advisory [152] released at
20:37 UTC; both announcements were sent to the OpenSSL mailing list. Several parties knew
of the vulnerability in advance, including CloudFlare, Akamai and Facebook. Red Hat, SuSE,
Debian, FreeBSD and ALT Linux were notified less than 24 hours before the public disclosure [91].
Others, such as Ubuntu, Gentoo, Chromium, Cisco, and Juniper were not aware of the bug prior to
its public release. We present a timeline of events in Table 7.1.

7.3 The Impact of Heartbleed
Heartbleed had the potential to affect any service that used OpenSSL to facilitate TLS connections,
including popular web, mail, messaging, and database servers (Table 7.2). To track its damage, we
performed regular vulnerability scans against the Alexa Top 1 Million domains [1] and against 1%
samples of the public, non-reserved IPv4 address space. We generated these samples using random
selection with removal, per ZMap’s existing randomization function [66]. We excluded hosts and
networks that previously requested removal from our daily HTTPS scans [64]. In this section, we
analyze the impact on those services—particularly HTTPS. We have publicly released all of the
data used for this analysis at https://scans.io/study/umich-heartbleed.

https://scans.io/study/umich-heartbleed
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7.3.1 Scanning Methodology
We tested for the Heartbleed bug by modifying ZMap [66] to send Heartbeat requests with no
payload nor padding, and the length field set to zero. Per the RFC [173], these requests should
be rejected. However, vulnerable versions of OpenSSL send a response containing only padding,
rather than simply drop the request. The patched version of OpenSSL—as well as other popular
libraries, including GnuTLS, NSS, Bouncy Castle, PolarSSL, CyaSSL and MatrixSSL—correctly
discard the request (or do not support the Heartbeat Extension).

We emphasize that this approach does not exploit the vulnerability or access any private
memory—only random padding is sent back by the server. While it was later found that Heartbleed
scanning caused HP Integrated Lights-Out (iLO) devices to crash [15], we received no reports of
our scans disrupting these devices—likely because our approach did not exploit the vulnerability.
We have publicly released our scanner at https://zmap.io.

7.3.2 False Negatives
Our Heartbleed scanner contained a bug that caused vulnerable sites to sometimes appear
safe due to a timeout when probing individual hosts. The root cause was that the scan-
ner labelled each host’s vulnerability as false by default, rather than null or unknown. If
a Heartbleed test timed out, the scanner returned the host’s vulnerability status as the de-
fault false, providing no indication of a failed test. The result is a potential false nega-
tive, where the scan reports the system as immune. Note that our scanner does not how-
ever err when reporting a system as vulnerable. As we develop in this section, the like-
lihood of a given scan exhibiting such as false negative fortunately does not appear to de-
pend on the particular address being scanned, and this allows us to estimate the false negative
rate.

We first assessed whether some addresses were more prone to manifest false negatives than
others. To do so, we compared three complete IPv4 scans and examined systems reported as vul-
nerable in one scan but immune in previous scans. Since the scanner does not err in reporting a host
as vulnerable, any prior report of immunity reflects a false negative (assuming no one unpatches
systems). We found the IP addresses associated with such false negatives spread evenly across the
address space, without any apparent correlations. This observation leads us to believe the false
negatives manifest in an address-independent manner.

Although our initial scanner did not fetch the web page itself, a subsequent change in the
comprehensive scan (but not the incremental scans) attempted to fetch the server’s home page. As
the home page fetch occurred after the Heartbleed check, any reported home page data implicitly
indicates that the Heartbleed test successfully completed without a timeout.

To investigate the false negative rate, we use two full scans of the IPv4 address space, one with
and one without home page fetching. The full scan conducted on April 24 did not grab server
home pages, while the May 1 scan did, hence we know the validity of scan results from the May 1
scan. To soundly conduct this comparison we need to remove servers that may have switched IP
addresses between the two scans. To do so, we only considered servers that presented identical

https://zmap.io
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TLS certificates between the two scans. While this restriction potentially introduces a bias because
some sites will have both patched and changed their TLS certificates, the address-independent
nature of the false negatives should cause this effect to even out.

Our scanner failed to grab the server home page for 24% of the hosts in the May scan. Of these
24% of hosts, we observe 44% appear immune. False negatives could only have occurred when
testing these hosts. The remaining 56% of hosts appeared vulnerable (and hence are correctly
labelled). From this, we conclude that at most (0.24 · 0.44) = 0.105, or 10.5%, of hosts were
incorrectly labelled in the May 1 scan.

For the April scan, the only observable signal of a false negative is if a host was reported
immune and then reported vulnerable in the May scan. We find 6.5% of hosts exhibit this be-
havior. Assuming that people do not unpatch their systems, this provides an estimated lower
bound of 6.5% for the April scan false negative rate. This estimate represents a lower bound
because we cannot determine the vulnerability in April of a host that appears immune in both
scans. In that case, a false negative is a host vulnerable in April but reported as immune, and
patched by May. However, we do observe that of hosts reported as vulnerable in the April
scan and successfully tested in May (so the server page was retrieved), only 0.36% appeared
immune in May, indicating a very modest overall patching rate between the two scans (which
accords with Figure 7.3 below). Given that our false negatives are address-independent, we
expect a similarly low patch rate for all vulnerable April hosts. Thus, while a 6.5% false
negative rate is a lower bound for the April scan, the true rate should not be significantly
higher.

Given the similarity of these two false negative estimates using two different scans, ultimately
we conclude that the scanner exhibited a false negative rate between 6.5% and 10.5%, but that
these manifest independently of the particular server scanned. Due to this address-independent
behavior, we can assume a similar false negative rate for sampled scans. We attempt to account
for this error whenever possible. In particular, the bias implies that any population-based survey
based on a single scan underestimates the vulnerable population. Finally, for our assessment of
the impact of notifications (Section 7.5), we only consider a given server as non-vulnerable when
it consistently reports as immune in repeated scans, which would require multiple (presumably
independent) false negatives to occur before introducing a bias.

7.3.3 Impact on Popular Websites
Determining which websites were initially vulnerable poses significant difficulties. Little attention
was paid to the Heartbeat Extension prior to the vulnerability announcement, and many popular
sites patched the vulnerability within hours of the disclosure. Codenomicon, one of the groups
that discovered Heartbleed, speculated that 66% of HTTPS sites were vulnerable [128]. However,
this number represented the Apache and Nginx market share and may well reflect an overestimate,
because some operators may have disabled the extension, deployed dedicated SSL endpoints, or
used older, non-vulnerable versions of OpenSSL.
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Web Servers Mail Servers Database Servers XMPP Servers Other Servers

Apache (mod_ssl) [128] Yes Sendmail [165] Yes MySQL [165] Yes OpenFire [28] No OpenVPN [154] Yes
Microsoft IIS [131] No Postfix [165] Yes PostgreSQL [165] Yes Ejabberd [16] Yes OpenLDAP [168] Yes
Nginx [75] Yes Qmail [165] Yes SQL Server [131] No Jabberd14 [203] Yes Stunnel [172] Yes
Lighttpd [165] Yes Exim [88] Yes Oracle [155] No Jabberd2 [105] Yes Openswan [148] Yes
Tomcat [29] Yes Courier [93] Yes IBM DB2 [98] No Telnetd-ssl [25] Yes
Google GWS [149] Yes Exchange [131] No MongoDB [135] Yes OpenDKIM [17] Yes
LiteSpeed [116] Yes Dovecot [88] Yes CouchDB [35] No Proftpd [171] Yes
IBM Web Server [98] Yes Cyrus [139] Yes Cassandra [7] No Bitcoin Client [40] Yes
Tengine [145] Yes Zimbra [157] Yes Redis [88] No
Jetty [151] No

Table 7.2: Vulnerable Server Products. We survey which server products were affected by
Heartbleed.

7.3.3.1 Top 100 Websites

All of the Alexa Top 100 websites were patched within 48 hours of disclosure—prior to the start
of our scans. To document the impact on these websites, we aggregated press releases, other’s
targeted scans, and quotes provided to Mashable, a news site that hosted one of the popular lists of
sites for which users should change their passwords due to possible exposure via Heartbleed [122].

Al-Bassam completed a vulnerability scan of the Alexa Top 10,000 domains on April 8, 2014 at
16:00 UTC (22 hours after the vulnerability disclosure) [32]. His scan found 630 vulnerable sites,
3,687 supporting HTTPS but not vulnerable, and 5,683 not supporting HTTPS. Several prominent
sites, including Yahoo, Imgur, Stack Overflow, Flickr, Sogou, OkCupid, and DuckDuckGo, were
found vulnerable. We investigated other sites in the Alexa Top 100 and found that half made a
public statement regarding vulnerability or provided information to Mashable [30, 32, 33, 37, 56,
61,77,90,99,100,102,122,149,159,163,186,188,204,209,210]. Combining these press releases,
Mashable’s report, and Al-Bassam’s scan, we find that at least 44 of the Alexa Top 100 websites
were vulnerable. However, this figure reflects a lower bound, as we were unable to find information
for some sites. Table 7.3 lists the vulnerability status of the top 30 HTTPS-enabled sites in the US.

7.3.3.2 Estimating Broader Impact

Within 48 hours of the initial disclosure, we conducted our first vulnerability scan of the Alexa Top
1 Million. At that point, we found that 45% of all sites supported HTTPS. 60% of those supported
the Heartbeat Extension, and 11% of all HTTPS sites were vulnerable. While 60% of HTTPS sites
supported the extension, 91% of these were powered by known vulnerable web servers (e.g., Ng-
inx or Apache Web Server), as shown in Table 7.4. If all of these servers were initially vulnerable
and operators installed a patched OpenSSL version (rather than rebuilding OpenSSL with Heart-
beat disabled), at most about 55% of the HTTPS sites in the Alexa Top 1 Million were initially
vulnerable.

While disabling the largely unused extension would appear to provide an obvious solution, it
is not possible to disable the extension through a configuration file. Instead, this change requires
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Site Vuln. Site Vuln. Site Vuln.

Google Yes Bing No Wordpress Yes
Facebook No Pinterest Yes Huff. Post ?
Youtube Yes Blogspot Yes ESPN ?
Yahoo Yes Go.com ? Reddit Yes
Amazon No Live No Netflix Yes
Wikipedia Yes CNN ? MSN.com No
LinkedIn No Instagram Yes Weather.com ?
eBay No Paypal No IMDB No
Twitter No Tumblr Yes Apple No
Craigslist ? Imgur Yes Yelp ?

Table 7.3: Vulnerability of Top 30 US HTTPS-Enabled Websites. We aggregate published
lists of vulnerable sites, press releases, and news sources to determine which of the top sites were
vulnerable before the discovery of Heartbleed.

recompiling OpenSSL with a specific flag—an option likely more laborious than updating the
OpenSSL software package.

Some sites may possibly have used an older version of OpenSSL that was not vulnerable. To
estimate a lower bound for the number of vulnerable sites, we considered sites that used vulnerable
web servers and supported TLS 1.1 and 1.2—features first introduced in OpenSSL 1.0.1 along
with the Heartbeat Extension. Such sites would have been vulnerable unless administrators had
recompiled OpenSSL to explicitly disable the extension.

To estimate the number of sites that supported TLS 1.1 and 1.2 prior to the Heartbleed dis-
closure, we analyzed the data collected by the Trustworthy Internet Movement’s SSL Pulse [24],
which provides monthly statistics of SSL-enabled websites within the Alexa Top 1 Million. We
find that 56,019 of the 171,608 (32.6%) sites in the SSL Pulse dataset supported TLS 1.1 or 1.2.
Of these sites, 72.7% used known vulnerable web servers, yielding an estimated lower bound of
23.7% of the sites being vulnerable.

In summary, we can reasonably bound the proportion of vulnerable Alexa Top 1 Million
HTTPS-enabled websites as lying between 24–55% at the time of the Heartbleed disclosure.

7.3.4 Pre-Disclosure Patching
Google, Akamai, and other sites disabled the Heartbeat Extension prior to public disclosure. To
detect when services disabled the Heartbeat Extension, we examined data from the ICSI Certificate
Notary, which passively monitors TLS connections from seven research and university networks
(approximately 314K active users) [34].

The Notary data shows that Google disabled Heartbeat starting at least 12 days prior to public
disclosure, with all servers Heartbeat-disabled by April 15. While some servers still had Heartbeat
enabled after disclosure, they may not have been exploitable. Google may have already patched
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Web Server Alexa Sites Heartbeat Ext. Vulnerable

Apache 451,270 (47.3%) 95,217 (58.4%) 28,548 (64.4%)
Nginx 182,379 (19.1%) 46,450 (28.5%) 11,185 (25.2%)
Microsoft IIS 96,259 (10.1%) 637 (0.4%) 195 (0.4%)
Litespeed 17,597 (1.8%) 6,838 (4.2%) 1,601 (3.6%)
Other 76,817 (8.1%) 5,383 (3.3%) 962 (2.2%)
Unknown 129,006 (13.5%) 8,545 (5.2%) 1,833 (4.1% )

Table 7.4: Alexa Top 1 Million Web Servers. We classify the web servers used by the Alexa Top
1 Million Sites, as observed in our first scan on April 9, 2014. Percentages represent the breakdown
of server products for each category. We note that while Microsoft IIS was not vulnerable to
Heartbleed, a small number of IIS servers used vulnerable SSL terminators.

those servers, and decided afterwards to disable the Heartbeat Extension as a company-wide policy.
Similarly, Akamai began disabling Heartbeat at least 4 days prior to disclosure, completing the
process by April 18.

7.3.5 Internet-Wide HTTPS Vulnerability
We began performing daily 1% scans of the IPv4 address space on April 9, 48 hours after the
disclosure. Our first scan found that 11.4% of HTTPS hosts supported the Heartbeat Extension and
5.9% of all HTTPS hosts were vulnerable. Combining these proportions from random sampling
with our daily scans of the HTTPS ecosystem [64] (which do not include Heartbleed vulnerability
testing), we estimate that 2.0 million HTTPS hosts were vulnerable two days after disclosure.

Surprisingly, 10 ASes accounted for over 50% of vulnerable HTTPS hosts but represented only
8.6% of all HTTPS hosts (Figure 7.2). With the exception of Comcast Cable Communications,
the ASes all belonged to web hosting companies or cloud providers (Table 7.5). The vulnerable
hosts in the Comcast AS were Fortinet devices. In the case of Strato Hosting, vulnerable ad-
dresses were hosting Parallels Plesk Panel, a web hosting management software. The vulnerable
addresses of Minotavar Computers, ZeXoTeK IT-Services, Euclid systems, Vivid Hosting, and
ACCESSPEOPLE-DE all served the default Apache page, likely reflecting named-based virtual
hosts. In the case of the two Amazon ASes and Hetzner Online, a large number of the vulnerable
hosts served public facing websites, and used Apache or Nginx.

7.3.6 Vulnerable Devices and Products
Heartbleed also affected many embedded systems, including printers, firewalls, VPN endpoints,
NAS devices, video conferencing systems, and security cameras. To understand the embedded
systems that were affected, we analyzed the self-signed certificates employed by vulnerable hosts.
We clustered these by fields in the certificate Subject and manually inspected large clusters. From
this, we developed device “fingerprints”. We took a conservative approach and chose the most
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AS % of Vulnerable % of HTTPS

Minotavar Computers EOOD 18.5% 1.7%
ZeXoTeK IT-Services GmbH 13.0% 0.9%
ACCESSPEOPLE-DE ISP-Service 7.4% 0.7%
Amazon.com, Inc. 4.6% 0.8%
Amazon.com, Inc. 4.1% 0.9%
Hetzner Online AG 2.6% 0.4%
Comcast Cable Communications 2.3% 2.8%
Vivid Hosting 2.0% 0.1%
Euclid Systems 1.5% 0.1%
Strato Hosting 1.4% 0.1%

Total 57.4% 8.6%

Table 7.5: Top ASes with Most Vulnerable Hosts. We aggregate hosts by AS and find that 57%
of vulnerable hosts in the April 9 scan were located in only 10 ASes.

restrictive fingerprints in order to minimize false positive identifications. This, and the manual
effort required, means that our fingerprints lack comprehensive coverage. However, we still iden-
tified 74 distinct sets of vulnerable devices and software packages that fall into a number of broad
categories:

Communication Servers: IceWarp messaging, Zimbra collaboration servers, iPECS VoIP
systems, and Polycom and Cisco video conference products.

Software Control Panels: Puppet Enterprise Dashboard, IBM System X Integrated Manage-
ment Modules, Kloxo Web hosting control panel, PowerMTA, Chef/Opscode management con-
soles, VMWare servers, and Parallels control panels for Plesk and Confixx.

Network Attached Storage: QNAP, D-Link, ReadyNAS, LaCie, Synology, and Western Dig-
ital NAS devices.

Firewall and VPN Devices: Devices from Barracuda Networks, Cisco, SonicWALL, Watch-
Guard, OpenVPN, pfSense, TOPSEC Network Security (a Chinese vendor), and Fortinet.

Printers: Dell, Lexmark, Brother, and HP printers.
Miscellaneous: Hikvision and SWANN security cameras, AcquiSuite power monitors,

IPACCT (a management tool used by Russian ISPs), Aruba Networks WiFi login portals, IN-
SYS VPN access for industrial controllers, and SpeedLine Solutions (the “#1-rated Pizza POS
System”).

7.3.7 Other Impacts
While our study focuses on Heartbleed’s impact on public HTTPS web services, Heartbleed also
affected mail servers, the Tor network, Bitcoin, Android, and wireless networks, as we briefly
assess in this section.
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Figure 7.2: Vulnerable Servers by AS. We aggregate vulnerable hosts by AS and find that over
50% of vulnerable hosts are located in ten ASes.

Mail Servers. SMTP, IMAP, and POP3 can use TLS for transport security via use of a
StartTLS directive within a plaintext session. As such, if mail servers used OpenSSL to fa-
cilitate TLS connections, they could have been similarly vulnerable to Heartbleed. On April 10,
we scanned a random 1% sample of the IPv4 address space for vulnerable SMTP servers. We
found that 45% of those providing SMTP+TLS supported the Heartbeat Extension, and 7.5% were
vulnerable to Heartbleed.

These estimates only provide a lower bound, because similar to HTTPS, our scanner sometimes
timed out, causing false negatives. (We also scanned for IMAP and POP3 servers, but later analysis
of the data found systematic flaws that rendered the results unusable.)

