
Don’t Forget the Stuffing! Revisiting the Security Impact
of Typo-Tolerant Password Authentication

Sena Sahin
ssahin8@gatech.edu

Georgia Institute of Technology

Frank Li
frankli@gatech.edu

Georgia Institute of Technology

ABSTRACT
To enhance the usability of password authentication, typo-tolerant
password authentication schemes permit certain deviations in the
user-supplied password, to account for common typographical er-
rors yet still allow the user to successfully log in. In prior work, anal-
ysis by Chatterjee et al. demonstrated that typo-tolerance indeed
notably improves password usability, yet (surprisingly) does not
appear to significantly degrade authentication security. In practice,
major web services such as Facebook have employed typo-tolerant
password authentication systems.

In this paper, we revisit the security impact of typo-tolerant pass-
word authentication. We observe that the existing security analysis
of such systems considers only password spraying attacks. How-
ever, this threat model is incomplete, as password authentication
systems must also contend with credential stuffing and tweaking
attacks. Factoring in these missing attack vectors, we empirically
re-evaluate the security impact of password typo-tolerance using
password leak datasets, discovering a significantly larger degrada-
tion in security. To mitigate this issue, we explore machine learning
classifiers that predict when a password’s security is likely affected
by typo-tolerance. Our resulting models offer various suitable op-
erating points on the functionality-security tradeoff spectrum, ulti-
mately allowing for partial deployment of typo-tolerant password
authentication, preserving its functionality for many users while
reducing the security risks.

CCS CONCEPTS
• Security and privacy→ Authentication.

KEYWORDS
Password Authentication; Security Analysis; Machine Learning

ACM Reference Format:
Sena Sahin and Frank Li. 2021. Don’t Forget the Stuffing! Revisiting the
Security Impact of Typo-Tolerant Password Authentication. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 19 pages. https://doi.org/10.1145/3460120.3484791

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484791

1 INTRODUCTION
Despitewell-documented security and usability concerns [5], human-
chosen passwords remain the de facto standard mechanism for au-
thentication across the web. As a consequence, the security of much
of the web ecosystem and its billions of users remains dependent
on how users and websites manage password authentication.

One password usability issue that arises in practice is that users
struggle to correctly type in their passwords, making typographical
errors that result in delayed or failed login attempts [18, 19]. To
address this issue, typo-tolerant password authentication systems
accept submitted passwords that deviate in certain regards from
the true password, essentially correcting for common classes of
typographical errors. Several major web services, notably includ-
ing Facebook, have been documented as having deployed typo-
tolerance for online logins [2, 15, 34].

While typo-tolerance during password authentication may im-
prove password usability, one might suspect that it also degrades
security during online password guessing attacks, as each password
guessed by the attacker covers a range of passwords rather than
a single one. In 2016, Chatterjee et al. [7] provided the first sys-
tematic usability and security analysis of typo-tolerant password
authentication. They identified that typographical mistakes made
by users during password entry were frequent, with several com-
mon errors that could be readily corrected with simple password
transformation functions. As a result, typo-tolerance would indeed
significantly improve password usability. Furthermore, they also
formally and empirically analyzed the impact of typo-tolerance on
password security under a specific threat model, finding that the
impact was minimal. Thus, the work concluded that typo-tolerance
does not actually result in a tradeoff between security and usability,
but rather produces notable usability gains with negligible degra-
dation in security.

In this paper, we re-examine the security impact of typo-tolerant
password authentication. Our exploration is driven by the observa-
tion that the existing analysis by Chatterjee et al. [7] used an online
attack model that effectively considered only password spraying
attacks [22], where attackers guess common passwords (potentially
based on some password probability distribution). We identify that
this threat model is incomplete. In addition to password spray-
ing attacks, web services also contend with credential stuffing at-
tacks [21, 24], where attackers leverage leaked passwords from one
website to target accounts on other services. Numerous websites
have suffered high-profile credential stuffing attacks [1, 24, 30],
demonstrating that this threat is salient in practice. Additionally,
prior research [10, 25, 36] has developed credential tweaking at-
tacks, where beyond only “stuffing” leaked passwords, attackers
also generate variants of leaked passwords for login attempts.

https://doi.org/10.1145/3460120.3484791
https://doi.org/10.1145/3460120.3484791

Credential stuffing exploits the high password reuse rate among
users. However, many users who do not reuse the same password
across websites often use minor variations for different sites [10].
We hypothesize that for many such users, the differences between
two sites’ passwords could be corrected by the policies applied in
typo-tolerant password authentication schemes, thus allowing for
successful credential stuffing (and tweaking) attacks even when the
leaked passwords used by the attacker are not exact matches.

We empirically evaluate our hypothesis by analyzing two re-
cent password leak datasets containing nearly 4 billion account
credentials. We first assess the impact of typo-tolerance on pass-
word spraying attacks, reproducing the prior finding that typo-
tolerance results in limited additional attack success. Even under
a liberal typo-tolerance policy where attackers are afforded 1000
online guesses, less than 1% of emails become newly vulnerable to
password spraying after enabling typo-tolerance. We then evaluate
credential stuffing and tweaking attacks, finding that typo-tolerance
can exacerbate the effectiveness of these attacks significantly. In the
worst case, as many as a third of emails become newly vulnerable
to credential stuffing and tweaking after enabling typo-tolerance,
and up to 9% of emails under more realistic settings.

Our findings reveal that the security consequences of typo-
tolerant password authentication are more severe than previously
understood. However, this conclusion does not necessarily mean
that typo-tolerance must be wholesale abandoned. To determine
whether typo-tolerance can still be deployed to some extent, we ex-
plore machine learning classifiers that predict if a password may be
newly susceptible to credential stuffing under typo-tolerance. Using
one of our leak datasets, we develop proof-of-concept models that
provide different recall versus false positive rate operating points
that may be suitable for practical use. Ultimately, using such models
in conjunction with typo-tolerant password authentication allows
web services to manage the tradeoff between the functionality of
typo-tolerance and its security concerns.

In summary, our paper makes the following contributions:
• We replicate the prior security analysis of typo-tolerant password
authentication on password leak datasets that are two orders of
magnitude larger, confirming the previous work’s results con-
tinue to hold [7].

• We expand our current understanding of typo-tolerant password
authentication by analyzing how it is impacted by credential stuff-
ing and tweaking attacks, which are missing from the existing
analysis’s threat model [7]. Our findings indicate that the au-
thentication security degradation from enabling typo-tolerance
is significantly greater under this more complete threat model.

• We explore machine learning classifiers that can predict when
security may degrade for a password under typo-tolerance. These
classifiers offer different operating points trading off recall and
false positives rates, allowing web services to still deploy typo-
tolerant password authentication to a broad population while
limiting the security risks.

• We discuss future directions for exploring how to further harden
typo-tolerant password authentication.

• We have shared our research with Facebook, which has taken
steps internally to address the concerns.

2 BACKGROUND AND RELATEDWORK
In this section, we provide an overview of typo-tolerant password
authentication, highlighting the most relevant details for our sub-
sequent investigation. We also discuss related work on password
attacks and defenses.

2.1 Typo-Tolerant Password Authentication
Typo-tolerant password authentication systems permit certain ty-
pographical errors in the submitted password while still authenti-
cating the user. Such systems have been used in practice, such as
by Facebook [15], to improve the user login experience. In 2016,
Chatterjee et al. [7] conducted the first systematic usability and
security analysis of such authentication schemes.