Tor Project. Tor relays and bridges use OpenSSL to provide TLS-enabled inter-relay communi-
cation. In our April 10 scan, we found that 97% of relays supported Heartbeat and could have been
vulnerable. 48% of the relays remained vulnerable at that time, three days after announcement of
the vulnerability. The vulnerability could have allowed an attacker to extract both short-term onion
and long-term identity keys, ultimately allowing an attacker to intercept traffic and impersonate a
relay. In the case of a hidden service, the bug could have allowed an entry guard to locate a hidden
service. The Tor client was similarly affected, potentially allowing entry guards to read sensitive
information from a client’s memory, such as recently visited websites [59].
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Bitcoin Clients. Heartbleed affected both Bitcoin clients and exchanges, and in the most severe
case, allowed an attacker to compromise the accounts on a popular exchange, BTCJam [42]. The
value of Bitcoin did not change drastically on April 7, the date of public disclosure, falling only
3.1% from the previous day (a figure within its regular volatility) and returned to its April 6 value
by April 14.

All versions of the Bitcoin software from May 2012 to April 2014 used a vulnerable OpenSSL
version [6]. Immediately after Heartbleed’s disclosure, a new Bitcoin version was released linking
to the newly patched OpenSSL version. Because clients were also affected by the bug, attackers
could potentially compromise wallets or retrieve private keys if a susceptible user followed a pay-
ment request link [40]. However, we have not found any reports of the theft of Bitcoins from local
wallets.

Several companies, including Bitstamp and Bitfinex, temporarily suspended transactions on
April 8 until they could patch their servers. In the most severe case, 12 customers had a total of 28
BTC (≈ $6,500) stolen from BTCJam after account credentials were compromised, though with
all funds subsequently reinstated by the exchange [42].

Android. Heartbleed only affected Android version 4.1.1 [149]. It is unclear how many devices
currently run the affected version, but Google recently estimated that 33.5% of all Android de-
vices currently run Android 4.1.x [3]. A vulnerable device would have been susceptible to having
memory read by a malicious server.

Wireless Networks. Several variants of the Extended Authentication Protocol, a commonly used
framework for wireless network authentication, use TLS, including EAP-PEAP, EAP-TLS, and
EAP-TTLS. For implementations based on OpenSSL, Heartbleed would have allowed attackers to
retrieve network keys and user credentials from wireless clients and access points [87]. We do not
know of any statistics regarding what sort of vulnerable population this potentially represents.

7.4 Patching
In Section 7.3, we estimated the initial impact of Heartbleed. In this section, we discuss the
patching behavior that occurred subsequent to the disclosure.

7.4.1 Popular Websites
Popular websites did well at patching. As mentioned above, only five sites in the Alexa Top 100
remained vulnerable when Al-Bassam completed his scan 22 hours after disclosure. All of the
top 100 sites were patched by the time we started our scans, 48 hours after disclosure. As discussed
in Section 7.3, our first scan of the Alexa Top 1 Million found that 11.5% of HTTPS sites remained
vulnerable. The most popular site that remained vulnerable was mpnrs.com, ranked 689th glob-
ally and 27th in Germany. Similarly, all but seven of the vulnerable top 100 sites replaced their
certificate in the first couple of weeks following disclosure. Most interestingly, godaddy.com,
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operator of the largest commercial certificate authority, did not change their certificates until much
later. The other six sites are mail.ru, instagram.com, vk.com, sohu.com, adobe.com,
and kickass.to.

As shown in Figure 7.3, while many Alexa Top 1 Million sites patched within the first week,
the patch rate quickly dropped after two weeks, with only a very modest decline between April 26
and June 4, 2014. While top sites in North America and Europe were initially more vulnerable
than Asia and Oceania (presumably due to more prevalent use of OpenSSL-based servers), they all
followed the same general patching pattern visible in Figure 7.3.

7.4.2 Internet-Wide HTTPS
As can be seen in Figure 7.3, the patching trend for the entire IPv4 address space differs from that
of the Alexa Top 1 Million. The largest discrepancy occurs between April 22, 14:35 EDT and
April 23, 14:35 EDT, during which the total number of vulnerable hosts fell by nearly a factor of
two, from 4.6% to 2.6%. This dropoff occurred because several heavily affected ASes patched
many of their systems within a short time frame. The shift from 4.6% to 3.8% between 14:35
and 22:35 on April 22 reflects Minotavar Computers patching 29% of their systems, ZeXoTeK IT-
Services patching 60%, and Euclid Systems patching 43%. Between April 22, 22:35 and April 23,
06:35, Minotavar Computers continued to patch systems. The last major drop from 3.4% to 2.6%
(06:35–14:35 on April 23) was primarily due to Minotavar Computers patched remaining systems,
and to a lesser extent, Euclid Systems and Vivid Hosting.

7.5 Notification
Three weeks after the initial disclosure a large number of hosts remained vulnerable, and we
began notifying the system operators responsible for unpatched systems. This endeavor provided
us with an opportunity to study the impact of large-scale vulnerability notification. In this section
we describe our notification methodology and analyze the reactions to our notifications and its
impact on patching.

7.5.1 Methodology
In order to find the appropriate operators to contact, we performed WHOIS lookups for the IP ad-
dress of each vulnerable host appearing in our April 24, 2014 scan of the full IPv4 address space.
We used the “abuse” e-mail contact extracted from each WHOIS record as our point of notification.
We chose to use WHOIS abuse emails because they struck us as more reliable than emails from
other sources. There also appeared to be less risk in offending a network operator through contact-
ing the abuse contact. For example, many emails extracted from certificate Subject fields were not
valid emails, and we observed several WHOIS records with comments instructing anything related
to spam or abuse be sent to the abuse contact rather than the technical contact.
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Figure 7.3: HTTPS Patch Rate. We track vulnerable web servers in the Alexa Top 1 Million
and the public IPv4 address space. We track the latter by scanning independent 1% samples of the
public IPv4 address space every 8 hours. Between April 9 and June 4, the vulnerable population of
the Alexa Top 1 Million shrank from 11.5% to 3.1%, and for all HTTPS hosts from 6.0% to 1.9%.

Our scan found 588,686 vulnerable hosts. However, we excluded embedded devices—which
accounted for 56% of vulnerable hosts—because administrators likely had no avenue for patching
many of these devices at the time. These devices were detected using the fingerprints described
in Section 7.3.6. The remaining 212,805 hosts corresponded to 4,648 distinct abuse contacts.
Approximately 30,000 hosts belonged to RIPE and Amazon each. Because neither of these orga-
nizations directly manage hosts, we omitted them from our notifications.

To measure the impact of our notifications, we randomly split the abuse contacts into two
groups, which we notified in stages. We sent notifications to the first half (Group A) on April 28,
2014, and the second half (Group B) on May 7, 2014. Our notification e-mail introduced our
research and provided a list of vulnerable hosts, information on the vulnerability, and a link to the
EFF’s Heartbleed recovery guide for systems administrators.

7.5.2 Patching Behavior
To track patching behavior, we conducted regular scans of the known vulnerable hosts every eight
hours. We considered a contact as having reacted and begun patching if we found at least one
host in the list we sent to the contact as patched. Figure 7.4 shows a comparison of the patch rates
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Figure 7.4: Patch Rates of Group A vs Group B. The patch rates for our two notification sets
show that notification had statistically significant impact on patch rate.

between the two groups. Within 24 hours of the initial notification, 20.6% of the Group A operators
had begun to patch, whereas only 10.8% of Group B contacts (not yet notified) had reacted. After
eight days (just before the second group of notifications), 39.5% of Group A contacts had patched
versus 26.8% in Group B. This is a 47% increase in patching for notified operators.

Fisher’s Exact Test yields a one-sided p-value of very nearly zero for the null hypothe-
sis that both groups reflect identical population characteristics. We thus conclude that our
notification efforts had a statistically significant positive effect in spurring notified sites to
patch. Our second round of notifications followed a similar pattern as the first. As Group A’s
rate of patching had decreased at that point, Group B caught up, resulting in both con-
verging to around 57% of contacts having reacted within a couple of weeks of notifica-
tion.

We also investigated the relationship between the reactions of network operators (per Sec-
tion 7.5.3) and their patching behavior. First, we sent our notification message in English, possibly
creating a language barrier between us and the contact. We analyzed the Group A responses and
found that email responses entirely in English had no statistically significant difference in the corre-
sponding patching rate than for responses containing non-English text (Fisher’s Exact Test yielded
a two-sided p-value of 0.407).

We did, however, find statistically significant differences between each of the categories of
responses framed below in Section 7.5.3, as shown in Figure 7.5, with human responders patching
at the highest rate. Within the first day post-notification, 48% of human responders had begun
patching, while none of the other categories had a patch rate higher than 32%.
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Figure 7.5: Patch Rates for Different Response Types. Conditioning on the sort of reply we
received for a given notification reveals statistically significant differences.

The second strongest reactions came from contacts configured to send automated responses.
32% had reacted after one day, and 75% had reacted after three weeks. This indicates that op-
erators using a system to automatically process notifications and complaints will still often react
appropriately.

Over 77% of the contacts never responded. After one day, 20% of such contacts had conducted
some patching; after three weeks, 59% had. Right before Group B’s notifications, the patch rate of
these contacts was statistically significantly higher than Group B’s patch rate. This shows that even
when system operators do not respond when notified, they often still patch vulnerable systems.

7.5.3 Responses
In our first group of notifications, on April 28, 2014, we contacted 2,308 abuse contacts and re-
ceived email responses from 514 contacts. Of these 59 (11%) were clearly human-generated,
197 (38%) were automated, and 258 (50%) were delivery failures. We received 16 automated
emails where we subsequently received a human response; these we classified as human (thus,
in total we received 530 emails). The vast majority of responses (88%) were in English; other
common languages included Russian, German, Portuguese, and Spanish.

We classified a positive response as one that thanked us or stated their plan to remedy their
vulnerable hosts. The human-generated responses were overall very positive (54/59), with only
three that we deemed neutral, and two negative. The two negative responses questioned the legality
of our scan despite our explicit explanation that we did not exploit the vulnerability.
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Automated messages came in four forms: confirmations (24%), tickets (44%), trackers (23%),
and miscellaneous bounces (9%; primarily out-of-office notices and “no longer working here”
messages). Confirmation emails confirmed the receipt of our notification; tickets provided a ref-
erence or ticket identifier to associate with our notification message; and trackers were tickets that
also explicitly provided a link to a support site to track progress on opened tickets. Curiously,
21 of the 45 trackers did not provide the credentials to log into the support website, 2 provided
invalid credentials, and 3 did not have our ticket listed on their support site. In the week follow-
ing our notification, we were informed that 19 tickets were closed, although only 4 provided any
reasoning.

Out of the 258 delivery failure replies, 197 indicated the recipient did not receive our notifi-
cation. Other error messages included full inboxes or filtering due to spam, and several did not
describe a clear error. We observed 30 delayed and retrying emails, but all timed-out within three
days.

7.5.4 Network Operator Survey
We sent a brief survey to positive human responders, where all questions were optional, and re-
ceived anonymous submissions from 17 contacts. Surprisingly, all 17 expressed awareness of the
vulnerability and stated their organizations had performed some remediation effort prior to our no-
tification, typically through informing their clients/customers and patching machines if accessible.
When we asked why might the hosts we detected still be vulnerable, the most common responses
were that they did not have direct control over those servers, or their own scans must have missed
those hosts. It appears ignorance of the vulnerability and its threat did not play a factor in slow
patching, although our sample size is small. When asked if they replaced or revoked vulnerable
certificates, nine said yes, two said no, and one was unaware of the recommendation. Finally, we
asked if these contacts would like to receive notifications of similar vulnerabilities in the future.
Twelve said yes, two said no, and the others did not respond. This again demonstrates that our
notifications were in general well-received.

7.6 Discussion
Heartbleed’s severe risks, widespread impact, and costly global cleanup qualify it as a security
disaster. However, by analyzing such events and learning from them, the community can be better
prepared to address major security failures in the future. In this section, we use our results to
highlight weaknesses in the security ecosystem, suggest improved techniques for recovery, and
identify important areas for future research.

Support for Critical Projects. While not a focus of our research, many in the community have
argued that this event dramatically underscores shortcomings in how our community develops,
deploys, and supports security software. Given the unending nature of software bugs, the Heart-
bleed vulnerability raises the question of why the Heartbeat extension was enabled for popular
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websites. The extension is intended for use in DTLS, an extension unneeded for these sites. Ul-
timately, the inclusion and default configuration of this largely unnecessary extension precipitated
the Heartbleed catastrophe. It also appears likely that a code review would have uncovered the
vulnerability. Despite the fact that OpenSSL is critical to the secure operation of the majority of
websites, it receives negligible support [121]. Our community needs to determine effective support
models for these core open-source projects.

Vulnerability Disclosure. With the exception of a small handful, the most prominent websites
patched within 24 hours. In many ways, this represents an impressive feat. Several factors indicate
that patching was delayed because the Heartbleed disclosure process unfolded in a hasty and poorly
coordinated fashion. Several major operating system vendors were not notified in advance of public
disclosure, ultimately leading to delayed user recovery. As discussed in Section 7.3, a number of
important sites remained vulnerable more than 24 hours after initial disclosure, including Yahoo,
the fourth most popular site on the Internet. The security community needs to be better prepared
for mass vulnerability disclosure before a similar incident happens again. This includes addressing
difficult questions, such as how to determine which software maintainers and users to notify, and
how to balance advance disclosure against the risk of premature leaks.

Notification and Patching. Perhaps the most interesting lesson from our study of Heartbleed is
the surprising impact that direct notification of network operators can have on patching. Even with
global publicity and automatic update mechanisms, Heartbleed patching plateaued two weeks after
disclosure with 2.4% of HTTPS hosts remaining vulnerable, suggesting that widespread awareness
of the problem is not enough to ensure patching. However, as discussed in Section 7.5, when we
notified network operators of the unpatched systems in their address space, the rate of patching
increased by 47%. Many operators reported that they had intended to patch, but that they had
missed the systems we detected.

Although Internet-wide measurement techniques have enabled the mass detection of vulnerable
systems, many researchers (including us) had assumed that performing mass vulnerability notifi-
cations for an incident like Heartbleed would be either too difficult or ineffective. Our findings
challenge this view. Future work is needed to understand what factors influence the effectiveness
of mass notifications and determine how best to perform them. For instance, was Heartbleed’s
infamy a precondition for the high response rate we observed? Can we develop systems that com-
bine horizontal scanning with automatically generated notifications to quickly respond to future
events? Can we standardize machine-readable notification formats that can allow firewalls and in-
trusion detection systems to act on them automatically? What role should coordinating bodies such
as CERT play in this process? With additional work along these lines, automatic, measurement-
driven mass notifications may someday be an important tool in the defensive security arsenal. We
explore answers to some of these questions in the subsequent chapters.
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7.7 Conclusion
In this chapter, we analyzed numerous aspects of the recent OpenSSL Heartbleed vulnerability, in-
cluding who was initially vulnerable and global patching behavior. We found that the vulnerability
was widespread, and estimated that between 24–55% of HTTPS-enabled servers in the Alexa Top
1 Million were initially vulnerable, including 44 of the Alexa Top 100. Sites patched heavily in the
first two weeks after disclosure, but patching subsequently plateaued, and 3% of the HTTPS Alexa
Top 1 Million sites remained vulnerable after two months. In an attempt to reduce the vulnerable
population, we also conducted a mass notification of vulnerable hosts, finding a significant positive
impact on the patching of hosts to which we sent notifications, indicating that this type of notifica-
tion helps reduce global vulnerability. Ultimately, we drew upon our analyses to frame what went
well and what went poorly in our community’s response, providing perspectives on how we might
respond more effectively to such events in the future.
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Chapter 8

Remedying Web Hijacking:
Notification Effectiveness and
Webmaster Comprehension

8.1 Introduction
The proliferation of web threats such as drive-by downloads, cloaked redirects, and scams stems in
part from miscreants infecting and subverting control of vulnerable web servers. One strategy to
protect users from this dangerous content is to present a warning that redirects a client’s browser to
safer pastures. Examples include Safe Browsing integration with Chrome, Firefox, and Safari that
each week alerts over 10 million clients of unsafe webpages [81]; Google Search labeling hacked
websites in search results [83]; and Facebook and Twitter preventing users from clicking through
malicious URLs [104,187]. While effective at reducing traffic to malicious pages, this user-centric
prioritization ignores long-term webmaster cleanup, relegating infected pages to a dark corner of
the Internet until site operators notice and take action.

Inspired by our positive results from notifying about the Heartbleed bug, as discussed in Chap-
ter 7, we could consider turning to notifications as a tool to alert site operators of ongoing exploits
or vulnerable software, to encourage them to secure their sites. This new emphasis on webmaster
hygiene mitigates the risks associated with users clicking through security indicators [31]. Our
Heartbleed study (Chapter 7), as well as concurrent related work [50, 195], suggested that notify-
ing webmasters of hijacked or at-risk properties might expedite remediation. However, a question
remains as to the best approach to reach webmasters and whether they comprehend the situation at
hand. This comprehension is critical: while browser warnings can overcome the lack of security
expertise among users via “opinionated” designs that use visual cues to steer a user’s course of
action to safe outcomes [70], that same luxury does not exist for notifications, where webmasters
must be savvy enough to contend with a security incident, or reach out to someone who can.

In this chapter, we present the first large-scale measurement study on the effectiveness of no-
tifications at inducing quick recovery from website hijacking. As part of our study, we explore:
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(1) how various notification techniques and external factors influence the duration of compromise;
(2) whether site operators can comprehend and address security threats; and (3) the likelihood
that previously exploited websites quickly fall victim again. To conduct our study, we rely on
an 11-month dataset from July, 2014–June, 2015 of 760,935 hijacking incidents as identified by
Safe Browsing (drive-bys) and Google Search Quality (blackhat SEO). Each of these incidents
triggers a combination of an interstitial browser warning, a search result warning, or a direct email
notification that alerts webmasters to hijacked properties with concrete examples of injected code.