Usability Analysis. Through a crowdsourced user study and
an analysis of telemetry from live login attempts at Dropbox, Chat-
terjee et al. identified several classes of common typos made during
password entry. The five most common mistakes were, in decreas-
ing order: 1) the case of all letters was flipped (likely due to the
caps lock key), 2) the case of the first letter was flipped, 3) an
extra character appeared at the password end, 4) an extra charac-
ter appeared at the password start, and 5) the last character was
not shift-key modified. From the Dropbox login telemetry, the re-
searchers observed that 9.3% of the failed login attempts were due
to these typos that could have been automatically corrected using
string transformation functions (one for each common typo class).
Had the authentication system tested such corrections on the sub-
mitted passwords before validation, nearly 20% of Dropbox users
who made typos would have logged in faster. In addition, 3% of
all users failed to log in altogether but would have succeeded had
typo-tolerant checking been enabled for the three most common
categories of typos. These results empirically demonstrated that
typo-tolerance can notably improve authentication usability.

The specific password corrector functions identified were (in the
same order as the common typo classes that they correct for):
(1) swc_all: Swap the case of all letters in the password.
(2) swc_first: Swap the case of the first password character.
(3) rm_last: Remove the last password character.
(4) rm_first: Remove the first password character.
(5) n2s_last: Shift-key modify the last password character.

The authors also defined typo-tolerance policies combining these
corrector functions, with the CTopX policy containing the first 𝑋
correctors, in the order listed above (e.g., CTop3 contains swc_all,
swc_first, and rm_last). In our work, we will consider the same set
of corrector functions and typo-tolerance policies.

Security Analysis. While typo-tolerance allows users to more
easily authenticate, one might expect that it could also allow at-
tackers to more readily authenticate as a target, as incorrect at-
tacker password guesses might be automatically corrected to the
target’s true password. Considering online password spraying at-
tacks [22], where the optimal attacker strategy is to guess the most
popular passwords (in decreasing order), Chatterjee et al. provided
both a formal and empirical security evaluation of typo-tolerance,
demonstrating that in fact, such attackers do not gain a signifi-
cant advantage once typo-tolerance is enabled. Through simulating
password spraying attacks using password dumps from three web-
sites, the authors found that if the attacker was permitted 10 login

attempts per account (a reasonable quantity given rate-limiting
and additional login defenses commonly deployed by online ser-
vices), the attack success rate increases by only 0.27% when using
the most permissive typo-tolerance policy. Thus, they conclude
that typo-tolerance provides substantial authentication usability
benefits without noticeable degradation in authentication security.

In this work, we revisit this prior security analysis of typo-
tolerant password authentication by evaluating the security im-
plications of such schemes under a more comprehensive threat
model that, in addition to password spraying [22], includes practical
attacks such as credential stuffing [21, 24] and credential tweak-
ing [25]. We note that more recently, a personalized variant of
typo-tolerance was developed [8] that customizes the typo correc-
tions to the user. Blanchard et al. [4] also developed a typo-tolerance
scheme with reduced server computation costs. In this study, we
focus on traditional typo-tolerance in password authentication sys-
tems, as it has been used in practice [2, 15, 34], likely due to its
simpler design (thus facilitating deployment).

2.2 Password Attacks and Defenses
In this study, we investigate the impact of password spraying [22],
credential stuffing [21, 24], and credential tweaking [25] attacks
on typo-tolerant password authentication, as well as hardening
such typo-tolerant schemes. Prior work has also considered such
password attacks and defenses in a more general context.

Password spraying is enabled by the passwords commonly used
by many users. Meanwhile, credential stuffing and tweaking at-
tacks are fueled by the widespread use of identical or similar pass-
words across online services, as extensively documented by prior
research [10, 26, 27, 31, 32, 35]. As a consequence, data breaches at
one service result in account compromise at other services.

Various defenses against these attacks have been proposed. For
password spraying, one approach [16, 29] is to derive signals from
the passwords used in failed login attempts to detect and block
ongoing attacks. Password strength meters and blocklists also aim
to discourage the use of common passwords [14, 23, 28]. To de-
fend against credential stuffing attacks, Wang et al. [37] devel-
oped a cooperative framework where different web services can
exchange telemetry to detect and block credential stuffing. An-
other line of defenses identifies if user credentials may be in leaked
datasets, typically resulting in user notifications and password re-
sets [9, 13, 20, 33]. The most sophisticated attack we consider is
credential tweaking, where the attacker generates variants of a
leaked password for their login attempts. In 2019, Pal et al. [25]
used a generative neural network model to perform the state-of-the-
art credential tweaking attack, improving upon the effectiveness of
previously developed attacks [10, 36, 38]. To date, defenses against
this attack class are limited to password meters that warn users
against using susceptible passwords [25].

3 METHODOLOGY
In this section, we describe the datasets that we use to empirically
evaluate the impact of typo-tolerance on password authentication
security. Instead of assessing a live authentication system, which
would entail user privacy, security, and ethical concerns, we rely

on public password leaks, as similarly done in prior password re-
search [7, 10, 25, 32].

3.1 Data Source
Our study relies on two recent and massive password leak datasets.
These datasets are publicly available online, although we avoid
publishing their specific locations here due to their sensitive na-
ture. While verifying the data in any data leak is challenging due
to ethical concerns, these datasets have been previously used by
security researchers without raising validity concerns [1, 6, 17, 25].

BreachCompilation. This leaked dataset is an aggregation of var-
ious password breaches, found by 4iQ in late 2017 [6]. It contains
1.4B account credentials associated with 1.1B distinct emails and
463M unique passwords. While this dataset contains well-known
breaches, including LinkedIn, Yahoo, and Myspace, it does not indi-
cate which breach sourced a given credential.

Collection#1. This dataset [17], uncovered in early 2019, contains
multiple compilations of password leaks. The dataset consists of 31
folders (listed in Table 6 in the Appendix), where the folder names
hint at the breach origins (e.g., leaks from certain countries or
certain types of online services). While certain folders contain files
indicating the specific source of a leak (e.g., a domain name in the
filename), many of the folders are aggregations themselves, again
preventing us from ascertaining the provenance of the credentials.
In total, the collection consists of 2.7B account credentials associated
with 772M unique emails and 21M distinct passwords.

3.2 Data Processing
BreachCompilation. We parse the BreachCompilation dataset’s

1.4B lines, which are formatted as delimiter-separated (account,
password) pairs. As we will use email addresses to reliably associate
account credentials with the same user, we filter out lines without a
valid email address as the account identifier. We also filter out lines
without a likely valid plaintext password, including those where
the password is longer than 31 characters (many of which are hash
values, and account for less than 0.1% of all passwords) or shorter
than 3 characters. Finally, we eliminate the approximately 36.5K
emails associated with over 100 passwords, which are unlikely to
represent real users. In total, we removed 2.8M lines, accounting
for 0.2% of the original data.

As listed in Table 6 in the Appendix, the final dataset consists
of 1.1B unique emails, of which 182.1M emails are associated with
multiple passwords. Of these multi-password emails, 21% are associ-
ated with the same password multiple times. This fraction of emails
is commensurate with the password reuse rates observed in prior
studies [10, 32]; thus we believe this observation reflects password
reuse rather than the leak containing extensive duplicated data.

Collection#1. The Collection#1 dataset contains various file types
and formats, including delimiter-separated text files, files with SQL
statements, and HTML documents. We also observe files containing
only hash values instead of plaintext passwords. We focus on pro-
cessing the delimiter-separated text files, which account for 99.9%
of the data.

After parsing these files (considering multiple potential delim-
iters), we process the resulting (account, password) pairs in a similar

fashion as with the BreachCompilation dataset. We filter out pairs
without a valid email for the account, pairs where the password is
longer than 31 characters or shorter than 3 characters, and emails
with over a hundred associated passwords. In total, we filtered out
0.5% of the original data.