We find that 59.5% of alerted sites redress infections by the end of our data collection window,
with infections persisting for a median of two months. Breaking down this aggregate behavior, we
find Safe Browsing interstitials, paired with search warnings that “this site may contain harmful
content”, result in 54.6% of sites cleaning up, compared to 43.4% of sites flagged with a search
warning alone. Above all, direct contact with webmasters increases the likelihood of remediation
to over 75%. We observe multiple other influential factors: webmasters are far more efficient
at cleaning up harmful content localized to a single directory compared to systemic infections
that impact every page on a site; while popular sites (as captured by search ranking) are three
times more likely to clean up in 14 days compared to unpopular sites. Our results illustrate that
webmasters benefit significantly from detailed, external security alerts, but that major gaps exist
between the capabilities of small websites and major institutions.

To better understand the impact of webmaster comprehension on overall remediation, we de-
couple the period before webmasters receive a notification from the time spent cleaning a site.
We capture this behavior based on appeals logs that detail when webmasters request Google to
remove hijacking warnings from their site, a request verified by a human analyst or crawler. We
find that 80% of site operators successfully clean up on their first appeal attempt. The remaining
20% require multiple appeals, spending a median of one week purging attacker code. Equally
problematic, many site operators appear to address only symptoms rather than the root cause of
compromise: 12% of sites fall victim to hijacking again within 30 days, with 10% and 20% of re-
infections occurring within one day for Safe Browsing and Search Quality respectively. We distill
these pain points into a path forward for improving remediation. In the process, we highlight the
tension between protecting users and webmasters and the decentralized responsibilities of Internet
security that ultimately confound recovery.

In summary, we frame our key contributions as follows:

• We present the first large-scale study on the impact of diverse notification strategies on the
outcome of 760,935 hijacking incidents.

• We model infection duration, finding that notification techniques outweigh site popularity or
webmaster knowledge as the most influential factor for expediting recovery.

• We find that some webmasters struggle with the remediation process, with over 12% of sites
falling victim to re-compromise in 30 days.

• We present a path forward for helping webmasters recover and the pitfalls therein.

This chapter’s content appeared in the World Wide Web Conference (WWW) [113].
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8.2 Background & Related Work
Web services rely on notifications to alert site operators to security events after a breach occurs.
In this study, we focus specifically on website compromise, but notifications extend to account
hijacking and credit card fraud among other abuse. We distinguish notifications from warnings
where visitors are directed away from unsafe sites or decisions (e.g., installing an unsigned binary).
With warnings, there is a path back to safety and minimal technical expertise is required; breaches
lack this luxury and require a more complex remedy that can only be addressed by site operators.
Here, we outline approaches for identifying compromise, having discussed related notification
work in Chapter 6.

8.2.1 Detecting Compromise
As a precursor to notification, web services must first detect compromise. The dominant research
strategy has been to identify side-effects injected by an attacker. For example, Provos et al. detected
hacked websites serving drive-by downloads based on spawned processes [162]; Wang et al. de-
tected suspicious redirects introduced by blackhat cloaking [199]; and Borgolte detected common
symptoms of defacement [41]. These same strategies extend beyond the web arena to detecting
account hijacking, where prior work relied on identifying anomalous usage patterns or wide-scale
collusion [67, 185]. More recently, Vasek et al. examined factors that influenced the likelihood of
compromise, including the serving platform (e.g., nginx) and content management system (e.g.,
Wordpress) [196]. They found that sites operating popular platforms such as Wordpress, Joomla,
and Drupal faced an increased risk of becoming compromised, primarily because miscreants fo-
cused their efforts on exploits that impacted the largest market share. Soska et al. extended this
idea by clustering websites running the same version of content management systems in order to
predict likely outbreaks of compromise [177]. We sidestep the issue of detection, instead relying
on a feed of known compromised pages involved in drive-bys, spam, or cloaking (§ 8.3).

8.2.2 Webmaster Perspective of Compromise
Given a wealth of techniques to detect compromise, the preeminent challenge that remains is how
best to alert webmasters to security breaches, assuming webmasters are incapable of running de-
tection locally. StopBadware and CommTouch surveyed over 600 webmasters of compromised
websites to understand their process for detecting compromise and remedying infection [183].
They found that only 6% of webmasters discovered an infection via proactive monitoring for sus-
picious activity. In contrast, 49% of webmasters learned about the compromise when they received
a browser warning while attempting to view their own site; another 35% found out through other
third-party reporting channels, such as contact from their web hosting provider or a notification
from a colleague or friend who received a browser warning.

Equally problematic, webmasters rarely receive support from their web hosting providers.
Canali et al. created vulnerable websites on 22 hosting providers and ran a series of five attacks
that simulated infections on each of these websites over 25 days [44]. Within that 25-day win-
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dow, they found that only one hosting provider contacted them about a potential compromise of
their website, even though the infections they induced were detectable by free, publicly-available
tools. Similarly, the StopBadware and CommTouch study found that 46% of site operators cleaned
up infections themselves, while another 20% reached out for professional help [183]. Only 34%
of webmasters had the option of free help from their hosting provider (irrespective of using it).
These two studies provide qualitative evidence of the struggles currently facing webmasters and
the potential value of third-party notifications.

8.3 Methodology
Our study builds on data gathered from two unique production pipelines that detect and notify
webmasters about compromise: Safe Browsing, which covers drive-by attacks [162]; and Search
Quality, which protects against scams and cloaked gateways that might otherwise pollute Google
Search [79]. We describe each pipeline’s detection technique, the subsequent notification signals
sent, and how each system determines when webmasters clean up. A high level description of
this process appears in Figure 8.1. We note that our measurements rely on in situ data collection;
we cannot modify the system in any way, requiring that we thoroughly account for any potential
biases or limitations. We provide a breakdown of our final dataset in Table 8.1, collected over a
time frame of 11 months from July 15th, 2014–June 1st, 2015.

8.3.1 Compromised Sites
When Safe Browsing or Search Quality detect a page hosting harmful or scam content, they set
a flag that subsequently triggers both notifications and warnings. We group flags on the level of
registered domains (e.g., example.com), with the exception of shared web hosting sites, where
we consider flags operating on subdomains (e.g., example.blogspot.com). Both Safe Browsing and
Search Quality distinguish purely malicious pages from compromised sites based on whether a site
previously hosted legitimate content; we restrict all analysis to compromised sites. For the pur-
poses of our study, we denote a hijacked website as any registered or shared domain that miscreants
compromise. We use the term hijacking incident to qualify an individual attack: if miscreants sub-
vert multiple pages on a website, we treat it as a single incident up until Safe Browsing or Search
Quality verify the site is cleaned (discussed in § 8.3.3).1 We treat any subsequent appearance of
malicious content as a new hijacking incident.

As detailed in Table 8.1, we observe a total of 760,935 such incidents, with the weekly break-
down of new incidents shown in Figure 8.2. Our dataset demonstrates that miscreants routinely
compromise new websites, with a median of 8,987 new sites detected by Search Quality and 5,802
sites by Safe Browsing each week. We also find evidence of rare, large-scale outbreaks of compro-
mise that impact over 30,000 sites simultaneously.

1In the event multiple attackers compromise the same site simultaneously, we will mistakenly conflate the symp-
toms as a single hijacking incident.
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Figure 8.1: Google’s hijacking notification systems. Safe Browsing and Search Quality each detect
and flag hijacked websites (Ê). From there, Safe Browsing shows a browser interstitial and emails
WHOIS admins, while both Safe Browsing and Search Quality flag URLs in Google Search with
a warning message (Ë). Additionally, if the site’s owner has a Search Console account, a direct
notification alerts the webmaster of the ongoing incident. The hijacking flag is removed if an
automatic re-check determines the site is no longer compromised. Webmasters can also manually
trigger this re-check via Search Console (Ì).

We caution that our dataset is biased to hijacking threats known to Google and is by no means
exhaustive. From periodic manual reviews performed by Google analysts of a random sample of
hijacking incidents, we estimate the false positive rates of both pipelines to be near zero, though
false negatives remain unknown. That said, our dataset arguably provides a representative cross-
section of hijacked webpages around the globe. We provide a detailed demographic breakdown
later in § 8.4.

8.3.2 Notification Mechanisms
Safe Browsing and Search Quality each rely on a distinct combination of notification and warning
mechanisms to alert webmasters either directly or indirectly of hijacking incidents. We detail each
of the possible combinations in Figure 8.1, spanning browser interstitials, search page warnings,
webmaster help tools (called Search Console), and WHOIS emails. For all of these notification
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Dataset Safe Browsing Search Quality

Time frame 7/15/14–6/1/15 7/15/14–6/1/15
Hijacked websites 313,190 266,742
Hijacking incidents 336,122 424,813

Search console alerts 51,426 88,392
WHOIS emails 336,122 0

Webmaster appeals 124,370 48,262

Table 8.1: Summary of dataset used to evaluate notification effectiveness and webmaster compre-
hension.
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Figure 8.2: Weekly breakdown of new website hijacking incidents as detected by Safe Browsing
(drive-bys) and Search Quality (scams, blackhat SEO, cloaking).

mechanisms, we lack visibility into whether webmasters observe the alert (e.g., received and read
a message or viewed a browser interstitial). As such, when we measure the effectiveness of notifi-
cations, we couple both the distribution of the signal and the subsequent webmaster response.

Browser Interstitials Safe Browsing reports all compromised websites to Chrome, Safari, and
Firefox users that opt for security warnings. While browser interstitials primarily serve to warn
visitors of drive-by pages that cause harm, they also serve as an indirect alerting mechanism to
site owners: webmasters (or their peers) that encounter warnings for their compromised sites can
take action. However, this approach lacks diagnostic information about how exactly to clean up
the infection.
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Search Result Annotation Compromised sites detected by Search Quality receive an annotation
in search result pages with a warning “This site may be hacked” [83]. Similarly, sites identified by
Safe Browsing all receive a flag “This site may harm your computer” [84]. Additionally, sites may
lose search ranking. As with browser interstitials, these modifications primarily serve to protect
inbound visitors, but also serve as an indirect channel for alerting webmasters of compromise.

Search Console Alerts Both Safe Browsing and Search Quality provide concrete details about
infected pages, examples, and tips for remediation via Google’s Search Console [82]. Only web-
masters who register with Search Console can view this information. Notifications come in the
form of alerts on Search Console as well as a single message to the webmaster’s personal email
address (provided during registration). This approach alleviates some of the uncertainty of whether
contacting the WHOIS abuse@ will reach the site operator. One caveat is that a Search Console
notification is sent only if the Safe Browsing or Search Quality algorithm is configured to do so.2

This behavior results in the absence of a Search Console alert for some hijacking incidents, which
we use as a natural control to measure their effectiveness.

Of hijacking incidents identified by Search Quality, 95,095 (22%) were sites where webmasters
had registered with Search Console prior to infection. The same is true for 107,581 (32%) of Safe
Browsing hijacking incidents. Of these, 48% of incidents flagged by Safe Browsing triggered a
Search Console alert, as did 93% of incidents identified by Search Quality. Because notified and
unnotified sites are flagged by different detection subsystems, differences in the subsystems may
result in a biased control population. However, the bias is likely modest since the differences in
detection approaches are fairly subtle compared to the overall nature of the compromise.

WHOIS Email In an attempt to contact a wider audience, Safe Browsing also emails the WHOIS
admin associated with each compromised site. Since Safe Browsing simultaneously displays warn-
ings via browser interstitials and search, we can only measure the aggregate impact of both tech-
niques on notification effectiveness.

8.3.3 Appeals & Cleanup
Safe Browsing and Search Quality automatically detect when websites clean up by periodically
scanning pages for symptoms of compromise until they are no longer present. This approach is
limited by the re-scan rate of both pipelines. For Safe Browsing, sites are eligible for re-scans 14
days after their previous scan. This metric provides an accurate signal on the eventual fate of a
hijacking incident, but leaves a coarse window of about 14 days during which a site may clean
up but will not be immediately flagged as such. Search Quality reassesses symptoms each time
Google’s crawler revisits the page, enabling much finer-grained analysis windows.

As an alternative, both Safe Browsing and Search Quality provide a tool via Search Console
where webmasters can appeal warnings tied to their site. Safe Browsing webmasters have an

2Each detection pipeline combines a multitude of algorithms, of which the majority also generate Search Console
alerts.
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additional channel of appealing through StopBadware [182], which submits requests for site review
to Safe Browsing on behalf of the webmasters who chose not to register with Search Console. The
appeals process signals when webmasters believe their pages are cleaned, which analysts at Google
(Search Quality) or automated re-scans (Safe Browsing) subsequently confirm or reject. We use
this dataset both to measure the duration of compromise as well as the capability of webmasters to
clean up effectively, as captured by repeatedly rejected appeals.

8.3.4 Limitations
We highlight and reiterate five limitations tied to our dataset. First, as a natural experiment our
study lacks a true control: the systems under analysis notify all webmasters, where Google’s poli-
cies arbitrate the extent of the notification. For example, browser interstitials are only shown for
threats that may put site visitors at risk, namely Safe Browsing sites. Webmaster notifications via
Search Console are sent only when a webmaster has registered for Search Console and the specific
detection pipeline is integrated with the Search Console messaging platform. As such, we restrict
our study to comparing the relative effectiveness of various notification approaches; Chapter 7 and
other studies [50,195] have already demonstrated the value of notifications over a control. Second,
our coverage of hijacked websites is biased towards threats caught by Google’s pipelines, though
we still capture a sample size of 760,935 incidents, the largest studied to date. Third, when victims
are notified, we lack visibility into whether the intended recipient witnesses the alerts. As such,
when we measure the impact of notifications, we are measuring both the distribution of alerts and
the ability of webmasters to take action. Fourth, the granularity at which we measure cleanup is
not always per-day, but may span multiple days before a site is rechecked. This may cause us
to overestimate the time a site remains compromised. We specifically evaluate compromise inci-
dents as continuous blacklisting intervals. Finally, our study is not universally reproducible as we
rely on a proprietary dataset. However, given the scale and breadth of compromised websites and
notifications we analyze, we believe the insights gained are generalizable.

8.4 Website Demographics
As a precursor to our study, we provide a demographic breakdown of websites (e.g., domains)
that fall victim to hijacking and compare it against a random sample of 100,000 non-spam sites
indexed by Google Search. All of the features we explore originate from Googlebot, Google’s
search crawler [80]. We find that compromise affects webpages of all age, language, and search
ranking, with attackers disproportionately breaching small websites over major institutions. We
also observe biases in the sites that miscreants re-purpose for exploits versus scams and cloaked
gateways.

Site Age We estimate the age of a site as the time between Googlebot’s first visit and the con-
clusion of our study in June, 2015. We detail our results in Figure 8.3a. We find over 85% of
Search Quality sites are at least two years old at the time of compromise, compared to 71% of Safe
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(a) Site Age

(b) Page Count

(c) Search Rankings

Figure 8.3: Demographic breakdowns of Safe Browsing and Search Quality flagged sites.
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Browsing sites. Our results indicate that sites falling victim to compromise skew towards newer
properties compared to the general population, more so for Safe Browsing.

Page Count We estimate a site’s size as the total number of pages per domain indexed by Google-
bot at the conclusion of our study. In the event a site was hijacked, we restrict this calculation to
the number of pages at the onset of compromise so as not to conflate a proliferation of scam offers
with prior legitimate content. Figure 8.3b shows a breakdown of pages per domain. Overall, if we
consider the volume of content as a proxy metric of complexity, we observe that hijacking skews
towards smaller, simpler sites compared to larger properties run by major institutions.

Search Page Rankings The search result ranking of a site represents a site’s popularity, as cap-
tured by a multitude of factors including page rank and query relevance. We plot the distribution
of search ranking among sites in Figure 8.3c. As an alternative metric to search ranking, we also
calculate the Alexa ranking of hijacked sites. We observe that Search Quality sites skew towards
higher search rankings compared to Safe Browsing, a bias introduced by cloaking and scam-based
attacks targeting sites more likely to draw in visitors from Google Search. There are limits, how-
ever: we find less than 5% of compromised properties appear in the Alexa Top Million. Similarly,
compared to our random sample, hijacking disproportionately impacts lowly-ranked pages. Over-
all, 30% of Search Quality sites and 50% of Safe Browsing sites rank low enough to receive limited
search traction. This suggests that search result warnings may be ineffective for such properties
due to limited visibility, a factor we explore later in § 8.5.

Language For each site, we obtain Googlebot’s estimate of the site’s primary language, shown
in Table 8.2. We find that miscreants predominantly target English, Russian, and Chinese sites, but
all languages are adversely affected. We observe a substantially different distribution of languages
than the work by Provos et al., which studied exclusively malicious properties [162]. Their work
found that miscreants served over 60% of exploits from Chinese sites and 15% from the United
States. This discrepancy re-iterates that exploit delivery is often a separate function from web com-
promise, where the latter serves only as a tool for traffic generation. We observe other examples of
this specialization in our dataset: 10% of Safe Browsing incidents affect Chinese sites, compared
to only 1% of Search Quality incidents. Conversely, Search Quality is far more likely to target
English sites. These discrepancies hint at potential regional biases introduced by the actors behind
attacks.

Site Software Our final site annotation consists of the content management system (CMS) or
forum software that webmasters serve content from, when applicable. Of hijacked sites, 9.1%
from Safe Browsing and 13.8% from Search Quality include this annotation, compared to 10.3%
of sampled sites. We present a breakdown of this subsample in Table 8.3. Wordpress and Joomla
are both popular targets of hijacking, though this partly represents each system’s market share.
The popularity of DedeCMS and Discuz among Safe Browsing sites might be unexpected, but as
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Language Rnd. Sample Safe Browsing Search Quality

English 35.4% 46.9% 57.6%
Chinese 9.0% 10.0% 1.0%
German 7.2% 4.5% 2.5%
Japanese 6.0% 1.5% 4.6%
Russian 5.6% 9.9% 6.3%

Table 8.2: Top five languages for a random sample of websites versus sites falling victim to com-
promise. We find hijacking disproportionately impacts English, Russian, and Chinese sites.

Software Rnd. Sample Safe Browsing Search Quality

WordPress 47.4% 36.9% 39.6%
Joomla 10.7% 11.6% 20.4%
Drupal 8.3% 1.7% 9.4%
Typo3 3.4% 0.5% 0.9%
Vbulletin 3.3 % 0.8% 0.4%

Discuz 1.0% 7.6% 0.4%
DedeCMS 0.2% 13.9% 1.4%

Table 8.3: Top five software platforms for hijacked websites and significant outliers, when de-
tected. We find attacks target all of the top platforms. We note these annotations exist for only
10–13.8% of sites per data source.