As listed in Table 6 in the Appendix, the Collection#1 dataset is
organized into 31 separate folders, where each folder name suggests
a common characteristic of the contained breach data. We observe
similarities in folder names though (e.g., EUcombos and EUcom-
bos_1), suggesting that the same breached data may be duplicated
across multiple folders. Furthermore, we find extensive overlap in
the account credentials between folders. Thus, we evaluate each
folder as a separate leak compilation dataset (we will refer to each
folder’s data as a separate Collection#1 leak combination).

We further investigate the potential existence of duplicate data
for each leak combination. Again, considering emails associated
with multiple passwords, we calculate the fraction that are associ-
ated with the same password multiple times, seeing whether this
rate is commensurate with the password reuse rates observed in
previous studies [10, 32]. As shown in Table 6, for 20 of the leak
combinations, we observe supposed password reuse rates above
50%, with one leak combination exhibiting a 98% password reuse
rate. These rates far exceed the 9–43% reuse rates previously docu-
mented [10, 32]. Thus, we believe these leaks likely contain dupli-
cated data that would not reflect real user password behavior and
do not investigate them further.

Finally, three additional leak combinations contain at most a few
thousand emails associated with multiple passwords. We require
such users for our security evaluation (particularly with studying
credential stuffing attacks), so we also filter out these three leak
combinations, leaving us with eight Collection#1 leak combina-
tions exhibiting reasonable password reuse rates (those less than
50%) to investigate. Table 6 indicates these eight leaks and their
data characteristics. (We caution though that we ultimately lack
ground truth on the true nature of these datasets.) Note that we
investigate each Collection#1 leak combination separately, rather
than aggregate across them.

Duplicate Records. As discussed above, for both the BreachCom-
pilation and Collection#1 datasets, we preserve duplicate (email,
password) pairs rather than filter all of them (although we removed
entire Collection#1 datasets that exhibited abnormally high rates of
data duplication). By preserving these duplicate records which may
represent password reuse across breached online services, we can
characterize credential stuffing effectiveness when typo-tolerance
is not enabled, serving as a baseline to understand the relative
impact of enabling typo-tolerance. We note that some of these
duplicate records may be due to leak duplication in the datasets,
rather than true password reuse by users. As a consequence, our
baseline evaluation of credential stuffing’s effectiveness without
typo-tolerance may be inflated, and our reported results serve as
an upper bound on vanilla credential stuffing effectiveness. How-
ever, duplicate records do not affect our analysis of the absolute
impact of enabling typo-tolerance on credential stuffing attacks,
and only lower bounds our analysis of the impact relative to the
baseline (i.e., the relative effectiveness of credential stuffing under
typo-tolerance may be even higher than we already report). Thus,

preserving duplicate records will not notably affect our findings on
the security impact of typo-tolerant password authentication.

4 SECURITY EVALUATION
In this section, we re-evaluate the security implications of typo-
tolerant password authentication under a more comprehensive
threat model than considered in the existing security analysis by
Chatterjee et al. [7]. In particular, the prior analysis considered
online password spraying attacks [22], where the attacker guesses
common passwords. In this work, we expand the threat model to
additionally consider credential stuffing attacks [21, 24], where at-
tackers test a user’s leaked password from one online service on
other services, and credential tweaking attacks [25], where attack-
ers generate variants of a user’s leaked password from one service
as login attempts on other services.

Throughout this evaluation, we use the same typo-tolerance
password corrector functions as the prior work, as well as the same
typo-tolerance policies combining correctors, as discussed in Sec-
tion 2.1. We first reproduce the prior empirical analysis on our leak
datasets (which are more recent and significantly larger than those
used previously, although are lacking clear breach provenance),
evaluating how typo-tolerance affects password spraying attack
success. We then perform our new analysis assessing the influence
of typo-tolerance on credential stuffing and tweaking attacks.

4.1 Attack Metrics
To start, we discuss our metrics for attack success under the differ-
ent password attack models. Both the BreachCompilation dataset
and the multiple Collection#1 leak combinations aggregate various
leaks, without indicating which data subsets were derived from
which leaks. As a result, we cannot group emails and passwords
together into individual leaks, preventing a definitive evaluation
of attack effectiveness targeting a specific breached online service.
Instead, for each separate dataset, we consider the set of passwords
associated with each email in that dataset, and compute different
attack success metrics to capture the range of potential attack out-
comes on the passwords per email. These attack metrics are:
• Upper Bound: The upper bound attack metric measures the
proportion of emails where at least one associated password
or password pair would be successfully attacked. This scenario
indicates the attacker’s best-case success rate, as the attacker
successfully attacks every email with any susceptible password
(or password pair).

• Lower Bound: This metric measures the proportion of emails
where all associated passwords or password pairs would be suc-
cessfully attacked. This situation represents the attacker’s worst-
case success rate, where the attacker successfully attacks only
the emails where every possible password (or password pair) is
susceptible.

• Random: For this metric, we randomly select one password or
password pair for each email, and determine the proportion of
emails that would be successfully attacked. This random selection
process provides an expected attack success rate.

Essentially, the upper and lower bound metrics characterize the po-
tential range of attack success, whereas the random metric reflects
a more realistic attack outcome. Throughout the remainder of this

Dataset Policy
q = 1000

All Multi
Upper Lower Upper Lower

BreachCompilation CNone 6.73 5.25 10.48 1.52
CTop5 +0.38 +0.31 +0.66 +0.22

C#1: EUcombos CNone 8.39 7.51 10.35 3.32
CTop5 +0.48 +0.47 +0.70 +0.66

C#1: EUcombos_1 CNone 8.96 8.04 11.15 2.48
CTop5 +0.49 +0.47 +0.83 +0.66

C#1: Gamescombos CNone 8.07 7.12 11.35 2.04
CTop5 +0.41 +0.38 +0.62 +0.33

C#1: NEW_csp_EUcombo CNone 7.82 6.71 13.21 0.78
CTop5 +0.33 +0.29 +0.64 +0.19

C#1: OC_BTCcombos CNone 5.66 3.90 11.98 4.26
CTop5 +0.35 +0.28 +0.58 +0.27

C#1: OC_Porncombos CNone 11.68 10.70 19.85 2.89
CTop5 +0.48 +0.45 +0.94 +0.44

C#1: OC_UKcombos CNone 9.95 8.09 16.72 2.06
CTop5 +0.72 +0.63 +1.24 +0.58

C#1: RUcombo CNone 13.55 6.69 36.75 2.20
CTop5 +0.49 +0.33 +0.88 +0.09

Table 1: The effectiveness of password spraying when pass-
word typo-tolerance is disabled (CNone) compared with us-
ing the CTop5 typo-tolerance policy, across different datasets
for 𝑞 = 1000 attack queries. For each leak, we evaluate at-
tack success on all emails (labeled as All) and only emails
with multiple passwords (labeled asMulti), using the upper
and lower bound attack success metrics. For ease of compar-
ison, the CTop5 attack metrics are the percentage point in-
creases/deltas (indicated by the + sign) in password spraying
success over CNone, rather than the total attack success rate.

section, we use these three attack success metrics to characterize
the effectiveness of our different attack models.

In addition, throughout our analysis, we will often use percent-
age points (pp) for comparing two percentages, where the percent-
age points show the arithmetic difference between two percentages
(e.g., increasing from 50% to 55% is a 5pp increase). We use this
unit as it represents the absolute difference between two percent-
ages rather than a relative one, which is particularly useful when
interpreting the difference between two attack success rates or
population percentages.

4.2 Password Spraying Attacks (Replication)
In the prior security analysis of typo-tolerant password authentica-
tion, Chatterjee et al. [7] used password leaks from three websites
(RockYou, phpBB, and Myspace) to empirically demonstrate that
typo-tolerance did not significantly exacerbate password spraying
attacks, where attackers guessed common passwords. These three
leaks are dated (circa 2009) and small (only the Myspace leak ex-
ceeded 1M users), compared to our more recent and significantly
larger datasets. Here, we replicate their analysis on our distinct
password datasets to confirm the prior work’s observations.

Analysis Method. We evaluate two typo-tolerance policy con-
figurations: no typo-tolerance (CNone) and the most permissive
typo-tolerance policy (CTop5). (Recall that Section 2.1 discussed the
nature of these policies.) For our password leak datasets, some
emails are associated with multiple passwords while others are tied

to only one. While analyzing all emails provides the most compre-
hensive analysis of password spraying effectiveness, our subsequent
analyses of credential stuffing and tweaking attacks (in Sections 4.3
and 4.4) are restricted to only emails with multiple passwords. Thus,
to support more direct comparisons across attacks, we consider
both populations separately (all emails and only multi-password
ones). Finally, password spraying attacks depend on a parameter
𝑞, indicating the number of attack queries attempted. We evaluate
𝑞 = 10, 100, 1000, as also done by Chatterjee et al. [7]. We note that
typo-tolerance only affects online attacks, and websites often de-
ploy defenses (e.g., rate limiting, blocklisting) that limit the number
of queries that attackers can reasonably make (i.e., 𝑞 = 1000 is less
feasible in practice).

A password spraying attack succeeds against an (email, pass-
word) pair if the attacker is able to successfully guess the password
within 𝑞 queries. The optimal guessing strategy is for the attacker
to attempt passwords in order of decreasing popularity, assuming
the attacker knows the password distribution. While attackers typ-
ically lack this knowledge in practice, in our analysis, we assume
the attacker knows the target dataset’s password distribution and
we simulate an optimal attack. By doing so, we model the best-case
scenario for the attacker.

AnalysisResults.Table 1 displays the password spraying attack
results across different target datasets and typo-tolerance policies,
for attacks consisting of 𝑞 = 1000 queries, the strongest password
spraying attack we evaluate. We list the upper bound and lower
bound attack success rates (we elide the random metric for space).
In Table 7 of the Appendix, we show the password spraying attack
results for 𝑞 = 10 and 100, the weaker attacks.

Without typo-tolerance (where the policy is CNone), we observe
varying password spraying effectiveness across the different pass-
word datasets and email populations. However, when enabling the
most permissive typo-tolerance policy (CTop5), we see that the in-
crease in password spraying success is minimal across all settings,
even though we are considering our largest attack size (𝑞 = 1000).
The upper bound increase in attack success is below 1 percentage
point (pp) in all cases except one (targetingmulti-password emails in
Collection#1’s OC_UKcombos leak, with an attack success increase
of 1.24pp). For weaker attacks (𝑞 = 10 and 100), typo-tolerance has
an even smaller impact on attack success.

Thus, we replicate the same conclusion as prior work [7], that
typo-tolerant password authentication does not significantly ad-
vantage password spraying attacks.

4.3 Credential Stuffing Attacks
Here, we assess how typo-tolerant password authentication is af-
fected by credential stuffing attacks. This class of attacks was not
considered in the prior security analysis of typo-tolerance [7], thus
our security evaluation encompasses a broader threat model.

Analysis Method. Credential stuffing attacks involve two pass-
words from a user, one leaked password (from one online service)
that the attacker has access to and one targeted password (on an-
other online service) that the attacker aims to guess. To evaluate
credential stuffing attacks using the leak datasets, we only consider
emails associated with multiple passwords within the same dataset.
We analyze all ordered password pairs per email, where each pair

Dataset CNone CTop1 CTop2
Upper / Lower Random Upper / Lower Random Upper / Lower Random

Breach Compilation 20.9 / 16.2 17.1 +1.3 / +0.6 +0.7 +3.4 / +1.7 +2.0
C#1: Eucombos 49.8 / 41.6 44.1 +1.4 / +0.9 +1.1 +7.9 / +6.2 +6.3
C#1: EUCombos_1 30.7 / 26.8 27.9 +1.9 / +1.3 +1.5 +4.4 / +3.5 +4.2
C#1: Gamescombos 30.1 / 28.2 28.6 +10.3 / +0.5 +1.8 +14.2 / +3.2 +4.7
C#1: NEW_csp_EUcombo ~0.0 / ~0.0 ~0.0 +3.1 / +0.7 +1.1 +5.2 / +2.0 +2.5
C#1: OC_BTCcombos 47.6 / 41.8 43.2 +0.2 / +0.1 +0.1 +0.9 / +0.3 +0.5
C#1: OC_Porncombos 11.3 / 8.2 8.9 +1.7 / +1.2 +1.3 +2.7 / +2.0 +2.2
C#1: OC_UKcombos 11.8 / 9.1 9.8 +1 / +0.5 +0.6 +4.1 / +2.4 +2.8
C#1: RUcombo 7.4 / 6.0 6.3 +6.8 / +0.2 +0.3 +7.3 / +0.4 +0.5

Dataset CTop3 CTop4 CTop5
Upper Random Upper Random Upper Random

Breach Compilation +8.1 +4.0 +8.9 +4.3 +9.0 +4.4
C#1: Eucombos +10.8 +8.6 +11.1 +8.8 +11.2 +8.8
C#1: EUCombos_1 +12.0 +8.0 +12.4 +8.1 +12.5 +8.2
C#1: Gamescombos +22.8 +7.3 +23.4 +7.6 +23.5 +7.6
C#1: NEW_csp_EUcombo +14.1 +5.4 +15.0 +5.8 +15.3 +5.8
C#1: OC_BTCcombos +5.5 +2.5 +6.0 +2.7 +6.0 +2.7
C#1: OC_Porncombos +7.9 +4.2 +8.3 +4.3 +8.4 +4.4
C#1: OC_UKcombos +14 +6.6 +14.4 +6.8 +15.0 +6.8
C#1: RUcombo +28.6 +1.3 +28.8 +1.3 +33.4 +1.5

Table 2: The effectiveness of credential stuffing attacks when typo-tolerance is disabled (CNone) compared with using the CTop1
through CTop5 typo-tolerance policies, across different leak datasets. For each leak, we evaluate attack success at the email
granularity, using the upper bound, lower bound, and random attack success metrics. For CTop3 to CTop5, we elide the lower
bound values as they do not increase compared to CTop2, because the additional correctors applied in those policies are non-
symmetric. For ease of comparison, the CTopX attack success metrics are the percentage point increases/deltas (as indicated by
the + sign) in credential stuffing success over CNone, rather than the total attack success rate.

represents a (leaked, targeted) password pair. For a given password
pair, the credential stuffing attack succeeds if the leaked password
matches, or is corrected to if applying typo-tolerance, the targeted
password. Considering all (leaked, targeted) password pairs per
email, we assess the success rate of credential stuffing by compar-
ing all five typo-tolerance policies and no typo-tolerance, using the
upper bound, lower bound, and random attack success metrics.

Note that the pair ordering is important (i.e., identifying which
password is the leaked one versus the targeted one) because when
we consider typo-tolerance, the rm_first, rm_last, and n2s_last pass-
word correctors (as discussed in Section 2.1) are not symmetric
functions. For example, password1 corrects to password under the
rm_last corrector, but not vice versa. For any email with a pass-
word pair where credential stuffing succeeds only when applying
a non-symmetric corrector, that email contributes to the upper
bound attack success rate but not to the lower bound rate, as the
inverted pair would not exhibit a successful stuffing attack (as the
corrector is non-symmetric). As a consequence, the lower bound
attack metric does not increase for policies more permissive than
CTop2 (i.e., CTop3 through CTop5), as these policies only incorporate
additional non-symmetric correctors.