Chinese platforms, this accords with the large proportion of Chinese Safe Browsing sites. Studies
have shown that historically attackers prioritize attacking popular CMS platforms [196].

8.5 Notification Effectiveness
We evaluate the effect of browser warnings, search warnings, and direct communication with web-
masters on remediation along two dimensions: the overall duration a site remains compromised
and the fraction of sites that never clean up, despite best efforts to alert the respective webmaster.
We also consider other influential factors such as whether symptoms of compromise are localized
to a single page or systemic to an entire site; and whether language barriers impede effective noti-
fication. To avoid bias from webmasters with prior exposure to infection, we restrict our analysis
to the first incident per site.3 (We explore repeated hijacking incidents later in § 8.6.) We reiterate
that our experiments lack a control, as outlined in § 8.3, due to our in situ measurements of a live

3 We filter sites who have appeared on the Safe Browsing or Search Quality blacklists prior to our collection
window. However, note it may be possible that sites were previously compromised and undetected. This filtering is
best effort.
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system that always sends at least some form of notification. As such, we restrict our evaluation to
a comparison between notification approaches and contrast our findings with prior work.

8.5.1 Aggregate Remediation Outcomes
To start, we explore in aggregate the infection duration of all websites identified by Safe Brows-
ing and Search Quality. We find that over our 11-month period, webmasters resolved 59.5% of
hijacking incidents. Breaking this down into time windows, 6.6% of sites cleaned up within a day
of detection, 27.9% within two weeks, and 41.2% within one month. Note that for the single-day
cleanup rate, we exclude Safe Browsing sites that were automatically re-scanned and de-listed
as we have no remediation information until two weeks after an infection begins. This does not
impact manually appealed Safe Browsing incidents or any Search Quality incidents. The 40.5%
of sites that remain infected at the end of our collection window have languished in that state for
a median of four months, with 10% of persistent infections dating back over eight months. Our
results indicate a slower remediation rate than observed by Vasek et al., who found 45% of 45
unnotified hijacked sites and 63% of 53 notified sites cleaned up within 16 days [195].

We recognize these numbers may be biased due webmasters not having enough time to redress
infections occurring towards the tail end of our collection window. If we repeat the aggregate
analysis only for hijacking incidents with an onset prior to January 1, 2015 (the first half of our
dataset), we find the resulting cleanup rate is 7% higher, or 66.7%. Breaking this down into time
windows, we find only a slight difference compared to our earlier analysis of the entire dataset:
6.4% of sites cleaned up within a day after detection, 28.2% within two weeks, and 42.1% within
one month. As such, given an infection that is older than a few months, we find the likelihood of
cleanup in the future tends towards zero.

8.5.2 Ranking Notification Approaches
We find that notification approaches significantly impact the likelihood of remediation. Browser
warnings, in conjunction with a WHOIS email and search warnings, result in 54.6% of sites clean-
ing up, compared to 43.4% of sites only flagged in Google Search as “hacked”. For webmasters
that previously registered with Search Console and received a direct alert, the likelihood of reme-
diation increases to 82.4% for Safe Browsing and 76.8% for Search Quality. These results strongly
indicate that having an open channel to webmasters is critical for overall remediation. Further-
more, it appears that browser interstitials (in conjunction with possible WHOIS email contact)
outperform exclusive search warnings. Assuming the two compromise classes do not differ sig-
nificantly in remediation difficulty, this suggests that browser warnings and WHOIS emails stand
a better chance at reaching webmasters. This is consistent with our observation in § 8.4 that the
majority of hijacked sites have a low search rank, impeding visibility of search warnings. Another
possible explanation is that browser interstitials create a stronger incentive to clean up as Safe
Browsing outright blocks visitors, while Search only presents an advisory.

For those sites that do clean up, we present a CDF of infection duration in Figure 8.4 split
by the notifications sent. We omit the 37.8% sites that Safe Browsing automatically confirmed as
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Figure 8.4: CDFs of the infection duration for Safe Browsing and Search Quality sites that even-
tually recover, dependent on whether they received Search Console messages or not. Direct com-
munication with webmasters significantly reduces the duration of compromise.

cleaned from this analysis as we lack data points other than at a 14-day granularity. We note that
after 14 days, 8% more manually appealed sites were cleaned compared to automatically appealed
sites, indicating the latter population of site operators clean up at a slightly slower rate. As with
remediation likelihood, we also observe that direct communication with webmasters decreases the
time attackers retain access to a site. Within 3 days, 50% of Safe Browsing manually-appealed
sites clean up when notified via Search Console, compared to 8 days in the absence of Search
Console alerts. We observe a similar impact for Search Quality: 50% of webmasters resolve in
7 days, versus 18 days for unassisted sites. This indicates that incorporating direct, informative
messages expedites recovery.

8.5.3 Localized vs. Systemic Infections
Given the positive influence of notifications, an important question remains whether the complexity
of an infection influences the time necessary to clean up. While Search Console provides remedi-
ation tips, webmasters may naturally require more support (and detailed information) to contend
with systemic infections. To assess this, we rely on detailed logs provided by Search Quality on
whether harmful content for hijacked properties was systemic to an entire site or localized. In par-
ticular, Search Quality attempts to categorize incidents into three groups: isolated incidents, where
harmful content appears in a single directory (N=91,472); dispersed incidents that affect multiple
URL paths and subdomains (N=21,945); and redirection incidents, where sites become a gateway
to other harmful landing pages (N=21,627).

Figure 8.5 provides a breakdown of infection duration by hijacking symptoms irrespective
of whether webmasters received a Search Console alert. This measurement also includes sites
that have yet to recover. We find that webmasters are both more likely and quicker to clean up
isolated incidents. Of all resolved and ongoing isolated incidents, only 50% last longer than 27
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Figure 8.5: CDFs of the infection duration for different Search Quality incidents. We note curves
do not reach 100% because we consider the percentage over all sites, including those not yet clean
after 60 days. Cloaking (redirection) and systemic infections (dispersed) prove the most difficult
for webmasters to contend with.

days. In contrast, over 50% of dispersed incidents persist for longer than 60 days. The most
challenging incident type relates to redirect attacks where sites become cloaked gateways. Of
these, only 12% recover within 60 days. One possible explanation for low cleanup behavior is
that redirect-based attacks cloak against site operators, preventing webmasters from triggering the
behavior [199]. Alternatively, redirection attacks require far less code (e.g., .htaccess modification,
JavaScript snippet, meta-header) compared to attackers hosting entirely new pages and directories.
As such, it becomes more difficult for webmasters to detect the modifications. In aggregate, our
findings demonstrate that webmasters impacted by systemic or redirect incidents require far more
effort to recover. We discuss potential aids later in § 8.7.

8.5.4 Notification Language
To avoid language barriers and assist victims of a global epidemic, Search Console supports over
25 popular languages [119]. We investigate the impact that language translations might have on
recovery speeds, examining sites that received a Search Console message. Breaking down these
hijacking incidents by site language reveals only relatively small differences in the fraction of sites
cleaned after two weeks for the ten most popular languages. In particular, remediation rates vary
between 10% for Safe Browsing and 7% for Search Quality, indicating that the message language
does not drastically influence cleanup.

To evaluate the influence of language for the other notification vectors, we measure the cleanup
rate for non-Search Console registrants. Table 8.4 lists the percentage of Search Quality and Safe
Browsing sites recovered after two weeks. For Search Quality, remediation rates range 7%. Ex-
cluding Chinese sites, Safe Browsing sites are also similar, varying between 9%. Thus, language
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Language Search Quality Safe Browsing

English 24.7% 29.5%
Chinese 20.1% 2.7%
Russian 19.4% 22.3%
Spanish 24.6% 30.4%
German 22.9% 24.6%
French 20.9% 26.9%
Italian 25.8% 29.1%
Polish 26.4% 28.9%
Portuguese (Brazil) 24.1% 27.6%
Japanese 26.1% 28.2%

Table 8.4: Top 10 languages and remediation rates for Safe Browsing and Search Quality, restricted
to sites not registered with Search Console. We find consistent rates despite languages differences,
with the exception of Chinese due to low Safe Browsing usage in the region.

or geographic biases do not play a major factor for browser interstitials and search warnings, with
the exception of Chinese sites.

Given Chinese sites present an outlier, we explore possible explanations. Despite having the
largest Internet population in the world, China ranks 45th in the number of daily browser intersti-
tials shown, a discrepancy unseen for countries who speak the other top languages. Since we find
a significant number of Chinese sites serving malware, we argue this discrepancy is due to lagging
adoption of Safe Browsing in China, and potentially explains the slow Chinese remediation rate
for Safe Browsing. However, it remains unclear why Chinese Search Quality sites are comparable
to other languages. As there are popular search alternatives local to China, Google’s search result
warnings may have low visibility. Alternatively, it may be possible that Chinese sites flagged by
Search Quality are a different population that those for Safe Browsing; for example, these may
be Chinese language sites with a target audience outside of China and can benefit from external
signals.

8.5.5 Site Popularity
We correlate a site’s popularity (e.g., search ranking) with 14-day remediation rates for hijacking
incidents. In particular, we sort sites based on search ranking and then chunk the distribution into
bins of at least size 100, averaging the search ranking per bin and calculating the median cleanup
time per bin. We present our results in Figure 8.6. We find more popular sites recover faster
across both Safe Browsing and Search Quality. Multiple factors may influence this outcome. First,
popular sites have a strong incentives to maintain site reputation and business. Additionally, with
more visitors and a higher search ranking, it is more likely that a site visitor encounters a browser
interstitial or search page warning and informs the webmaster. We find this reaches a limit, with
Safe Browsing and Search Quality cleanup rates converging for search rankings greater than one
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Figure 8.6: The percentages of sites clean after two weeks across different search rankings.
Cleanup rate increases for higher ranked site, although the increase is stronger for Safe Brows-
ing than Search Quality, possibly due to browser interstitials being stronger alert signals.

million. Finally, site popularity may also reflect companies with significantly higher resources and
more technical administrators. Regardless the explanation, it is clear that less popular websites
suffer from significantly longer infections compared to major institutions. As discussed in § 8.4,
these lowly ranked sites comprise the brunt of hijacked properties.

8.5.6 Search Console Awareness
Webmasters who proactively register with Search Console may represent a biased, more savvy
population compared to all webmasters. As such, we may conflate the improved performance of
Search Console alerts with confounding variables. As detailed in § 8.3, not all hijacking incidents
trigger a Search Console alert, even if the site owner previously registered with the service. We
compare the likelihood of remediation for this subpopulation against the set of users who never
register with Search Console. After two weeks, 24.5% of sites registered with Search Console and
identified by Search Quality cleaned up, compared to 21.0% of non-registrants. Similarly for Safe
Browsing, 28.4% of Search Console sites cleaned up compared to 24.3% of non-registrants. While
Search Console registrants do react faster, the effect is small relative to the 15-20% increase in
remediation rate from Search Console messaging.

8.5.7 Modeling Infection Duration
Given all of the potential factors that impact infection duration, we build a model to investigate
which variables have the strongest correlation with faster recovery. We consider the following di-
mensions for each hijacking incident: detection source, Search Console usage, whether a Search
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Console message was sent, and all of a site’s demographic data including age, size, ranking, and
language. For site size and ranking, we use the log base 10. We exclude a site’s software platform
as we lack this annotation for over 86% of sites. Similarly, we exclude systemic versus localized
infection labels as these annotations exist only for Search Quality. Finally, we train a ridge re-
gression model [95] (with parameter λ = 0.1) using 10-fold cross validation on the first hijacking
incident of each site and its corresponding remediation time, exclusively for sites that clean up.
Ridge regression is a variant of linear regression that applies a penalty based on the sum of squared
weights, where λ is the penalty factor. This brings the most important features into focus, reducing
the weights of less important features.

Overall, our model exhibits low accuracy, with an average fit of R2 = 0.24. This arises due
to the limited dimensionality of our data, where sites with identical feature vectors exhibit signif-
icantly different infection durations. Despite the poor fit, we find Search Console alerts, search
ranking, and Search Console registration exhibit the largest magnitude weights, with weights of
-10.3, -6.1, and -3.3 respectively. This suggests that receiving a Search Console alert reduces in-
fection lengths by over 10 days on average, a stronger effect than from other factors. Interpreting
these results, we argue that direct communication with webmasters is the best path to expedited re-
covery, while popular websites naturally benefit from increased warning visibility and potentially
more technically capable webmasters. Conversely, we find other factors such as the corresponding
notification’s language or a site’s age and number of pages do not correlate with faster recovery. We
caution these are only weak correlations for a model with high error rate, but as our prior analysis
shows, they have the highest discriminating power at determining the lifetime of an infection.

8.6 Webmaster Comprehension
Webmasters that receive a warning or notification must be technically savvy enough to contend
with the corresponding security breach, or reach out to a third party that can help. Our dataset
provides a lens into three aspects of webmaster comprehension: webmasters incorrectly requesting
the removal of hijacking flags for their site when symptoms persist; sites repeatedly falling victim
to new hijacking incidents in a short time window; and whether the duration that a site remains
compromised improves after repeated incidents, a sign of learning over time.

8.6.1 Cleanup Attempts Before Successful
Both Search Console and Safe Browsing provide webmasters with a mechanism to manually ap-
peal hijacking flags if webmasters believe their site is cleaned up. This triggers a re-scan or manual
review by a Google analyst, after which the respective pipeline confirms a site is symptom-free or
rejects the appeal due to an ongoing incident. We focus on webmaster-initiated appeals, as opposed
to automated appeals that happen periodically, because the timestamp of a manual appeal denotes
when a webmaster is aware their site is compromised and is taking action. Overall, 30.7% of Safe
Browsing and 11.3% of Search Quality webmasters ever submit a manual appeal, of which 98.7%
and 91.4% were eventually successful.
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Figure 8.7: Number of manual appeals per hijacking incident. The majority of site operators
successfully appeal on their first attempt.

Figure 8.7 captures the number of webmaster cleanup attempts per hijacking incident before a
site was verified symptom-free. We find 86% of Safe Browsing sites and 78% of Search Quality
sites successfully clean up on their first attempt, while 92% of all site operators succeed in clean-
ing up within two attempts. Our findings illustrate that webmasters in fact possess the technical
capabilities and resources necessary to address web compromise as well as to correctly understand
when sites are cleaned. However, a small portion of the webmasters struggle to efficiently deal
with compromise. For both Safe Browsing and Search Quality, at least 1% of the webmasters
required 5 or more appeals.

For webmasters that fail at least one appeal, we measure the total time spent in the appeals pro-
cess in Figure 8.8. We find the median Safe Browsing site spends 22 hours cleaning up, compared
to 5.6 days for Search Quality. The discrepancy between the two systems is partially due to Search
Quality requiring human review and approval for each appeal, as opposed to Safe Browsing’s au-
tomated re-scan pipeline. Another factor is the fact that webmasters addressing Search Quality
incidents tend to require more appeals than Safe Browsing. Our findings illustrate a small fraction
of webmasters require a lengthy amount of time to manage their way through the appeal process,
with some still struggling after 2 months. In the majority of these cases, a long period of time
elapses between subsequent appeals, suggesting that these users do not understand how to proceed
after a failed appeal or they give up temporarily.

8.6.2 Reinfection Rates
After webmasters remedy an infection, an important consideration is whether the operator merely
removed all visible symptoms of compromise or correctly addressed the root cause. Webmasters
that fail to remove backdoors, reset passwords, or update their software are likely to fall victim to
subsequent attacks. Along these lines, we measure the likelihood that a previously compromised
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Figure 8.8: Total time webmasters spend cleaning up, exclusively for hijacking incidents where
site operators submit multiple appeals.

site falls victim to a second, distinct hijacking incident. To capture this behavior, we analyze the
subset of all hijacking incidents that webmasters successfully cleaned and calculate what fraction
Google flagged as hijacked again within one month. Given Safe Browsing and Search Quality
detection operates on a per-day granularity, our measurement requires a minimum of a one-day
gap between infection incidents.

We find that 22.3% of Search Quality sites and 6.0% of Safe Browsing sites become reinfected
within 30 days after their first compromise incident. Figure 8.9 provides a CDF of the time gap
between infections, restricted to those sites that become reinfected. We observe attackers reinfect
over 10% of Safe Browsing sites and over 20% of Search Quality sites within a single day. After 15
days, this increases to 77% of Safe Browsing sites and 85% of Search Quality sites. Some webmas-
ters may act too hastily during the first infection incident and recover incompletely. To determine
if this is a significant effect, we correlate the first infection duration with reinfection. We find
minimal correlation, with a Pearson coefficient of 0.07. Our findings demonstrate a non-negligible
portion of webmasters that successfully expunge hijacking symptoms fail to fully recover or im-
prove their security practices. These oversights thrust them back into the remediation and appeals
cycle yet again.

8.6.3 Learning and Fatigue
Webmasters facing reinfection can build on past experiences to recover quicker. However, they
may also tire of the remediation struggles, and respond slower. We explore whether repeat victims
of hijackings tend to improve (learn) or regress (fatigue) their response. A limitation is our inabil-
ity to determine whether two incidents are caused by the same infection source and what actions
were taken in recovery. Changes in remediation performance may be due to varying difficulties in



CHAPTER 8. REMEDYING WEB HIJACKING: NOTIFICATION EFFECTIVENESS
AND WEBMASTER COMPREHENSION 108

Figure 8.9: CDFs of fast reinfection times (within a month) for Safe Browsing and Search Quality
sites.

addressing different infections, or conducting different cleanup procedures for the same infection
source that vary in time consumption. Thus, our analysis of learning and fatigue indicates the ten-
dency of webmasters to improve or regress their response times to subsequent infections, without
identifying the causes of such changes.

For each site with multiple compromise incidents, we compute the rate at which remediation
time increases or decreases for subsequent reinfections. Specifically, per site, we generate a list of
infection durations, ordered by their occurrence number (e.g., first incident, second incident, etc.).
For each site, we then compute the slope of the linear regression between occurrence numbers (x
values) and infection durations (y values). A positive slope s indicates fatigue: each subsequent
infection tends to take s days longer to redress than the previous infection. Conversely, a negative
slope indicates learning: each subsequent infection lasts s days shorter.

Overall, we found that 52.7% of sites with multiple infections had a positive slope (indicating
fatigue), while 36.1% had a negative slope (learning); the remaining 11.2% of sites had a slope of
zero, suggesting that prior infections did not influence the remediation times of later reinfections.
These results indicate that sites are more likely to fatigue than learn. Among the sites that exhib-
ited remediation fatigue, the median increase in infection duration was 9.7 days per subsequent
infection. For sites that exhibited learning, the median decrease in infection duration was 5.0 days.
Thus, the effects of learning or fatiguing can be quite substantial.

8.7 Discussion
With over ten thousand weekly incidents, web compromise persists as a major problem for Internet
safety. Our findings demonstrate that direct webmaster contact significantly improves remediation,
but that establishing a communication channel remains a challenge. As a consequence, systems
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must fall back to less effective global warnings to reach a wide audience. We distill our mea-
surements into a set of potential directions for improving detection and recovery, touching on the
notion of responsible parties and user- vs. webmaster-oriented defenses.

8.7.1 Protecting Users vs. Webmasters
Safe Browsing and Search Quality both pursue a user-centric security approach that puts the safety
of visitors above the interests of sites affected by hijacking incidents. Based on informal analysis of
webmaster dialogues during the appeals and post-appeals process, we find that webmasters often
find hijacking to be a traumatic experience. This is exasperated in part by browser interstitials and
search warnings that potentially drive away visitors, reduce business, or mar site reputation. On the
other hand, as we have demonstrated, these very warnings serve as the side-channels through which
security services can communicate with webmasters, spurring remediation. Indeed, a majority of
webmasters expressed that they were unaware of a hijacking incident until they were notified or
saw a warning. Some webmasters requested that any site-level hijacking flag not take affect until
one week after notification. However, such an approach both requires a direct notification channel
(thus ruling out interstitials or search warnings) and also puts visitors at risk in the interim. These
anecdotes highlight the duality of security when it comes to web compromise and the decision that
web services must make in whose interests to prioritize.

8.7.2 Improving Remediation
Our study found that webmasters can significantly benefit from early notification of infections, but
that webmasters fail to redress 40.5% of hijacking incidents. We offer three approaches for im-
proving overall cleanup rates: increasing webmaster coverage, providing precise infection details,
and equipping site operators with recovery tools.

Notification Coverage Our findings showed that direct Search Console notifications outper-
formed global warnings, but that only 22% of Search Quality incidents and 32% of Safe Browsing
incidents had a corresponding webmaster registered with Search Console. This stems in part from
the requirement that webmasters must both know about Search Console and proactively register
an account. While email may seem like an attractive alternative channel, we argue that identifying
a point of contact remains the most significant hurdle. The study in Chapter 7, as well as other
works [50, 195], relied on WHOIS abuse contacts, though it is unclear what fraction of recipients
received or opened the notification. For our study, we were unable to independently assess the ef-
ficacy of Safe Browsing’s email notifications due to their tight coupling with browser interstitials.
However, given that webmasters cleaned up 51% more Safe Browsing incidents when a Search
Console email was triggered versus not, it is clear that WHOIS-based emails often fall into the
void. While hosting providers are also well-positioned, the lack of a uniform protocol or API to
alert hosted sites remains a barrier to adoption. Instead, we argue that notifications should expand
to services with broader reach among webmasters such as social networks and analytics or ads
platforms.
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Notification Content A common theme among webmaster appeals was the desire for notifica-
tions with more detailed information about precisely what pages served harmful content. As our
analysis of appeals found, 14–22% of webmasters lacked sufficient expertise or example code to
clean up on their first attempt. As Vasek et al. previously showed, including more detailed notifi-
cations expedites remediation [195]. Potential improvements might include screenshots of rogue
pages, a tool for accessing a crawler’s perspective of injected content, or more detailed diagnostic
information. Alternatively, in the absence of a direct notification, browser interstitials and search
warnings could include information targeted directly at webmasters rather than merely visitors.
This is a tacit recognition that global warnings play a key role in recovery. That said, detailed logs
may steer webmasters towards addressing symptoms of compromise rather than the root cause,
yielding an increase in repeated hijacking incidents. We investigate notification content further in
subsequent chapters.

Recovery Tools While our findings demonstrate that many webmasters successfully recover,
we are aware of few tools that help with the process. Such tools would decrease the duration
of compromise and likelihood of reinfection. However, a question remains whether such tools
generalize across attacks or not. Soska et al. found that attackers commonly exploit the same
vulnerable software [177]. As such, it may be better to proactively notify sites of outdated software
rather than wait till a hijacking incident, side-stepping the challenge of cleaning up specialized
payloads.

8.7.3 Responsible Parties
The final challenge we consider is who should assume the responsibility for driving remediation.
Site operators are best positioned to redress hijacking incidents, but our and prior work has shown
that webmasters are often unaware their site is compromised until an outside alert. Alternatively,
hosting providers own the serving infrastructure for compromised sites, of which security scanning
could be a service. However, doing so comes at a financial cost or technical burden; today, few
providers scan for harmful content or vulnerabilities [44]. Finally, ISPs, browser vendors, and
search engine providers can enact incentives to spur action, but ultimately they possess limited
capacity to directly help with remediation. These factors—representing the decentralized ideals
of the Internet—make web compromise more challenging to address than account or credit card
breaches where a centralized operator responds. The security community must determine which
parties should bear the most responsibility for attending to compromised sites; what actions the
parties should and should not pursue; and which mechanisms to employ to hold each accountable.
Until then, compromise will remain an ongoing problem.

8.8 Conclusion
In this chapter, we explored the influence of various notification techniques on remediation like-
lihood and time to cleanup. Our results indicate that browser interstitials, search warnings, and
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direct communication with webmasters all play a crucial role in alerting webmasters to compro-
mise and spurring action. Based on a sample of 760,935 hijacking incidents from July, 2014–June,
2015, we found that 59.5% of notified webmasters successfully recovered. Breaking down this ag-
gregate behavior, we found Safe Browsing interstitials, paired with search warnings and WHOIS
emails, resulted in 54.6% of sites cleaning up, compared to 43.4% of sites flagged with a search
warning alone. Above all, direct contact with webmasters increased the likelihood of remediation
to over 75%. However, this process was confounded in part by 20% of webmasters incorrectly han-
dling remediation, requiring multiple back-and-forth engagement with Safe Browsing and Search
Quality to re-establish a clean site. Equally problematic, a sizeable fraction of site owners failed
to address the root cause of compromise, with over 12% of sites falling victim to a new attack
within 30 days. To improve this process moving forward, we highlighted three paths: increasing
the webmaster coverage of notifications, providing precise infection details, and equipping site
operators with recovery tools or alerting webmasters to potential threats (e.g., outdated software)
before they escalate to security breaches. These approaches address a deficit of security expertise
among site operators and hosting providers. By empowering small website operators—the largest
victims of hijacking today—with better security tools and practices, we can prevent miscreants
from siphoning traffic and resources that fuel even larger Internet threats.
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Chapter 9

Exploring Effective
Vulnerability Notifications

9.1 Introduction
In Chapters 7 and 8, we discussed studies that revealed the effectiveness of security notifications
across distinct security contexts. While the later work (Chapter 8) began exploring factors that
influenced the impact of a notification campaign, it analyzed a live system in situ and thus did
not execute fully controlled experiments. In this study, we perform Internet-scale multivariate
controlled experiments to systematically explore not only if and when Internet-scale outreach is
effective, but how best to conduct these efforts. In particular, we address (1) who to notify (e.g.,
WHOIS contacts versus national CERTs versus US-CERT), (2) the role of notification content
(e.g., do reporters need to devise detailed messages or do short ones suffice), (3) the importance of
localization (e.g., what role does native language play in notification response rates), and (4) how
these considerations vary with the nature of the vulnerability (including whether for some vulner-
abilities notification appears hopeless).

We evaluate these questions empirically in the context of notification campaigns spanning three
different vulnerability categories: publicly accessible industrial control systems, misconfigured
IPv6 firewalls, and DDoS amplifiers. Using large-scale Internet scanning to identify vulnerable
hosts and then monitor their behavior over time post-notification, we infer the effects of different
notification regimes as revealed by the proportion and timeliness of contacts remediating their
vulnerable hosts.

Our results indicate that notifications can have a significant positive effect on patching, with
the best messaging regimen being directly notifying WHOIS contacts with detailed information
within the message itself. An additional 11% of contacts addressed the security issue when notified
in this fashion, compared to a control. However, we failed to push the majority of contacts to take
action, and even when they did, remediation was often only partial. Repeat notifications did not
further patching. We additionally characterize the responses we received through our notification
campaigns, of which 96% of human-sent responses were positive or neutral. Given these promising
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Dataset Hosts WHOIS Abuse
Contacts

Hosts with
WHOIS Contacts

ICS 45,770 2,563 79.7%
IPv6 180,611 3,536 99.8%
Ampl. 83,846 5.960 92.4%

Table 9.1: Vulnerable Hosts—We notified network operators about three classes of vulnerabilities
found in recent studies: publicly accessible industrial control systems (ICS), hosts with misaligned
IPv4 and IPv6 firewall policies, and DDoS amplifiers (NTP, DNS, and Chargen).

yet modest findings, it behooves the security community to more deeply investigate vulnerability
notifications and ways to improve their efficacy. Our methodology and results form the basis for
establishing initial guidelines to help drive future efforts.

The work in this chapter appeared at the USENIX Security Symposium [112].

9.2 Methodology
To measure notification efficacy and to understand how to construct effective notifications, we
notified network operators while varying aspects of the notification process. In this section, we
detail the datasets of vulnerable hosts, the variables we tested, and how we tracked remediation.

9.2.1 Vulnerable Hosts
We notified operators about the three classes of vulnerabilities listed below. We show the popula-
tion of vulnerable hosts in Table 9.1.

Publicly Accessible Industrial Control Systems Industrial control systems (ICS) are pervasive
and control physical infrastructure ranging from manufacturing plants to environmental monitor-
ing systems in commercial buildings. These systems communicate over a myriad of domain and
manufacturer specific protocols, which were later layered on Ethernet and TCP/IP to facilitate long
distance communication. Never designed to be publicly accessible on the Internet, these protocols
lack important security features, such as basic authentication and encryption, but nonetheless are
frequently found unsecured on the public Internet. To identify vulnerable ICS devices, Mirian et al.
extended ZMap [66] and Censys [63] to complete full IPv4 scans for several ICS protocols: DNP3,
Modbus, BACnet, Tridium Fox, and Siemens S7 [132]. In total, they found upwards of 46 K ICS
hosts that were publicly accessible and inherently vulnerable.

We coordinated with Mirian et al. to complete daily scans for each protocol against the public
IPv4 address space from January 22–24, 2016. We limited our study to the 45.8 K hosts that were
present all three days to reduce the noise due to IP churn. To track the impact of our notifications,
we continued the daily scans of these hosts using the same methodology.
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Misconfigured IPv6 Firewall Policies Czyz et al. found that 26% of IPv4/IPv6 dual-stack
servers and routers have more permissive IPv6 firewall policies compared to IPv4, including for
BGP, DNS, FTP, HTTP, HTTPS, ICMP, MySQL, NTP, RDP, SMB, SNMPv2, SSH, and Telnet
access [57]. For example, twice as many routers have SSH accessible over IPv6 compared to
IPv4. Given the presumed rarity of IPv6-only services, this likely indicates a misconfiguration and
potential security issue.

To identify dual-stack servers, Czyz et al. looked for hostnames in the Rapid7 DNS ANY
dataset [167] that had both A and AAAA records. After filtering out automatically generated
hostnames, they identified 520 K dual-stack servers. To find routers, the team performed reverse
DNS lookups and subsequent A and AAAA lookups for hosts in the CAIDA Ark dataset [43],
identifying 25 K routers. Czyz et al. then scanned these hosts using Scamper [118] to identify
firewall inconsistencies.

We scanned the hosts that Czyz et al. identified over a 25 day period from December 31,
2015 to January 24, 2016. We limited our study to the 8.4 K routers and 172.2 K servers that
were consistently available during that period. Similar to the ICS measurements, we continued to
perform daily scans using the same methodology to track the impact of our notifications.

DDoS Amplifiers Several UDP protocols allow attackers to launch distributed denial of service
attacks when improperly configured [170]. In this scenario, an attacker spoofs a small request to a
misconfigured server, which then sends a large response to the victim. For example, an attacker can
spoof a DNS lookup to a recursive DNS resolver, which will then send the full recursive lookup
to the victim’s machine. We identified 152 K misconfigured hosts that were actively being used
to launch DDoS attacks over NTP, DNS, and Chargen by monitoring the sources of DDoS attacks
against a university network between December 11–20, 2015.

We restricted our notifications to the vulnerable hosts that were consistently available during
our daily scans from December 21, 2015 to January 26, 2016. In total, we discovered 5.9 K Char-
gen amplifiers, 6.4 K NTP amplifiers, and 71.5 K DNS amplifiers on 83.8 K distinct IP addresses.
We continued to track these hosts by performing daily protocol scans (e.g., Chargen requests, NTP
monlist commands, and DNS recursive lookups).

In each case, we coordinated with the studies’ authors to ensure that they did not simultaneously
notify operators. However, we do note that groups have previously sent notifications to DDoS
amplifiers [110].

9.2.2 Experiment Variables
To understand how to best construct and route notification messages, we performed notifications
using several methodologies and measured the differences in remediation. We specifically aimed
to answer the following questions:

Who should researchers contact? Researchers have several options when deciding where they
should report vulnerabilities, including directly contacting network operators, notifying national
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CERTs, and asking their own country’s CERT to disseminate the data to other CERT groups. We
tested three options: (1) notifying the abuse contact from the corresponding WHOIS record, (2)
geolocating the host and contacting the associated national CERT, and (3) asking our regional
CERT (US-CERT) to propagate the information.

How verbose do messages need to be? It is not clear how much information researchers need
to include when notifying operators. For example, are notifications more effective if researchers
include detailed remediation steps or will such instructions go unheeded? We sent three types
of messages: (1) a terse message that briefly explained that we discovered the vulnerability with
Internet-wide scanning, and the impact of the vulnerability (e.g., for ICS notifications, we wrote
“These devices frequently have no built-in security and their public exposure may place physical
equipment at risk for attack.”), (2) a terse message with a link to a website with detailed infor-
mation, and (3) a verbose email that included text on how we detected the problem, vulnerability
details, and potential remediation steps. We provide the full text of our different messages in
Appendix B.2–B.7.

Do messages need to be translated? We tested sending messages in English as well as messages
translated by native technical speakers to several local languages.

9.2.3 Group Assignment
To test the impact of our experiment variables, we randomly formed experiment groups that re-
ceived different notification regimens. Here we describe our process for constructing these groups.

For each IP address, we extracted the abuse contact from the most specific network allocation’s
WHOIS record. For the 16.7% of dual-stack hosts with different contacts extracted from IPv4 and
IPv6 WHOIS records, we used the contact with the deepest level of allocation, and preferred IPv6
contacts when all else was equal (4.3% of dual-stack hosts).

To test each variable, we split the abuse contacts from each vulnerability into treatment groups
(Table 9.2). For the ICS and amplifier experiments, we randomly allocated one quarter of abuse
contacts to the control group (Group 1), one quarter to the CERT groups (half US-CERT, half
national CERTs), and the remaining half to the WHOIS groups. For IPv6, to act in a responsible
manner we needed to complete some form of notification for all hosts to ensure adequate disclosure
prior to the release of the corresponding study [57] in February 2016. This prevented us from using
a true control group. Instead, we approximate the behavior of the control group using the 25 days
of daily scans prior to our notifications. We allocated a third of the IPv6 contacts to the CERT
groups, and the remainder to the WHOIS groups.

For the vulnerable hosts assigned to the CERT groups, we geolocated each IP using Max-
Mind [126] and identified the associated CERT. We note that not all countries have an established
CERT organization. This was the case for 2,151 (17%) IPv6 hosts, 175 (8%) ICS devices, and
2,156 (19%) DDoS amplifiers. These hosts were located in 16 countries for IPv6, 26 countries for
ICS, and 63 countries for DDoS. Many of these countries are in Africa or Central America (e.g.,
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Group ICS IPv6 Ampl.

Control 657 3,527 1,484
National CERTs 174 650 379
US-CERT 493 578 1,128
WHOIS: English Terse 413 633 777
WHOIS: English Terse w/ Link 413 633 777
WHOIS: English Verbose 413 632 777
WHOIS: Language – Terse

Germany: German 71
Germany: English 72
Netherlands: Dutch 32
Netherlands: English 32
Poland: Polish 37
Poland: English 37
Russia: Russian 123
Russia: English 123

WHOIS: Language – Verbose
Germany: German 70
Germany: English 72
Netherlands: Dutch 32
Netherlands: English 29
Poland: Polish 36
Poland: English 36
Russia: Russian 123
Russia: English 123

Table 9.2: Notification Groups—We aggregated vulnerable hosts by WHOIS abuse contacts and
randomly assigned these contacts to notification groups. Here, we show the number of contacts no-
tified in each group. Note that for the language experiments, we tested terse and verbose messages
for several countries, both translated and in English.

Botswana, Ethiopia, and Belize), or are smaller island states (e.g., American Samoa, Antigua and
Barbuda, and the Bahamas). We did not include hosts without a CERT organization in the CERT
experiment (although we later passed them along to US-CERT).

In total, 64 CERTs were responsible for IPv6 hosts, 57 for ICS, and 86 for amplifiers. To
compare directly contacting national CERTs versus having US-CERT distribute information to
them, we randomly divided the affected national CERTs into two halves. For national CERTs in
the first half, we contacted them directly with vulnerable hosts in their region (Group 2). We sent
the remaining hosts for CERTs in the second half to US-CERT (Group 3).

We obtained native translations of our WHOIS messages for several countries. We allocated
contacts in the WHOIS groups that were in those countries (based on the WHOIS records) for
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our language experiment, further detailed in Section 9.3.3. The remaining contacts were randomly
split into three groups based on message verbosity: terse (Group 4), terse with a link (Group 5),
and verbose (Group 6).