Analysis Results. In Table 2, we show the effectiveness of cre-
dential stuffing attacks across different leak datasets and different
typo-tolerance policies. We list the upper bound, lower bound, and
random attack success metrics, showing the percentage point in-
creases in attack success when a typo-tolerant policy is enabled,
compared to no typo-tolerance.

When typo-tolerance is not enabled (CNone), we find that creden-
tial stuffing attacks are successful at targeting a large portion of

emails, with the random attack success metric primarily ranging
from 6.3% to 44.1% of emails. The exception is the Collection#1
NEW_csp_EUcombo leak, where only a small but non-zero num-
ber (less than 0.1%) of emails exhibited password reuse. As we do
not know the origin of this leak, it is unclear why the password
reuse rate is so low, although it is possible that some (but not all)
password reuse cases were deduplicated. The observed credential
stuffing success rates are commensurate with prior studies [10, 32]
that analyzed the password reuse rates between distinct website
password dumps, which found reuse rates mostly between 9-20%
but rising as high as 43%. The high success rates also reflect the
reality that credential stuffing attacks have been damaging in prac-
tice [1, 24, 30].

Once enabling the simplest and most limited typo-tolerance
policy (CTop1), we observe an increase in the random credential
stuffing success rate by up to 1.8pp, which already exceeds the
largest increase in upper bound password spraying success rate seen
in Table 7 (1.24pp, when using theCTop5 typo-tolerance policy under
password spraying attacks with 1000 guesses). The upper bound
metrics reflect credential stuffing success increases by 1pp or more
for all leaks except one (Collection#1’s OC_BTCcombos, with an
upper bound increase of 0.2pp). Thus, even with the most restrictive
typo-tolerance password policy, we already see a noticeable impact
from typo-tolerance on credential stuffing attacks.

As we expand the typo-tolerance policy, the attack metrics in-
crease, with the largest increases occurring when expanding from
CTop1 to CTop2, and CTop2 to CTop3. With the most tolerant policy
(CTop5), we find that credential stuffing is significantly more success-
ful than without typo-tolerance. Under the random attack success

metric, enabling CTop5 allows the credential stuffing success rate to
increase by 1.5–8.8pp, with the majority of leak datasets exhibiting
a delta of over 5pp. In the worst-case scenario for the typo-tolerant
system, the upper bound credential stuffing success rate increases
by between 6–33.4pp. Thus, a significant portion of users become
newly susceptible to credential stuffing attacks once typo-tolerance
is enabled. Furthermore, the relative strength of credential stuffing
increases notably through enabling typo-tolerance. For example,
under the random attack success metric with CTop3, credential stuff-
ing is 23% more effective in the BreachCompilation dataset and 67%
more effective in the Collection#1 OC_UKcombos dataset.

Our evaluation here demonstrates empirically that typo-tolerance
can actually severely reduce password security in practice, by em-
powering credential stuffing attacks. The underlying issue is that
users often use minor variations of a password across online ser-
vices [10], and these variations are closely related to the type of
transformations applied by typo-tolerance correctors. Thus, dur-
ing a credential stuffing attack, a user’s leaked password often can
be corrected to their password on a target service. Our findings
counter the initial security analysis of typo-tolerant password au-
thentication [7], which concluded that such systems could increase
authentication usability with negligible security degradation. To
be clear though, we do not find an error with the prior work’s anal-
ysis. Rather, the existing analysis only considered a threat model of
password spraying attacks, whereas in our evaluation, we expand
the threat model to include credential stuffing, a realistic inclusion
given prominent credential stuffing attacks in the wild [1, 24, 30].

4.4 Credential Tweaking Attacks
With credential stuffing, an attacker only attempts one guess at a
target password (i.e., the leaked password). However, as observed
in prior work [10, 25] as well as our credential stuffing attack anal-
ysis in Section 4.3, users often use similar but distinct passwords
across websites, frequently applying several common categories
of variations. As a consequence, an attacker could apply similar
variations to a leaked password in order to generate additional
fruitful login attempts (in addition to testing the leaked password
itself). Prior work has demonstrated that such credential tweaking
attacks can be significantly stronger than credential stuffing. Here,
we explore the degree to which typo-tolerant password authentica-
tion schemes exacerbate credential tweaking attacks, compared to
credential stuffing attacks (as analyzed in Section 4.3).

Analysis Method. For this analysis, we rely on a state-of-the-
art credential tweaking model developed by Pal et al. [25]. This
model, which is open-sourced [3], takes a leaked password as an
input and generates password variations for further login attempts.

Our attack evaluation is similar to that of credential stuffing
(as discussed in Section 4.3). However, given a (leaked, targeted)
password pair, we do not only check if the leaked password matches
or is corrected to the targeted password (simulating a successful
credential stuffing attack). Instead, we also apply the credential
tweaking model to the leaked password to generate nine additional
unique password variations (for a total attack strength of 10 guesses,
the weakest attack evaluated by Pal et al. [25])1. We consider the

1We ignore the 21 emails (out of 100K) with a password where the model could not
generate nine unique variants.

Policy Upper Random Lower
CNone 37.8 26.1 20.1
CTop1 +5.0 +2.3 +0.7
CTop2 +6.7 +3.7 +1.9
CTop3 +13.9 +6.8 +2.3
CTop4 +15.0 +7.3 +2.3
CTop5 +15.1 +7.4 +2.3

Table 3: The effectiveness of credential tweaking attacks
when typo-tolerance is disabled (CNone) compared with us-
ing the CTop1 through CTop5 typo-tolerance policies. Due to
computational constraints, we use a randomly selected set
of 100K multi-password emails from the BreachCompila-
tion dataset.We evaluate the upper bound, lower bound, and
random attack success metrics. For ease of comparison, the
CTopX values are the percentage point increases/deltas (as in-
dicated by the + sign) in credential tweaking success over
CNone, rather than the total attack success rate.

credential tweaking attack successful if the leaked password or any
of its nine variants (for a total of 10 password guesses) match or
are corrected to the targeted password. As before, we compute the
upper bound, lower bound, and random attack success rates.

The credential tweaking model is computationally intensive and
time consuming though, as documented by the model authors [25].
Hence, we limit our evaluation to a randomly chosen set of 100K
emails associated with multiple passwords from the BreachCom-
pilation dataset2. We note that Pal et al. [25] analyzed their model
using a random sample of the same size on the same source dataset,
thus we are adhering to the same analysis parameters.

Analysis Results. Table 3 shows the upper bound, lower bound,
and random attack success rates for credential tweaking attacks
across different typo-tolerance password policies (including no
typo-tolerance). Comparing credential tweaking and credential
stuffing attacks (in Table 2) without typo-tolerance (CNone), we
observe that credential tweaking is significantly more effective,
as expected. With the random attack success metric, credential
tweaking succeeds with 26.1% of emails, compared to 17.1% for
credential stuffing. This 9.0pp difference is commensurate with the
findings by Pal et al. [25], who observed a 9.9pp delta between
the two attacks during their evaluation3. In the best-case scenario
for the attacker, over a third of emails (37.8%) can be successfully
attacked; in the worst-case scenario for the attacker, 20.1% of emails
are still susceptible.

When enabling typo-tolerance, we observe that credential tweak-
ing becomes notably more effective. Using the random attack suc-
cess metric, credential tweaking’s success rate increases by 6.8pp
under the CTop3 policy, up to 7.4pp under the CTop5 policy (a 28%
gain). Even enabling the least permissive typo-tolerance policy

2Even for our small sample of emails, it took four hours to generate the credential
tweaking model’s attack guesses for our evaluation, using 20 cores on a server with
256 GB of memory.
3We note that the credential tweaking analysis by Pal et al. [25] is not identical to
ours, making a direct comparison inexact. Our analysis simulates both credential
stuffing and tweaking attacks, and compares their effectiveness. In contrast, the prior
evaluation removed password reuse cases (essentially eliminating the effectiveness of
credential stuffing), and analyzed the effectiveness of credential tweaking. However, as
both analyses isolate the impact of credential tweaking from that of credential stuffing,
we believe the comparison remains fair and meaningful.