9.2.4 Notification Process
We sent notification emails with the FROM and REPLY-TO header set to an institutional mailing
list: security-notifications@berkeley.edu. In each message, we attached a CSV file that contained
the list of vulnerable hosts along with the latest scan timestamp and the list of vulnerable protocols.
We also included a link to an anonymous survey, which asked for the organization’s perspective
on the reported security issue and whether they found our detection and notification acceptable.
The messages were sent from a server in UC Berkeley’s network, which was listed as a valid mail
server by UC Berkeley’s SPF policy. We note that we also included a randomly generated identifier
in each email subject that enabled us to match a reply to the original notification.

9.2.5 Tracking Remediation
We tracked the impact of different notification methodologies by scanning all hosts for several
weeks following our notifications. As our scanning methods tested the reachability of several
services, we may have falsely identified a host as patched due to random packet loss or temporary
network disruptions. To account for this, we only designated a host as patched if it did not appear
vulnerable in any subsequent scans. We leveraged the last day’s scan data for this correction, but
did not otherwise use it in our analysis as it lacked subsequent data for validation.

One limitation in our tracking is the inability to distinguish true patching from network churn,
where the host went offline or changed its IP address. While we can still conduct a comparative
analysis against our control group, we acknowledge that our definition of patching is a mixture of
true patching and churn. We investigated whether we could better approximate true remediation
by distinguishing between RST packets and dropped packets. We compared the proportion of
RSTs and drops between our control group and our notified groups two days after notification and
two weeks after notification. At both times, we observed nearly identical proportions between the
control and notified groups—in all cases less than 20% of hosts sent RST packets. This indicates
that RST packets are not a reliable signal for remediation, as most hosts did not send RST packets
even when truly fixed.

Unless stated otherwise, we consider a host as having taken remediation steps for a particular
vulnerability if any of its affected protocols were detected as fixed. Likewise, we say a notification
contact has taken remediation steps if any of its hosts have patched. We define the remediation rate
as the percentage of notification contacts that have taken remediation steps. This definition is over
contacts rather than hosts as we are measuring the impact of notifying these contacts, and contacts
differ in the number of affected hosts.



CHAPTER 9. EXPLORING EFFECTIVE VULNERABILITY NOTIFICATIONS 118

9.2.6 Ethical Considerations
We followed the guidelines for ethical scanning behavior outlined by Durumeric et al. [66]: we
signaled the benign intent of our scans through WHOIS entries and DNS records, and provided
project details on a website on each scanning host. We respected scanning opt-out requests and
extensively tested scanning methods prior to their deployment.

The ethics of performing vulnerability notifications have not been widely discussed in the se-
curity community. We argue that the potential good from informing vulnerable hosts outweighs
the risks. To minimize potential harm, we only contacted abuse emails using addresses available
in public databases. Additionally, we messaged all unnotified contacts at the conclusion of the
study. We offered a channel for feedback through an anonymous survey with questions about the
notified organization (described in Appendix B.1). We note that because we only collected data
about organizational decisions and not individuals, our study did not constitute human subjects
research (confirmed by consulting the UC Berkeley IRB committee). Nevertheless, we followed
best practices, e.g., our survey was anonymous and optional.

9.3 Results
For both ICS and IPv6, our notifications had a significant impact on patch rates. In our most suc-
cessful trial—verbose English messages sent directly to operators—the patch rate for IPv6 contacts
was 140% higher than in the control group after two weeks. For ICS, the patch rate was 200%
higher. However, as can be seen in Figure 9.1b, none of our notifications had significant impact
on DDoS amplifiers. This is likely due to the extensive attention DDoS amplifiers have already
received in the network operator community, including several prior notification efforts [170]. In
addition, these amplifiers were already previously abused in DDoS attacks without administra-
tive responses, potentially indicating a population with poor security stances. It is also important
to note that our best notification regimen resulted in at most 18% of the population remediating.
Thus, while notifications can significantly improve patching, the raw impact is limited. In the re-
mainder of this section, we discuss the impact of each experiment variable and how this informs
how we should construct future notifications.

To characterize the performance of our trial groups, we measure the area under the survival
curve for each group, which captures the cumulative effect of each treatment. To determine if ob-
served differences have statistical significance, we perform permutation tests with 10,000 rounds.
In each round, we randomly reassign group labels and recompute the area differences under the
new assignments. Intuitively, if the null hypothesis is true (i.e., no significant difference between
two groups), then this random reassignment will only reflect stochastic fluctuation in the area dif-
ference. We assess the empirical probability distribution of this measure after the permutation
rounds, allowing us to determine the probability (and significance) of our observations.

All reported p-values are computed via this permutation test. We use a significance threshold
of α = 0.05, corrected during multiple testing using the simple (although conservative) Bonferroni
correction, where each test in a family of m tests is compared to a significance threshold of α

m .
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(c) ICS Services

Figure 9.1: Remediation Rates—We show the remediation rate for each variable we tested. We
find that verbose English notifications sent to network operators were most effective for IPv6 and
ICS. Note the varying Y axes.

Ideally, we would have selected this procedure as part of our original experimental design. Un-
fortunately, we only identified its aptness post facto; thus, its selection could introduce a selection
bias, a possible effect that we lack any practical means to assess.

9.3.1 Notification Contact
For both IPv6 and ICS notifications, directly notifying WHOIS abuse contacts was most
effective—particularly early on. Two days after IPv6 disclosure, direct verbose notifications re-
sulted in 9.8% of the population remediating, compared to 3.1% when contacting national CERTs
and 1.4% by contacting US-CERT. For ICS, direct notifications promoted 6.8% of the population
to patch, more than national CERTs (1.7%) and US-CERT (1.0%). In both cases, direct notifica-
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(b) ICS Services

Figure 9.2: Differences between National CERTs—We show the remediation rate for each di-
rectly notified national CERT after two weeks. The size of a data point is proportional to the
number of abuse contacts in the country. We directly contacted 32 CERTs for IPv6, and 29 CERTs
for ICS. We observe notable differences between CERT groups. However, none are statistically
significantly different than the control group. This may be because there are too few hosts for some
countries, and that the Bonferroni correction is conservative.

tions were notably better than no notifications. As can be seen in Figures 9.1a and 9.1c, this gain
was persistent. After two weeks, the patch rate of directly notified IPv6 contacts was 2.4 times as
high as the control, and three times as high for ICS contacts.

To determine if these observations are statistically significant, we perform permutation tests
using the Bonferroni correction. With six treatment groups, the family of pairwise comparisons
includes 15 tests, giving an individual test threshold of α = 0.0033. Under the permutation test,
the gains that direct verbose notifications had on the CERTs and the control group are statistically
significant for both IPv6 and ICS, with all p-values less than 0.0001 except when comparing ICS
verbose notifications with national CERTs (p = 0.0027).
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Figure 9.3: Remediation Rates for Website Visitors—The contacts who viewed our informa-
tional website remediated at a higher rate than those who received a verbose message. However,
despite this, less than 40% of the contacts who visited the site fixed the vulnerability.

Notably, US-CERT—our local CERT who we asked to disseminate data to other CERT
groups—had the lowest patch rate, which is statistically indistinguishable from the control group
that had no notifications. We suspect that US-CERT did not disseminate the data to any other
CERT groups or notify any US operators. One national CERT included in the report to US-CERT
informed us they had not received any notices from US-CERT. As seen in Figure 9.2, there were
stark differences between CERT groups—some duly notified operators, while others appear to
have ignored our disclosures.

Overall, this suggests that the most effective approach—in terms of both the number of hosts
patched and the rate of patching—is to directly notify network operators rather than contact CERT
groups.

9.3.2 Message Verbosity
To determine what information needs to be included in notification messages, we sent three types
of emails: (1) verbose, (2) terse, and (3) terse with a link to a website with additional details.



CHAPTER 9. EXPLORING EFFECTIVE VULNERABILITY NOTIFICATIONS 122

0 2 4 6 8 10 12 14
Days after Notification

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f A
bu

se
 C

on
ta

ct
s

w
ith

 S
om

e 
Re

m
ed

ia
tio

n

Verbose English (72 contacts)
Terse English (72 contacts)
Verbose Translation (71 contacts)
Terse Translation (70 contacts)
Control (418 contacts)
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(b) Misconfigured IPv6 - Dutch Contacts

Figure 9.4: Remediation Rates for Translated Messages—We find that sending verbose English
messages was more effective than translating notifications into the language of the recipient. Note,
though, that this observation is limited to the small set of languages we were able to evaluate.

We observed the best remediation by contacts who received verbose messages. For IPv6, verbose
messages were 56.5% more effective than either terse messages after two days and 55.5% more
effective for ICS. However, as can be seen in Figure 9.1, the differences between verbose and terse
messages decreased over time.

Using permutation testing and the Bonferroni correction, we find that the differences between
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Figure 9.5: Daily Changes in Remediation Proportions—We show the differences in the propor-
tions of remediated contacts from one day to the next. We find that most contacts that remediated
fixed the problem immediately after disclosure. After a few days, contacts returned to remediating
at the same rate as the control group.

the message types are not statistically significant for IPv6 and ICS. However, given the earlier
benefits that verbose messages had for both data sets, we argue notifiers may still want to prefer
verbose messages over terse ones. We discuss this effect further in Section 9.3.4 and note that
further investigation of this variable is warranted.

We tracked the remediation rate of contacts who visited the linked website, as shown in Fig-
ure 9.3. We note that all of the information included in the verbose message was available on the
linked website and that 16.8% of users who received an email with a link visited the site. This
indicates that a sizable population of users engaged with our site, but many would not patch even
after visiting the link. Specifically, no more than 40% of website visitors patched. Thus, even
when our messages successfully reached contacts, the majority did not take action.
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(b) ICS Services

Figure 9.6: Contact Remediation per Country—We show the percentage of contacts who re-
mediated per country after two weeks. The data sizes are proportional to the number of contacts.
Green data points surrounded by an orange star signify countries with a remediation rate statisti-
cally better than the control group’s, under the permutation test using the Bonferroni correction.

9.3.3 Message Language
To investigate whether notifications need to be translated into recipients’ local languages or can be
sent in English, we distributed translated messages for two countries for DDoS and IPv6 notifica-
tions. For DDoS amplifiers, we obtained native Russian and Polish translations—for the countries
with the third and fourth largest number of vulnerable organizations. For IPv6, we translated mes-
sages into German and Dutch, for the second and third largest countries. The population of contacts
in non-English speaking countries for the ICS dataset was too low to provide significant meaning.
We randomly split the WHOIS contacts in each country into four groups that vary language and
verbosity.
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We observe no significant effect from language for DDoS notifications. This is unsurprising
given our notifications’ overall lack of effect on DDoS amplifiers. For IPv6, as seen in Figure 9.4,
we observe that translated messages resulted in worse patching than when left in English. Several
survey respondents were surprised at receiving translated messages from United States institutions
and initially suspected our notifications were phishing messages or spam, which may explain the
lower patch rate. The additional overhead of translating messages paired with less successful
disclosure suggests that it may be most effective to send notifications in English. However, we note
that our results are limited to the small set of languages we were able to obtain reliable translations
for, and deeper investigation into the effects of message language is warranted.

9.3.4 Staying Power of Notification’s Effect
As can be seen in Figure 9.5, our notifications caused a near immediate increase in patching.
However, this increased patching velocity did not persist. In other words, we find that the effects
of notifications were short-lived—on the order of several days. The day after notifications were
sent, we observe large increases in the remediation proportions for IPv6 and ICS notified groups,
as operators responded to our reports. However, we also see that the daily changes in remediation
proportions drastically dropped by the second day.

For IPv6, the daily changes in remediation proportions for all notified groups leveled off and
matched that of the control group from the fifth day onward. We also witness a drop off in the
daily remediation proportion changes for ICS, although a non-trivial amount of change continued
throughout the first 10 days. Notably, the national CERTs first began accelerating remediation after
two days, a delay compared to WHOIS experiment groups. For amplifiers, there was little change
in the remediation rate over time, which is unsurprising given the limited effect of our notifications.

9.3.5 Geographic Variation
As with the national CERTs, we note variation in the patching rates between countries. This sug-
gests that the geographic distribution of vulnerable contacts may influence a notification’s outcome.
As visible in Figure 9.6, the United States, Great Britain, India, and Finland were the only coun-
tries that patched significantly better than the control group. However, we note that some countries
had too few hosts to be statistically significant, given the conservative nature of the Bonferroni
correction.
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(b) Changes in the remediation proportions from one day to the
next.

Figure 9.7: Remediation Rates by Host Type—We find no significant difference in the remedia-
tion rate between servers and routers.
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(f) ICS Services - Control

Figure 9.8: Protocol Remediation Rates—We track the remediation rate for each specific protocol
within the WHOIS verbose group and the control group. We note that operators patched some
protocols significantly faster than others (e.g., Telnet versus FTP).
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9.3.6 Variation over Protocols
In Figure 9.8, we observe variation in the patch rates for different protocols within each vulner-
ability (e.g., Modbus versus S7 for ICS). As seen in Figure 9.8a, network administrators reacted
most to open IPv6 NTP, Telnet, and SSH services, and least to FTP, with over a 200% difference
in the remediation proportions. This variation is not reflected in the control group (Figure 9.8d),
where all protocols exhibited similar behavior. This may reflect an increased likelihood that certain
services were unintentionally left accessible, or that operators assessed different levels of risk for
allowing different protocols to be reachable.

Operators also responded differently for the multiple ICS protocols (Figure 9.8c), but the vari-
ation is also reflected for contacts in the control group (Figure 9.8f). BACnet, Fox, and Modbus
devices were fixed at similar rates. While the remediation of S7 systems initially lagged behind,
there was a significant upswing in action after three days, with nearly 18% of contacts with vul-
nerable S7 systems patching after 8 days.

Surprisingly, no DNP3 systems had been patched within 10 days of notification (out of 5 con-
tacts). We note that these five contact groups belonged to Internet service providers—not individ-
ual organizations. We similarly note that DNP3 differs from the other protocols and is specifically
intended for power grid automation. These devices may be remote power stations which require
more complex changes than local devices (e.g., installation of new hardware versus a configuration
change).

While we observe variation between amplifier protocols, these fluctuations are similar in both
the notified and control group. Given the limited effect of our DDoS amplifier notifications, these
differences likely reflect the varying natural churn rates of these hosts.

9.3.7 Host Type
When notifying IPv6 operators, we were able to distinguish between servers and routers. To assess
the difference between device types, for each type, we only consider contacts with a vulnerable
host of that type. We count a contact as having performed some remediation if that contact fixed
at least one host of that type.

We observe that servers and routers remediated at similar rates for the first four days, after
which router remediation dropped off and fell significantly below that of servers (Figure 9.7a).
However, servers also naturally patched at a higher rate than routers in the control group. This
difference accounts for the gap between notified servers and routers after four days. This is also
visible in Figure 9.7b, where the daily changes in the remediation proportions converged after four
days. After 14 days, notified contacts with servers fixed at a rate 44% higher than notified contacts
with routers. The divergence in the control group was similar at 48%. This indicates that overall,
network administrators respond to vulnerabilities in servers and routers about equally.
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Figure 9.9: Remediation Completeness—We find that most operators only fixed a subset of their
vulnerable hosts. For example, only 40% of the operators that fixed a single host fixed all hosts in
their purview.

9.3.8 Degree of Remediation
Up to this point, we designated a contact as having patched if any host under its purview was
patched. We now consider how well operators patched their hosts.

As can be seen in Figure 9.9, the majority of contacts did not patch all of their servers. Less
than 60% secured all hosts and we note that 30% of groups with 100% remediation were only
responsible for fixing one or two hosts. This highlights one of the challenges in the vulnerability
notification process: even if our messages reach a designated contact, that contact may not have
the capabilities or permissions to remediate all hosts. The multiple hops in a communication chain
can be broken at any link.
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(c) ICS Services

Figure 9.10: Re-Notifications—We find that a second round of notifications did not result in
increased remediation.

9.3.9 Repeated Notifications
Given that our notifications resulted in improved patching, a natural question is whether repeat
notifications promote further remediation. We conducted a second round of notifications for the
contacts that were directly sent verbose messages in the first round since these proved to be the most
effective. We randomly split contacts who had not remediated one month after our notifications
into two groups, one as a control group and one to receive a second round of notifications.

As can be seen in Figure 9.10, the patch rates between the re-notified group and the control
group were similar for all three vulnerabilities, indicating that repeat notifications are not effective.
This suggests that contacts who did not remediate during the first round of notifications either were
not the appropriate points of contact, or chose (either intentionally or due to lack of capabilities)
to not remediate. It is unlikely they simply missed or forgot about our original notification.
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9.4 Notification Reactions
We included a link to an anonymous survey in all of our notification emails as well as monitored
the email address from which we sent messages. In the two weeks following our disclosures, we
received 57 survey submissions and 93 human email replies. In this section, we analyze these
responses.

9.4.1 Email Responses
Of the 685 email responses we received, 530 (77%) were automated responses (e.g., acknowledg-
ment of receipt), 62 (9%) were bounces, and 93 (14%) were human responses (Table 9.3). For all
three vulnerabilities, over 70% of the human responses expressed positive sentiments. We received
only four negative emails, all of which concerned IPv6. Two stated that we were incorrectly using
the abuse contact; the other two noted that the open IPv6 services were intentional and asked to
be excluded from notifications in the future. None of the emails were threatening. We detail the
breakdown for each vulnerability type in Table 9.4.

Beyond expressing sentiments, 23 contacts requested additional information—primarily about
how we detected the vulnerabilities; two requested remediation instructions. Of those 23 contacts,
15 (65%) received terse notifications without a link to additional information, while 3 contacts
(13%) received verbose messages. We note that verbose messages both reduced follow-up com-
munication and resulted in the highest patching rate.

Unexpectedly, all five contacts who requested information about DDoS amplifiers asked for
evidence of DDoS attacks via network logs. This may be a result of the extensive attention am-
plifiers have received in the past, such that operators only respond to active abuse issues regarding
amplifiers.

Twelve IPv6 contacts rebutted our claim of vulnerability. Six stated that the inconsistency was
intentional; one was a honeypot; and five explained that the IP addresses we sent them no longer
pointed to the same dual-stack host, likely due to network churn. Two amplifier contacts claimed
we falsely notified, stating that their hosts were honeypots. However, we do note that these IPs
were seen as part of an attack and were therefore likely misconfigured honeypots.

Most human responses were in English, with eight (9%) in other languages: 3 Russian, 1 Ger-
man, 1 Czech, 1 Swedish, 1 French, and 1 Slovak. These non-English replies were in response to
English notifications and expressed gratitude; none requested additional information.