CTop1 still results in a 2.3pp increase in attack success. In the up-
per bound case (the best-case scenario for the attacker), credential
tweaking is able to successfully attack an additional 15.1% of users
under CTop5, a 40% gain in attack potency compared to CNone.

Our findings here reinforce the conclusion from our credential
stuffing attack analysis (Section 4.3). We again empirically observe
that typo-tolerance can result in consequential degradation in pass-
word security, once considering a broader attack model than that
of the prior security analysis of typo-tolerant password authen-
tication systems [7]. We also note that our evaluation is of the
weakest credential tweaking attack considered by Pal et al. [25],
who investigated tweaking attacks consisting of between 10 to 1000
total guesses, finding that using more generated password guesses
resulted in more effective tweaking attacks. Thus, our findings
on the impact of typo-tolerance on credential tweaking attacks
can be viewed as lower bounds, meaning tweaking attacks with
a higher number of guesses should be even more effective with
typo-tolerance enabled.

5 HARDENING TYPO-TOLERANT
PASSWORD AUTHENTICATION

In Section 4, we evaluated typo-tolerant password authentication
under a more comprehensive threat model than considered in the
existing security analysis [7].We identified that, counter to the prior
findings, typo-tolerance can result in notable security degradation
in practice, as credential stuffing and tweaking attacks are signifi-
cantly more effective when typo-tolerance is enabled.We concluded
that typo-tolerance increases password usability (as demonstrated
by Chatterjee et al. [7]) but at a security cost.

In this section, we investigate whether we can reduce typo-
tolerance’s security loss while maintaining its functionality. In
particular, we aim to predict if a given password is newly suscepti-
ble to credential stuffing once typo-tolerance is enabled. We will
call such affected passwords susceptible passwords. With such a
capability, an online service could identify and selectively disable
typo-tolerance for users predicted to be negatively impacted by the
authentication scheme (i.e., using a susceptible password), while
preserving typo-tolerance for other users.

We first consider using existing techniques that assess password
security, specifically password strength meters (PSMs). Our hy-
pothesis is that weak passwords correlate with susceptible ones,
as perhaps users who use minor variants of a password across
sites may more likely choose weaker passwords. In Section 5.1, we
evaluate whether we can use the popular and open-source zxcvbn
PSM [12] to accurately predict password susceptibility.

However, identifying weak passwords is an inherently different
task from determining password susceptibility, a notion that will be
reinforced by our PSM evaluation results in Section 5.1. As an alter-
native, we explore a machine learning approach to develop a binary
classifier for susceptible passwords. Given the specific transforma-
tions performed by typo-tolerance correctors, our intuition is that
susceptible passwords exhibit specific structure which a classifier
could potentially identify. In Section 5.2, we discuss how we design
such a classifier, and in Section 5.3, we evaluate its performance,
demonstrating practical value.

Policy Strength Score Users w/ Weak Password FPR FNR

CTop1
<2 0.73 0.73 0.27
<3 0.90 0.90 0.10

CTop2
<2 0.73 0.73 0.26
<3 0.90 0.90 0.09

CTop3
<2 0.73 0.73 0.19
<3 0.90 0.90 0.06

CTop4
<2 0.73 0.72 0.19
<3 0.90 0.90 0.06

CTop5
<2 0.73 0.72 0.19
<3 0.90 0.90 0.06

Table 4: The effectiveness of disabling typo-tolerance
for users of weak passwords. On the BreachCompilation
dataset, we evaluate the proportion of users with weak pass-
words for different weakness thresholds, representing the
population with typo-tolerance disabled. Across the typo-
tolerance policies, we also evaluate credential stuffing at-
tack success and the proportions of users for whom typo-
tolerance should have been disabled (false negative rate, or
FNR) or should not have been disabled (false positive rate,
or FPR).

Note that here we explore hardening typo-tolerance against cre-
dential stuffing attacks, and we leave the investigation of credential
tweaking attacks for future work. This decision is in part driven
by the high computational cost of the state-of-the-art credential
tweaking attack model [25] (used in Section 4.4), which limits the
amount of training and testing data we can practically use for our
machine learning development. Furthermore, credential stuffing
attacks are commonplace in practice [24, 30, 30], whereas to our
knowledge, credential tweaking attacks remain largely theoretical.

5.1 Disabling Typo-Tolerance for Weak
Passwords

We first explore using a PSM (specifically, zxcvbn [12]) to classify
susceptible passwords as weak ones. We evaluate the impact of dis-
abling typo-tolerance for weak passwords on users and credential
stuffing attacks.

Analysis Method. Our evaluation here mirrors the credential
stuffing attack analysis from Section 4, using the BreachCompilation
dataset. The only difference is that in this analysis, we do not permit
typo-tolerance for user passwords that are classified as weak by
zxcvbn. Given a password, zxcvbn outputs a strength score ranging
from 0 (weakest/too guessable) to 4 (strongest/very unguessable).
We consider two different thresholds for defining weak passwords:
1) strength score is less than 2 (too or very guessable) and 2) strength
score is less than 3 (somewhat guessable or weaker).

Across the different typo-tolerance policies and weak password
thresholds, wemeasure the population of userswhere typo-tolerance
is disabled due to the use of a weak password. We then evaluate
credential stuffing attacks under the random attack success metric
(where for each user, one password is randomly selected as the
leaked password, and another as the targeted password). We define
a false positive as a case where typo-tolerance is disabled for a
user but they are not using a susceptible password (i.e., credential
stuffing would not have succeeded even if typo-tolerance was en-
abled). A false negative is when credential stuffing succeeds for a
user due to typo-tolerance remaining enabled. We characterize the

false positive and false negative rates to identify the effectiveness
of using a PSM for selectively disabling typo-tolerance.

Analysis Results. Table 4 depicts the impact of disabling typo-
tolerance for weak passwords. We find that such actions do provide
security benefits. False negatives indicate users of susceptible pass-
words who should have typo-tolerance disabled. Across all typo-
tolerance policies and weak password thresholds, we observe false
negative rates (FNR) between 6-28%, indicating that the majority
of users negatively impacted by typo-tolerance do have it disabled.

However, we observe that weak passwords are used by 73-90%
of users, depending on the weak password threshold. These propor-
tions are commensurate with findings from prior empirical analysis
of PSM scoring [11]. As a result, typo-tolerance is disabled for most
users, even when it need not be in most cases (as the false positive
rate is high). Thus, disabling typo-tolerance for weak password
users does not preserve the functionality of typo-tolerance.

We conclude that using a PSM to identify weak passwords and
selectively disable typo-tolerance for them is not a viable method
for hardening typo-tolerance. As an alternative approach, we next
explore developing a machine learning model specifically trained
to identify susceptible passwords. Intuitively, PSMs were not de-
veloped for such a task, so a model specifically designed for the
problem domain should outperform it (in addition, such a model
could use password strength as a feature while leveraging additional
features for improved accuracy).

5.2 Machine Learning Model Design
Model Features. As our model classifies password inputs, we de-
rive features from password characteristics. The full set of 46 fea-
tures considered are summarized in Table 8 of the Appendix, and
consists of categorical, numerical, and Boolean features. At a high
level, these features can be divided into several groups:
• One set of features focuses on capturing the password composi-
tion, structure, and complexity, including the classes of characters
used (i.e., uppercase and lowercase letters, digits, and symbols),
the frequency of transitions between character classes, password
entropy, and password strength. Our rationale for using such
features is that there may be a correlation between the password
structure and complexity, and the likelihood that the password
is used in slightly modified forms across online services.