We note that the level of feedback we received regarding DDoS notifications was commensu-
rate with our other efforts, yet the patch response was minimal. This could indicate that operators
struggle with actually resolving the issue after encountering and responding to our messages, or
have become desensitized enough to DDoS issues to not take real action.

9.4.2 Anonymous Survey Responses
All of our notification messages contained a link to an anonymous seven question survey (Ap-
pendix B.1), to which we received 57 submissions. We summarize the results in Table 9.5.
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Response Types ICS IPv6 Ampl.

Automated 143 214 173
Human 22 48 23
Bounces 10 34 18

Total 175 296 214

Contacts w/ No Reply 85.9% 87.2% 92.8%

Table 9.3: Email Responses—We received 685 email responses to our notifications, of which 14%
were human replies.

Human Responses ICS IPv6 Ampl.

Positive Sentiments 17 35 19
Negative Sentiments 0 4 0
Neutral Sentiments 5 9 4

Request for Information 2 16 5
Taking Actions 12 17 15
False Positive Notification 0 12 2

Total 22 48 23

Table 9.4: Human Email Responses—We characterize the human email responses we received in
reply to our notifications.

Interestingly, 46% of respondents indicated that they were aware of the vulnerability prior to
notification, and 16% indicated that they had previously attempted to resolve the problem. This
contrasts with the survey results in the Heartbleed study (Chapter 7), where all 17 respondents
indicated they were aware of the Heartbleed vulnerability and had previously attempted to resolve
the problem. The widespread media attention regarding the Heartbleed bug may account for this
discrepancy, highlighting the differences in the nature of various vulnerabilities.

For DDoS amplifiers and ICS vulnerabilities, the majority of respondents expressed that they
were now taking corrective action (75% for DDoS amplifiers, 100% for ICS). For IPv6, only 56%
of respondents indicated they would fix the problem. Given the nature of the IPv6 notification, it
is likely that some of the misaligned policies were intentional.

Over 80% of respondents indicated that we reached out to the correct contact, who found
scanning and notifications acceptable and requested future vulnerability notifications. However,
this is a population with whom we successfully established communication. The accuracy of the
other contacts from whom we did not hear back could be lower.

Our survey also allowed respondents to enter free form comments. We received 17 IPv6 com-
ments, 4 DDoS amplifier comments, and 1 ICS comment. Of the IPv6 respondents, 5 thanked
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Survey Responses ICS IPv6 Ampl.

Aware of Issue 2/4 20/45 4/8
Taken Prior Actions 1/4 5/43 3/8
Now Taking Action 4/4 24/43 6/8
Acceptable to Detect 3/4 35/45 7/8
Acceptable to Notify 2/4 34/45 7/8
Would want Future Notifications 2/4 30/43 7/8
Correct Contact 1/3 37/43 6/8

Total 4 45 8

Table 9.5: Survey Responses—We included a link to a short, anonymous survey in all of our
notifications. We find that most respondents (54%) weren’t aware of the vulnerabilities, but found
our scanning and notifications acceptable (over 75%). Further, 62% of respondents stated they
were taking corrective actions and 71% of respondents requested future notifications.

us, 7 discussed how the misalignment could be intentional or that our detection was incorrect,
3 equated our messages to spam, and 2 noted that they initially thought our translated messages
were phishing messages because they expected English messages from an institution in the United
States. For amplifiers, we received four comments: two thanking us and two informing us not to
notify unless there is a real attack. Finally, there was only one ICS commenter, who suggested
contacting vendors instead of network operators, but thanked us for our notification.

The feedback we received from these survey answers and the email responses indicates an
overall positive reception of our notifications. While it may be that those who provided feedback
are more opinionated, these results suggest that further discourse on notifications is needed within
our community.

9.5 Discussion
Here we summarize the main results developed during our study, and the primary avenues for
further work that these suggest.

Effective Vulnerability Notifications Our results indicate that vulnerability notifications can
improve remediation behavior and the feedback we received from network operators was largely
positive. We conclude that notifications are most effective when detailed messages are sent directly
to WHOIS abuse contacts (at least when one lacks a channel such as Google Search Console
for webmasters, per Chapter 8). These notifications were most effective in our experiments and
resulted in an additional 11% of contacts addressing a vulnerability in response to our message.

On the one hand, this result provides clear guidance on how to best notify network operators.
On the other hand, the majority of organizations did not patch their hosts despite our notifica-
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tions. Even among those who patched at least one host, most did not fix all of their vulnerable
hosts. In the case of networks hosting DDoS amplifiers, no form of notification generated benefits
statistically significant over the control.

The failures to remediate could signal a number of problems, including:

1. failure to contact the proper parties who could best instigate remediation;

2. a need for better education about the significance of the vulnerability;

3. a need for better education about the remediation process;

4. administrative or logistical hurdles that proved too difficult for those parties to overcome;

5. or a cost-benefit analysis by those parties that concluded remediation was not worth the
effort.

In addition, we found the effects of our notification campaigns to be short-lived: if recipients
did not act within the first couple days, they were unlikely to ever do so. Repeat notifications did
not further improve remediation levels.

Thus, while we have developed initial guidance for conducting effective notifications, there
remain many unanswered questions as to how to best encourage operators to patch vulnerable
hosts.

Improving Centralized Notification Mechanisms We observed that relying on national and
regional CERT organizations for vulnerability notifications had either a modest effect (compared
to our direct notifications) or no effect (indistinguishable from our unnotified controls). While
certain national CERTs evinced improved levels of remediation, others either did not act upon the
information we reported, or if they did so, recipients ignored their messages. Thus, the community
should consider more effective mechanisms for facilitating centralized reporting, either within the
existing CERT system, or using some separate organizational structure. This need is quite salient
because the burden of locating and messaging thousands of individual contacts is high enough that
many researchers will find it too burdensome to conduct notifications themselves.

Open Ethical Questions The process of notifying parties regarding security issues raises a num-
ber of ethical questions. The community has already discussed some of these in depth, as in the
debates concerning “full disclosure.” Contacting individual sites suffering from vulnerabilities,
likewise, raises questions regarding appropriate notification procedures.

For example, WHOIS abuse emails are a point-of-contact that multiple notification efforts have
relied on, including the studies in Chapters 7 and 8 and other concurrent works [50,110,180,195].
However, these contacts are technically designated for reports of abusive, malicious behavior (a
point noted in the feedback we received as detailed in Section 9.4). While vulnerability reports
have a somewhat similar flavor, they do not serve the same purpose. It behooves the security
community to establish a standardized and reliable point-of-contact for communicating security
issues.
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Another question concerns whether the benefits of repeated notifications for the same vulnera-
bility outweigh the costs imposed on recipients. Some may derive no benefits from the additional
messages due to having no means to effectively remediate, yet must spend time ingesting the noti-
fications. From our results, we observed that repeat notifications did not promote further patching,
which argues against performing re-notifications.

More provocative, and related to the full-disclosure debate mentioned above, is the notion
of threatening recipients with publicly revealing their vulnerabilities if unaddressed after a given
amount of time. Likely, the research community would find this (quite) unpalatable in general;
however, one can imagine specific situations where the community might conclude that spurring
vital action justifies such a harsh step, just as some have concluded regarding full disclosure.

Future Abuse of Notifications In a future with widespread notifications, we would hope that
security issues could be rectified more extensively and quickly. However, this would provide a
new avenue for abuse, as attackers could potentially leverage the open communication channel to
target network operators. As a simple example, a malicious actor could notify operators about a
real security issue, and inform the operators to install a malicious application to help hosts resolve
the security gap. While existing techniques such as phishing detection and binary analysis can help
limit these attacks, the problem domain likely will yield new challenges. It is important that the
security community remain cognizant of these dangers as the state of security notifications evolves.

Effective Remediation Tools For contacts that do not remediate, our measurements cannot dis-
tinguish which of the underlying reasons sketched above came into play. However, while some
operators may lack sufficient motivation to take action, it seems quite plausible that others wish
to, but lack the technical capabilities, resources, or permissions to do. We identified some of these
barriers in Chapter 3’s analysis of security patch development and Chapter 4’s study of system
administrator software updating. Accordingly, we see a need for investigation into the operational
problems that operators encounter when considering or attempting remediation, as well as the de-
velopment of effective and usable remediation tools that simplify the operators’ tasks. This need
was also raised in Chapter 8. By reducing the effort and resources required to address a vulnera-
bility, such tools could also increase the likelihood that an operator would take the steps to react
to vulnerability reports. Ultimately, automated systems would be ideal, but these face significant
challenges, such as heterogeneous platforms, potential abusive or malicious behavior, and inadver-
tent disruption of mission-critical systems.

9.6 Conclusion
In this chapter, we have undertaken an extensive study of notifying thousands of network operators
of security issues present within their networks, with the goal of illuminating which fundamental
aspects of notifications have the greatest impact on efficacy. Our study investigated vulnerabil-
ities that span a range of protocols and considerations: exposure of industrial control systems;
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apparent firewall omissions for IPv6-based services; and exploitation of local systems in DDoS
amplification attacks.

Through controlled multivariate experiments, we studied the impact of a number of variables:
choice of party to contact (WHOIS abuse contacts versus national CERTs versus US-CERT), mes-
sage verbosity, hosting a website linked to in the message, and translating the message into the
notified party’s local language. We monitored the vulnerable systems for several weeks to deter-
mine their rate of remediation in response to changes to these variables.

We also assessed the outcome of the emailing process itself and characterized the sentiments
and perspectives expressed in both the human replies and an optional anonymous survey that ac-
companied our notifications. The responses were largely positive, with 96% of human email re-
sponses expressing favorable or neutral sentiments.

Our findings indicate that notifications can have a significant positive effect on patching, with
the best messaging regimen being directly notifying contacts with detailed information. An ad-
ditional 11% of contacts addressed the security issue when notified in this fashion, compared to
the control. However, we failed to prompt the majority of contacts to respond, and even when
they did, remediation was often only partial. Repeat notifications did not further improve reme-
diation. Given these positive yet unsatisfactory outcomes, we call on the security community to
more deeply investigate notifications and establish standards and best practices that promote their
effectiveness.
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Chapter 10

Internet Outreach
Discussion and Conclusion

Security remedies are ultimately only effective if they are deployed in practice. In the first part of
this dissertation, we looked at how remedies are created and then deployed to impacted systems,
focusing on security patches that fix vulnerabilities. In this second part, we explored the gap con-
necting those processes, asking how we encourage the application of identified remedies. To do
so, we investigated using Internet-scale outreach to spur administrators of Internet-facing systems
to correct various security concerns. We note that our efforts in notifying administrators is distinct
from end user warnings and notices, as we again focused on a subpopulation (done in Chapter 4 as
well) that is more technically sophisticated and operates with increased responsibilities for man-
aging the security of systems on the Internet.

Through the series of studies that populate Part II of this dissertation, we have conducted one
of the first systematic explorations of Internet-wide administrator notifications, evaluating whether
such notifications have positive effect, how best to conduct such outreach campaigns, and what
are existing shortcomings or limitations of these efforts. This body of work has developed broad
understanding of notifications that span a variety of different widespread security concerns, from
patchable vulnerabilities to server misconfigurations to compromised websites. Given the Internet-
wide nature of the notification campaigns, each individual study is not exactly replicable. By
design, each campaign shifts the landscape of Internet systems affected by the particular security
concern. However, by studying a variety of different security contexts and identifying similarities
between corresponding findings, we have been able to establish generalizable results.

Consistently across these works, we have found that security notifications are able to success-
fully spur a significant portion of administrators to better secure their systems. Our best results
came from our study on Google’s notifications to webmasters of compromised sites, where direct
notifications led to over 75% of webmasters remediating. This rate was more than 50% higher than
that of webmasters still receiving public signals through browser interstitials and Google search re-
sult warnings, but without direct outreach. In addition, notified webmasters re-secured their sites
in almost half the time. Without public signals, the site remediation rate would likely be even
lower. We note though that this is close to a best-case scenario for notifications: we have a re-
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liable notification channel from a well-recognized organization (Google) about a severe security
issue (compromise, where something malicious has already happened) with strong incentives (due
to browser interstitials and search engine warnings discouraging site visitors). However, recover-
ing from compromise is arguably more technically complex than most other security concerns we
considered, and the large positive effect of notifications demonstrated that it can have an important
role to play in Internet security even if only for such ideal situations.

However, we argue that notifications can be used more extensively. Even in the other notifi-
cation experiments, security notifications could drive a non-trivial minority (e.g., at minimum 10-
20%) to correct the security problems. While still not a majority, these efforts did push hundreds
of thousands of servers to improve their security stance. What is promising is that these remedi-
ation rates can likely be raised by tackling some of the notification issues identified in Chapter 9,
providing ample opportunities for future research and community initiatives to improve outreach
efforts. Specifically, we believe the most relevant improvements are:

1. Establishing reliable communication channels with the appropriate administrator contacts.

2. Identifying methods of establishing notification trustworthiness that is resistant to use in
phishing attacks (this may be simultaneously accomplished through establishing reliable
communication channels).

3. Exploring incentive mechanisms to encourage administrators to correct security concerns,
such as through public ratings or gamification of security stances.

4. Developing more effective and usable systems for applying remedies, whether it be for patch
deployment (explored in Chapters 3 and 4) or compromise recovery, which will ultimately
reduce the costs and burden of taking remediation actions.

In the meantime, the results from our studies have helped identify best practices for conducting
outreach efforts today. In particular, the most salient recommendations are:

1. Outreach messages should be sent directly to the most appropriate technical contact. Cur-
rently, if one lacks a previously established communication channel, emails to WHOIS abuse
or technical contacts are likely the most effective.

2. The notification messages themselves should be detailed in describing who the notifiers are,
what the security concern is, why action should taken, and what the recommended next steps
are. Ideally the message would also including a trustworthy link (e.g., to a university-hosted
web page) to more extensive information. However, one should consider the target audience
and their technical expertise. For example, webmasters may be less technically sophisticated
on average compared to network administrators.

3. Messages should only be translated if the context makes it reasonably expected (e.g., if from
a global organization such as Google)

4. Messages should only sent once (without followups).
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Since these initial studies, the body of work on Internet-wide outreach has expanded further
with studies both investigating outreach methods and using it [46–50, 57, 117, 132, 164, 179, 180,
211]. We expect this line of investigation to continue, and believe that outreach efforts will play
an important role in securing Internet systems. We also note that outreach is ultimately a social
or human process, yet our methods for studying it have not only explored human factors (such
as through recipient surveys), but have leveraged Internet scanning and network measurements to
monitor Internet-wide behavior. As with Part I, we relied on a diverse set of research techniques
to establish empirical grounding. This again highlights the complexity of this problem space,
where we will need to consider and tackle various factors at play beyond just traditional computer
technical considerations, including human, social, and economic facets.
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Chapter 11

Conclusion and Parting Words

As a research community, we are constantly advancing our capabilities for securing computer
systems and networks. Yet today, we remain reliant on the remediation of security issues to address
emergent concerns. This state will not change anytime in the near future, and it is plausible that
it will never change. Thus, understanding and improving how we remedy security problems is of
utmost importance.

In this dissertation, we have performed an extensive treatment of the remediation of security
concerns at an Internet scale, investigating in depth each stage of the remediation process. Specif-
ically, we have studied the development of remedies (Chapter 3), how to inform and encourage
those affected by a security issue to apply existing remedies (Chapters 7–9), and the remedy de-
ployment process itself (Chapter 4). By no means does this dissertation comprehensively explore
the remediation space or solve the existing issues; such an achievement is far beyond the contri-
butions of a single dissertation. However, through using a variety of data-driven methods, this
dissertation has provided new empirical grounding and insights on this critical aspect of real-world
security, shedding light on potential avenues for progress.

Moving forward, there are ample opportunities for improvements, from developing systems
and tools to automate remediation actions, to establishing reliable, trustworthy methods of com-
municating information at scale on urgent security issues, to exploring economic and policy mech-
anisms to incentivize prompt responses. These three examples highlight the diversity and complex-
ity of this problem space, as problems are not simply traditional technical ones. As a consequence,
solutions will not be either. The studies forming this dissertation already exhibit this characteristic,
as they involve a variety of distinct research methods, from large-scale data mining to user studies
to Internet-wide network measurements and experiments. However, there is even more that can
and should be done, including exploration of economic, organizational, policy, and legal consider-
ations. Admittedly, the many dimensions of this problem space makes it challenging. However, it
also makes it exciting, intellectually stimulating, and fruitful for further efforts.

The nature of the remediation problem space also necessitates an empirical perspective. To
tackle such a complex problem, one must truly understand how its many dimensions manifest in
practice. Without a comprehensive model of remediation empirically-grounded in the real world,
solution attempts will likely fall short as they will fail to account for important aspects. For exam-
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ple, some have considered security patching a solved problem, as we know how to create patches
and people just need to get their acts together and apply them promptly. Yet the results from this
dissertation have shown that no part of that statement is true. We are not able to reliably create
security fixes, and users have rational calculated reasons for delaying or avoiding patches. Ulti-
mately, we cannot hope to improve security in practice through relying on personal experiences,
anecdotes, and assumptions. We must take a more scientific approach and rigorously analyze real-
ity, and use data-supported insights to drive developments. This dissertation serves as an example
of such an effort.
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Appendix A

Survey and Interview Instruments
for Chapter 4

Here we list the survey and interview questions used in our study of system administrator software
updating, from Chapter 4. As described in Section 4.2 of that chapter, our study contained three
phases: preliminary pilot interviews, large-scale surveys, and detailed semi-structure interviews.

A.1 Preliminary Phase - Pilot Interview Questions
Below we list the questions from our semi-structured pilot interviews (the preliminary phase of
the study, as described in Section 4.2 of Chapter 4).

Job responsibilities and processes

1. Tell me more about your main job responsibilities (how does he/she keep machines up to
date).

2. Tell me about any relationships you have with the vendors that develop the software updates
for the programs your organization/employees depend on.

3. Can you walk me through your process of how you find out about an update?

4. Why do you find out about updates in this way?

5. How do you determine which updates to deploy on the machines you manage?

6. Tell me more about how this process differs for the types of machines you manage?

7. Why does your deployment process differ for different machines?

8. How does the process differ depending on who owns the machines, if at all?
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9. Tell me more about how you install the software updates (manually, automatic, silent) you
apply.