• Another group of features cater to the typo-tolerance correctors,
and characterize the characters involved in corrector transfor-
mations. For example, the n2s_last corrector operates on the last
password character, changing it to the equivalent character un-
der the shift-key modifier. We use a feature indicating if the last
character would be changed by the corrector (e.g., “1” would be
transformed to “!”, but “T” is already capitalized and would not
be modified). Similarly, to account for the swc_first, rm_first, and
rm_last correctors, the features also capture the character types
of the first and last password characters, as well as their similari-
ties to adjacent characters. Using such corrector-specific features,
we aim for the model to identify when a password may be trans-
formed by a corrector (if not, then the password’s security is not
affected by the corrector).

• We also consider password popularity, as minor variants of pop-
ular passwords may be commonly used across sites.

Password Labels. A given password may be used by many
users, and its use may be susceptible under some users and not
others. In other words, given a password, some users may vary it
slightly for use across online services, while other users will not. As
a consequence, training a machine learning model on all instances
of a password’s use (across users) would result in a noisy signal,
where the same password input will have different labels depending
on the instance. To avoid unclear decision boundaries, we train our
model on distinct passwords, providing a consistent label for each
password input.

This approach raises the question of what the password label
should be, given some instances of the password will be susceptible
and others will not. We explore different password labels depending
on whether the proportion of the password’s users that are suscep-
tible exceeds a threshold, which we call the label threshold. Using
a 0% label threshold prioritizes security, as a distinct password is
classified as susceptible if any of its instances are susceptible. Using
a higher label threshold trades security for functionality, as the
classifier avoids labeling a distinct password as susceptible if only
a fraction of its users are susceptible. We evaluate our models on
data labeled using 0%, 10%, and 25% label thresholds. Note that
password labels also depend on the typo-tolerance policy, as the
policy dictates which password instances are susceptible.

Classification Model. We train machine learning models for
each of the five individual typo-tolerance correctors, as well as for
each of the five typo-tolerance policies (CTop1 to CTop5). We note
that one could implement a policy model by using multiple correc-
tor models; however, our subsequent exploration did not identify
classification accuracy benefits to doing so, while using multiple
models results in additional design complexity and performance
costs. Examining the individual corrector models does provide us
with insights on the characteristics of passwords susceptible under
each corrector function.

We use a binary decision tree for our classification model. While
we initially explored several alternative designs (including logistic
regression, support vector machines, random forests, and neural
networks), we did not observe superior classification performance.
Decision trees also are directly interpretable, and we explore the
most influential model features in Section 5.3.1.

We evaluate our model on the BreachCompilation leak dataset,
considering emails with multiple passwords (as we are defending
against credential stuffing attacks). We first randomly divide the
dataset’s multi-password emails into two groups, where one group
consists of 90% of the emails and is used as a training evaluation
dataset, and the remaining 10% of emails are reserved as a holdout
test dataset (which we will use for evaluating classifier performance
on password instances, rather than only considering distinct pass-
words). For the training evaluation dataset, we generate labels for
distinct passwords based on the typo-tolerance policy and the la-
bel threshold. This data exhibits heavy class imbalance, where the
majority of distinct passwords are not susceptible (the exact ratio
varies depending on the labeling). We downsample the dominant
class (not susceptible passwords) for a balanced training dataset4
(although we explored using imbalanced data, observing slightly

4Note that even after downsampling, our training datasets are sizable, with the smallest
training dataset containing 300K unique passwords.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

swc_all
swc_first
rm_last
rm_first
n2s_last

Figure 1: ROC curves for the individual corrector models
trained on data labeled using a 0% label threshold.

worse model performance). Finally, we train our decision tree mod-
els on the training dataset using 10-fold cross-validation5, using
grid search for hyperparameter tuning (selecting a maximum tree
depth of 15). In Section 5.3, we discuss our training results as well
as our model performance on the holdout test dataset, where we
can evaluate model performance on password instances in addition
to distinct passwords.

5.3 Machine Learning Model Evaluation
In this section, we evaluate our password classifiers, presenting both
the model performance during training (using cross-validation),
as well as on a holdout test dataset that simulates the realistic
application of the classifiers.We also characterize the computational
costs of training and deploying the model.

5.3.1 Training Results. Here, we evaluate the results from train-
ing our different classifier models. As with any machine learning
approach, we aim to maximize recall while minimizing false posi-
tives. However, the cost of false positives in our scenario may be
considered relatively low, as a false positive results in disabling
typo-tolerance for a user. When this occurs, the user loses the
usability benefits of typo-tolerance but does not suffer security
consequences. Thus, a model with high recall but a modest false
positive rate (FPR) can still be useful in practice, offering a different
functionality-security tradeoff for typo-tolerance compared to fully
enabling or disabling typo-tolerance.

Corrector Models. Figure 1 depicts the receiver operating char-
acteristic (ROC) curves for the five individual corrector models,
where the data is labeled using the 0% label threshold, and each
curve is averaged across the cross-validation folds. The n2s_last
model has the highest ROC curve, with 99% recall at a 2% FPR. The
other corrector models offer less favorable recall/FPR tradeoffs, with
the rm_last model performing worst. Achieving 75% recall with

5As our training data consists of distinct passwords, during cross-validation, the set of
passwords our model is trained on has no overlap with the set of passwords it is tested
on. Thus, our model is evaluated on passwords it did not observe during training.

the rm_last model results in a 36% FPR, whereas for the swc_all,
swc_first, and rm_first models, the same recall level results in FPRs
of 20%, 20%, and 10%, respectively. We observe the same patterns
in the recall/FPR tradeoffs when the corrector models are trained
on data labeled with the 10% and 25% label thresholds (as seen in
the ROC curves of Figures 3 and 4, in the Appendix).

The performance of these models demonstrates that passwords
do exhibit characteristics that indicate likely susceptibility, although
the signal is (unsurprisingly) noisy. Except for the n2s_last cor-
rector model, we are unable to obtain high recall (e.g., >95%) at
low FPRs (e.g., <5%). However, we can still achieve meaningful
recall levels (e.g., 75%) at modest FPRs (e.g., 10-40%). Such operating
points would protect the majority of users from the security degra-
dation introduced by a typo-tolerance corrector, while still main-
taining typo-tolerance for most users. Thus, we argue that these
models can be useful in practice as they offer a different security-
functionality tradeoff compared to disabling typo-tolerance (result-
ing in no usability gains but no security losses) and fully enabling
typo-tolerance (affording the full usability benefits with the full
security degradation costs observed in Section 4).

Top Features. We inspect the most influential features in the
corrector decision-tree models to gain insights into their inner
workings, using the feature importance scores. In particular, the
dominant features represent password characteristics that most
signal susceptibility (or lack thereof) under a specific typo-tolerance
corrector, which also reflect the types of modifications that users
apply when using similar passwords across online services. Notably,
password strength is not a top feature for any corrector, aligning
with our prior finding that a PSM would serve as a poor classifier
for susceptible passwords.
• swc_all: The most important features for the swc_all models are
whether the password consists of all uppercase letters, whether
the password contains only uppercase letters and digits, and
the password length. The most susceptible passwords are those
shorter than 13 characters with only uppercase letters (and pos-
sibly digits).

• swc_first: The influential features for the swc_first models are
whether the first character is an uppercase or lowercase letter,
and whether the first two characters are from the same character
class. Susceptible passwords tend to be those with both uppercase
and lowercase letters as the first character and a lowercase letter
as the second character.

• rm_last: The top features for the rm_last models are not as dis-
criminative as with the other corrector models (unsurprising
as the rm_last models provided the worst recall/FPR tradeoffs).
The most impactful feature is the password length, with the
next two highest ranked features being the number of character
class transitions in the password and the length of the longest
single-character-class substring. Passwords shorter than 17 char-
acters with few character class transitions are more likely to be
susceptible under the rm_last corrector.