10. Why do you apply the software updates in this way?

11. Can you walk me through the process of testing whether an update will be compatible with
the machines?

12. Why do you do this testing for the updates? Do you test all updates and why?

Software Update Information

1. Tell me about the information you currently receive when an update is available.

2. How do you usually receive this information?

3. Do you ever seek additional information about updates? Why or why not?

4. What are the main advantages of the current update information? Why?

5. What are the main disadvantages of the current update information? Why?

6. Which is the least important part of the current update information for you?

7. Which is the most important part of the current update information for you?

Securing the Users

1. Tell me about what you do to protect your users.

2. Tell me about what kinds of online hazards you are protecting them from.

3. Once an update is deployed how do you communicate the information to the end users?

4. What do you expect of the end users once the updates are released?

5. Can you tell me about the process of deciding what updates you can trust?

Software Updates in General

1. What updates are most important to you? Why?

2. What updates are least important? Why?

3. Tell me what cybersecurity means to you.

4. What are the most important things to consider to secure the network?

5. What are the least important things to consider to secure the network?
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6. What are the main advantages of the current software updating process? Why?

7. What are the main disadvantages of the current software updating process? Why?

8. What changes would you want to make to software updates? Why?

9. Is there anything else you would like to tell us about how you manage software updates?

A.2 Phase One - Survey Questions
Below we list the questions from our survey (phase one of the study, as described in Chapter 4
Section 4.2).

1. How old are you?

a) 18-25

b) 26-35

c) 36-45

d) 46-55

e) 56-65

f) Over 65

g) I do not wish to disclose

2. Which state do you live in?

3. What is your gender?

a) Male

b) Female

c) Other

4. What is your annual income?

a) Less than $25,000

b) $25,000 to $34,999

c) $35,000 to $49,999

d) $50,000 to $74,999

e) $75,000 to $99,999

f) $100,000 to $124,999
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g) $125,000 to $149,999

h) $150,000 or more

5. What is your job title?

6. For how many years have you worked as a System Administrator in your current role?

7. For how many years have you worked as a System administrator before you entered your
current role?

8. What is the highest level of education that you have completed?

a) 12th grade or less

b) High school degree or equivalent

c) Some college, no degree

d) Bachelor’s degree

e) Master’s degree

f) Other graduate degree

9. What was the subject area of your highest level of education (if above high school)?

10. What technical certifications, courses, or degrees have you completed, if any? You may
paste entries from your resume or CV if you wish.

11. When did you complete these certifications or education? (Check all that apply)

a) Before I took up my current role

b) After I took up my current role

12. How have these technical certifications, courses, or degrees helped you complete your cur-
rent role?

13. What is the industry of the organization that you work for?

14. How large is the organization that you work for?

a) ≤10 employees

b) 11 - 50 employees

c) 51 - 100 employees

d) 101 - 500 employees

e) 501-2000 employees

f) More than 2000 employees
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15. What is the main purpose of the organization you work for?

16. How many machines/devices do you manage?

a) Sliding scale between 0 and 1000+

17. What type of machines/devices do you manage? (Check all that apply)

a) Laptops

b) Desktops

c) Servers

d) Mobile devices

e) Routers/network appliances such as firewall middleboxes

f) Embedded devices/ Internet of Things

g) Other: free response

18. What are the operating systems on the machines that you manage? (Check all that apply)

a) Mac

b) Windows

c) Linux

d) iOS

e) Android

f) Blackberry

g) ChromeOS

h) None

i) Other: free response

19. What is the predominant operating system, if any?

a) Mac

b) Windows

c) Linux

d) iOS

e) Android

f) Blackberry

g) ChromeOS

h) Other: free response
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20. What are these machines used for? (Check all that apply)

a) Education or training

b) Personal

c) Research

d) Servers

e) Work

f) Testing

g) Other: free response

21. Which of the following applies to the machines you manage? (Check all that apply)

a) The machines are used internally by the organization you work for

b) The machines are used externally by customers of the organization you work for

c) Other: free response

22. What updates are most important to you and why?

23. What updates are most important to your organization and why?

24. Are you solely responsible for updating the machines you manage?

a) Yes

b) No

c) Other: free response

25. How many updates do you run on the machines that you manage per week?

a) Sliding scale between 1 and 500+

26. How do you manage the updates across the machines/devices you manage? (Check all that
apply)

a) I log into each system to perform updates

b) I use 3rd party software to manage the updates

c) I write programs to manage updates

d) I enable automatic updates

e) Other: free response

27. What type of updates do you install regularly? (Check all that apply)

a) Security updates
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b) Non-security related updates

c) Other: free response

28. Select all of the security measures you take to protect your machines.

a) Firewall

b) Intrusion Detection System

c) Intrusion Prevention System

d) Antivirus System

e) Security updates

f) Different accounts with varying access (admin, regular, etc.)

g) Access codes/Passwords

h) Port scanners

i) Vulnerability testing

j) Backup and Disaster Recovery

k) Other: free response

29. How are the security measures you use deployed? (Check all that apply)

a) On the hosts

b) On the network

c) Other: free response

30. How do you find out about the updates you apply on the machines you manage? (Check all
that apply)

a) Online forums

b) Security advisories

c) Blogs

d) News

e) Social media

f) RSS feeds

g) Professional mailing lists

h) Project mailing lists

i) Direct notification from vendor

j) Third-party service

k) When the software pops up a notification
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l) Other: free response

31. When do you apply security updates? (Check all that apply)

a) As soon as they are released
b) After testing
c) On a regular cadence
d) After a specific amount of time since its release has elapsed
e) Applied automatically
f) Other: free response

32. What is the reason for applying updates in the frequency described above?

33. When do you apply non-security related updates? (Check all that apply)

a) As soon as they are released
b) After testing
c) On a regular cadence
d) After a specific amount of time since its release has elapsed
e) Applied automatically
f) Other: free response

34. What is the reason for applying non-security related updates in the frequency described
above?

35. What kind of testing do you do with updates (if any), before applying them to the machi-
nes/devices you manage? Please explain why.

36. How frequently do you find an update to cause problems on the machines you manage?

a) Never
b) Rarely
c) Occasionally (every few update cycles)
d) Frequently (most update cycles)

37. How do you become aware of any problems caused by updates that you install?

38. What, if any, is your process for rolling back or undoing updates that cause problems on the
machines you manage?

39. What aspects or steps in your update management process work well for you?

40. What aspects or steps in your update management process are most challenging to handle?

41. What would help you to better manage software updates for multiple machines?
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A.3 Phase Two - Interview Questions
Below we list the questions from our semi-structured interviews (phase two of the study, as
described in Chapter 4 Section 4.2).

Job responsibilities and processes

1. Tell me more about the company you work for?

2. Tell me more about your main job responsibilities (how does he/she keep machines up to
date)

3. How long have you worked in your job?

4. Have you had any training in IT? If so, tell me more about that.

5. Have you had any training in security? If so, tell me more about that.

Machines/Devices Managed

1. Does your organization have any security related policies for their machines?

2. How many machines/devices do you manage?

3. What kinds of machines/devices do you manage?

4. What are these machines used for?

5. Who are these machines used by?

Managing Software Updates for Multiple Machines

1. Does your company have any policies on software updates for their machines?

2. How do you handle security for these machines?

3. How often do you update these machines? Does the frequency differ for different machines?
If so, why?

4. Who do you have to notify about updates that you are applying? Why?

5. In an average week, how many hours do you spend dealing with software updates?

6. Can you walk me through your process of how you find out about an update?

7. What are the advantages of using this process?

8. What are the disadvantages of using this process?
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9. How do you determine which updates to deploy on the machines you manage?

10. When do you apply updates for the machines you manage? Why?

11. What is your process for applying updates on the machines you manage?

12. Tell me more about how this process differs for the types of machines you manage.

13. Why does your deployment process differ for different machines?

14. How does the process differ depending on who owns the machines, if at all?

15. Tell me more about how you install the software updates (manual, automatic, silent) you
apply.

16. Why do you apply the software updates in this way?

17. Do you use any tools/programs to help you manage updates on multiple devices? What are
these tools? Why do you use them?

18. Do you test whether an update will be compatible with the machines you manage in any
way? How so?

19. Why do you do this testing for the updates? Do you test all updates and why?

20. How do you track which updates different machines need?

21. Do you prioritize any particular type of updates for any machines? Why/why not?

22. How do you track how well updates have been installed on different machines?

23. If any update requires a restart, what is your process for managing the restart?

24. Do you have to notify anyone about updates that you have applied or are about to apply?

Software Update Information

1. Tell me about the information you currently receive when an update is available.

2. How do you usually receive this information?

3. Do you ever seek additional information about updates? Why or why not?

4. What are the main advantages of the current update information? Why?

5. What are the main disadvantages of the current update information? Why?

6. Which is the least important part of the current update information for you?

7. Which is the most important part of the current update information for you?
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8. What improvements would you make to the information that is included with current up-
dates?

Securing the Users

1. Who are the users that you manage machines for?

2. Tell me about what you do to protect your users.

3. Do you use any technical solutions to protect users?

4. Do you use any educational solutions for protecting your users?

5. Are these solutions driven by your own or company policy? Tell me more about that.

6. Tell me about what kinds of online hazards you are protecting them from.

7. Once an update is deployed how do you communicate the information to the end users?

8. What are your responsibilities for handling updates for your users?

9. What are the responsibilities of your users for handling updates?

10. Can you tell me about the process of deciding what updates you can trust?

Software Updates in General

1. What updates are most important to you? Why?

2. What updates are most important to your organization? Why?

3. How does your organizational policy influence how you manage updates if at all?

4. What updates are least important to you? Why?

5. What updates are least important to your organization? Why?

6. Tell me what cybersecurity means to you.

7. What are the most important things to consider to secure your machines?

8. What are the least important things to consider to secure your machines?

9. What are the main advantages of your current software updating process? Why?

10. What are the main disadvantages of your current software updating process? Why?

11. What would your ideal way to handle software updates be? Why? What changes would you
want to make to software updates themselves? Why?

12. Is there anything else you would like to tell us about how you manage software updates?



169

Appendix B

Survey and Notification Messages
for Chapter 9

Here we provide the survey and notification messages from our study of effective Internet-scale
administrator vulnerability notifications, from Chapter 9. As described in Section 9.2 of that chap-
ter, we sent notifications about three security issues: overly permissive IPv6 firewalls, exposed
industrial control systems (ICS), and open DDoS amplifiers. For each security concern, we tested
sending terse messages, terse messages with a link to an information page, and a verbose mes-
sage. Additionally, all of our notifications contained an anonymous and optional survey to obtain
feedback from contacted administrators.

B.1 Anonymous and Optional Security Notifications Survey
Help us better understand the factors surrounding security notifications by providing anonymous
feedback in this survey. Each question is optional, so answer the ones you feel comfortable an-
swering. Thank you!

1. Was your organization aware of the security issue prior to our notification?
2. Did your organization take prior actions to resolve the security issue before our notification?
3. Is your organization planning on resolving the security issue?
4. Do you feel it was acceptable for us to detect the security issue?
5. Do you feel it was acceptable for us to notify your organization?
6. Would your organization want to receive similar security vulnerability/misconfiguration no-

tifications in the future?
7. Did we notify the correct contact?

B.2 IPv6 Notification: Terse with Link
Subject: [RAND#] Potentially Misconfigured IPv6 Port Security Policies
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Body: Computer scientists at the University of Michigan, the University of Illinois Urbana-
Champaign, and the University of California Berkeley have been conducting Internet-wide scans to
detect IPv4/IPv6 dual-stack hosts that allow access to services via IPv6, but not IPv4. This likely
indicates a firewall misconfiguration and could be a security vulnerability if the services should
not be publicly accessible. We have attached a list of hosts that are potentially vulnerable on your
network.

[LINK: More information is available at https://security-notifications.cs.berkeley.edu/[RAND#]/
ipv6.html.]

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback at: https://www.surveymonkey.com/r/
Q2HLJ5D.

B.3 IPv6 Notification: Verbose
Subject: [RAND#] Potentially Misconfigured IPv6 Port Security Policies

Body: During a recent study on the network security policies of IPv4/IPv6 dual-stack hosts, com-
puter scientists at the University of Michigan, the University of Illinois Urbana-Champaign, and
the University of California Berkeley have been conducting Internet-wide scans to detect IPv4/IPv6
dual-stack hosts that allow access to services via IPv6, but not IPv4. This likely indicates a fire-
wall misconfiguration and could be a security vulnerability if the services should not be publicly
accessible. We have attached a list of hosts that are potentially vulnerable on your network (as
determined by WHOIS information).

For each dual-stack host, we test whether popular services (e.g., SSH, Telnet, and NTP) are acces-
sible via IPv4 and/or IPv6 using a standard protocol handshake. For ICMP this is an echo request,
for TCP it is a SYN segment, and for UDP this is an application-specific request (e.g., DNS A
query for ‘www.google.com’ or an NTP version query). We do not exploit any vulnerabilities,
attempt to login, or access any non-public information.

The protocols we scanned are popular targets for attack and/or can be used to launch DDoS attacks
when left publicly available to the Internet. We suspect they are misconfigured and are notifying
you because hosts rarely offer services on IPv6 that are not offered on IPv4, and we believe these
services may have been left exposed accidentally. This is a common occurrence when administra-
tors forget to configure IPv6 firewall policies along with IPv4 policies.

If these IPv6-only accessible services should not be accessible to the public Internet, they can
be restricted by updating your firewall or by disabling or removing the services. If none of your
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systems use IPv6, you can also disable IPv6 on your system. Make sure your changes are persistent
and will not be undone by a system reboot.

More information is available at https://security-notifications.cs.berkeley.edu/[RAND#]/ipv6.html.

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback at: https://www.surveymonkey.com/r/
Q2HLJ5D

B.4 ICS Notification: Terse with Link
Subject: [RAND#] Vulnerable SCADA Devices

Body: Computer scientists at the University of Michigan and the University of California Berkeley
have been conducting Internet-wide scans to detect publicly accessible industrial control (SCADA)
devices. These devices frequently have no built-in security and their public exposure may place
physical equipment at risk for attack. We have attached a list of SCADA devices on your network
that are publicly accessible.

[LINK: More information is available at https://security-notifications.cs.berkeley.edu/[RAND#]/
ics.html.]

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback at: https://www.surveymonkey.com/r/
ZC7BVW5

B.5 ICS Notification: Verbose
Subject: [RAND#] Vulnerable SCADA Devices

Body: During a recent study on the public exposure of industrial control systems, computer scien-
tists at the University of Michigan and the University of California Berkeley have been conducting
Internet-wide scans to detect publicly accessible industrial control (SCADA) devices. These de-
vices frequently have no built-in security and their public exposure may place physical equipment
at risk for attack. We have attached a list of SCADA devices on your network (as determined by
WHOIS information) that are publicly accessible.

We scan for potentially vulnerable SCADA systems by scanning the full IPv4 address space and
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attempting protocol discovery handshakes (e.g., Modbus device ID query). We do not exploit any
vulnerabilities or change any device state.

SCADA protocols including Modbus, S7, Bacnet, Tridium Fox, and DNP3 allow remote control
and monitoring of physical infrastructure and equipment over IP. Unfortunately, these protocols
lack critical security features, such as basic authentication and encryption, or have known security
vulnerabilities. If left publicly accessible on the Internet, these protocols can be the target of attack-
ers looking to monitor or damage physical equipment, such as power control, process automation,
and HVAC control systems.

SCADA services are not designed to be publicly accessible on the Internet and should be main-
tained on an internal, segmented network, or otherwise protected by a firewall that limits who can
interact with these hosts. Make sure your changes are persistent and will not be undone by a system
reboot.

More information is available at https://security-notifications.cs.berkeley.edu/[RAND#]/ics.html.

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback at: https://www.surveymonkey.com/r/
ZC7BVW5

B.6 DDoS Amplification Notification: Terse with Link
Subject: [RAND#] Vulnerable DDoS Amplifiers

Body: Computer scientists at George Mason University and the University of California Berkeley
have been detecting open and misconfigured services that serve as amplifiers for distributed denial-
of-service (DDoS) attacks. Attackers abuse these amplifiers to launch powerful DDoS attacks
while hiding the true attack source. We have attached a list of hosts that are potentially vulnerable
on your network.

[LINK: More information is available at https://security-notifications.cs.berkeley.edu/[RAND#]/
amplifiers.html.]

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback at: https://www.surveymonkey.com/r/
Y99J8K8



APPENDIX B. SURVEY AND NOTIFICATION MESSAGES FOR CHAPTER 9 173

B.7 DDoS Amplification Notification: Verbose
Subject: [RAND#] Vulnerable DDoS Amplifiers

Body: During a recent study on distributed denial-of-service (DDoS) attacks, computer scien-
tists at George Mason University and the University of California Berkeley have been conducting
Internet-wide scans for open and misconfigured services that serve as amplifiers for DDoS at-
tacks. Attackers abuse these amplifiers to launch powerful DDoS attacks while hiding the true
attack source. We have attached a list of hosts that are potentially vulnerable on your network (as
determined by WHOIS information).

We detect amplifiers by monitoring hosts involved in recent DDoS attacks and checking whether
these hosts support the features used for launching an attack (e.g., NTP monlist or recursive DNS
resolution). We do not exploit any vulnerabilities or attempt to access any non-public data on these
servers.

DDoS attacks are often conducted by directing an overwhelming amount of network traffic towards
a target system, making it unresponsive. Amplifiers are services that send large amounts of data
in response to small requests. Attackers leverage these in DDoS attacks by spoofing traffic to
the amplifier, forging it to look as if it came from the attacker’s target. Amplifiers then respond
to the target with a large response that overwhelms the target. Publicly accessible amplifiers are
constantly abused by attackers to conduct the DDoS attacks for them while hiding the tracks of the
real attacker.

These amplifiers can be avoided by disabling the application or updating your firewall to block the
application port or restrict the IP addresses that can access it. More specifically, Chargen should be
closed as it is rarely useful and is inherently an amplifier. If left open, DNS should be configured
to restrict who can make recursive requests, and NTP should be configured to disable the monlist
functionality. Make sure your changes are persistent and will not be undone by a system reboot.

More information is available at https://security-notifications.cs.berkeley.edu/[RAND#]/
amplifiers.html.

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback at: https://www.surveymonkey.com/r/
Y99J8K8
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