• rm_first: The dominant feature for the rm_first models is whether
the password consists only of digits. The password length and
popularity are two other influential features. The most suscepti-
ble passwords under the rm_first corrector are popular all-digit
ones with lengths less than 16.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 ra
te

Top1
Top2
Top3
Top4
Top5

Figure 2: ROC curves for the policy models trained on data
labeled using a 0% label threshold.

• n2s_last: The notable features for the n2s_last models are whether
the last character can be shift-key modified, whether the pass-
word’s last two characters are the same character class, and
whether the password consists of lowercase letters and digits.
Susceptible passwords are often those with an uppercase letter or
symbol as the last character (i.e., a character that is the shift-key
modification of another character), where the remainder of the
password consists of lowercase letters and digits.
Policy Models. Figure 2 shows the ROC curves for the five pol-

icy models where each curve is averaged across the cross-validation
folds. Here, the models are trained on data labeled using a 0% la-
bel threshold. We observe that each policy model’s performance
is similar to that of the worst-performing corrector in the policy.
CTop1 consists only of the swc_all corrector, so their models’ ROC
curves are identical. The ROC curves for the CTop1 and CTop2 mod-
els are similar. As CTop2 adds the swc_first corrector, this similarity
aligns with the similar ROC curves for the swc_all and swc_first
corrector models. Finally, the policy models for CTop3, CTop4, and
CTop5 (all of which include the rm_last corrector) present nearly
identical performance, matching the performance of the rm_last
corrector model (the worst-performing corrector model). Achieving
75% recall with the CTop3, CTop4, and CTop5 policy models result in
a 36–38% FPR. Meanwhile, the same recall level for the CTop1 and
CTop2 policy models result in a FPR of 21% and 26%, respectively.
As with the corrector models, we observe the same patterns for
policy models trained on data labeled using the 10% and 25% label
thresholds (as visible in Figures 5 and 6 in the Appendix).

These results show that to a modest extent, we can discrimi-
nate between susceptible and non-susceptible passwords under a
typo-tolerance policy. Our policy models exhibit performance that
is largely bounded by the performance of the worst-performing
model for a corrector in the policy. As with the corrector models, we
failed to achieve high recall at a low FPR. However, our policy mod-
els still provide meaningful recall levels with modest FPRs, allowing
a typo-tolerant authentication system to trade off between func-
tionality and security. (We note that these policy models also offer

better security-functionality tradeoffs than with using a password
strength meter as a classifier, as evaluated in Section 5.1.)

5.3.2 Holdout Test Set Results. Recall from Section 5.2 that our
password classification task is defined on distinct passwords rather
than password instances. This formulation allowed us to pursue
models that leverage password characteristics to predict likely sus-
ceptibility (whereas models operating on password instances would
encounter the same password input with varying output labels, as
some instances are susceptible while others are not). Section 5.3.1’s
evaluation of our corrector and policy password classifiers similarly
considered model performance across distinct passwords (in the
training dataset). However, in practice, policy models would be
applied to password instances across users. In this section, we in-
vestigate how the classifiers perform in this realistic setting, using
our holdout test set of emails (the random 10% of emails withheld
from the training evaluation, as discussed in Section 5.2).

Analysis Method. For the five typo-tolerance policies, we use
the same policy model parameters as evaluated in Section 5.3.1,
except with the models trained on distinct passwords in the entire
training dataset (as our earlier evaluation used cross-validation).
We again consider the 0%, 10%, and 25% label thresholds for labeling
the training data. For each policy model, we consider multiple recall
operating points, exploring the tradeoff between recall and the false
positive rate. Specifically, we consider models tuned to 10%, 25%,
50%, 75%, and 90% recall. We then apply these models to classify
a randomly selected password for each email in the holdout test
dataset, simulating the use of our models at an online service.

For each model configuration (training label threshold, typo-
tolerance policy, and recall operating point), we analyze the propor-
tion of emails with their (randomly selected) password classified as
susceptible (to credential stuffing once typo-tolerance is enabled).
These would be emails where typo-tolerance (using the model’s
corresponding policy) would be disabled, representing the total
user-facing impact of applying the model. To tease apart the secu-
rity and functionality implications of the models, we assess whether
the passwords are actually susceptible or not, in a similar fashion as
done for the random attack success metric in Section 4.3. For each
email, we randomly select a second password as the leaked pass-
word. We identify whether the typo-tolerance policy corrects the
leaked password to match the original randomly selected password
(i.e., the original password is susceptible in reality), and whether our
model predicts the original password as susceptible. If the model
predicts susceptibility but the email’s password is not susceptible
in reality, we consider the email as a false positive. Here, our model
would cause typo-tolerance to be unnecessarily disabled for the
email. Similarly, if the model does not predict susceptibility but the
email’s password is actually susceptible, we consider the email as a
false negative.

Analysis Results. Table 5 shows the model susceptibility pre-
diction rate, the prediction false positive rate (FPR), and the predic-
tion false negative rate (FNR) for our various policy models when
trained on data using the 10% label threshold. Across all five poli-
cies, we observe recall operating points that offer modest FPRs and
FNRs. For example, at 50% recall, the five policy models predict
between 24–41% of emails to have a susceptible password, with
FPRs ranging between 23–39% and FNRs ranging from 23–35%.

Label
Threshold Policy Recall Susceptible FPR FNR

10%

Top1

10% 0.19 0.18 0.53
25% 0.19 0.19 0.46
50% 0.25 0.35 0.32
75% 0.58 0.58 0.16
90% 0.70 0.70 0.11

Top2

10% 0.21 0.20 0.56
25% 0.22 0.21 0.47
50% 0.24 0.23 0.35
75% 0.62 0.61 0.12
90% 0.72 0.71 0.05

Top3

10% 0.27 0.25 0.37
25% 0.28 0.25 0.33
50% 0.41 0.39 0.24
75% 0.64 0.62 0.14
90% 0.74 0.73 0.09

Top4

10% 0.27 0.25 0.38
25% 0.28 0.25 0.32
50% 0.40 0.37 0.23
75% 0.63 0.61 0.13
90% 0.73 0.71 0.09

Top5

10% 0.23 0.20 0.42
25% 0.25 0.22 0.37
50% 0.39 0.36 0.24
75% 0.59 0.57 0.14
90% 0.69 0.68 0.09

Table 5: The performance of the password classifier models
on the holdout test dataset, trained on data labeled using a
10% label threshold.We evaluate the five policymodels each
tuned to varying recall operating points, and determine the
proportion of emails whose randomly selected password is
flagged as susceptible by our models, as well as the models’
false positive and false negative rates.

In practice, deploying such models would result in typo-tolerance
being disabled for a quarter or a third of users, while eliminating
the security degradation for up to three-quarters of the users who
would be negatively affected by typo-tolerance otherwise. For many
online services, this may be a suitable tradeoff, limiting the security
degradation from typo-tolerance while maintaining the majority
of its functionality.

In Table 9 in the Appendix, we show the equivalent model eval-
uation results for models where the training data label threshold
is 0%. We observe that the model susceptibility prediction rate is
above 63% for all policies and recall operating points, with similarly
high FPRs. This outcome is expected though, as using a 0% label
threshold aims to maximize security, and any distinct password
that had a susceptible instance during training (even if rare) was
labeled as susceptible. We do note that there are settings where
the FNR is low yet a non-trivial fraction of emails would not have
typo-tolerance disabled. For example, the CTop2 model operating at
90% recall exhibits a 3% FNR while predicting susceptibility for 78%
of emails. This result demonstrates that typo-tolerance’s security
degradation (at least in the face of credential stuffing attacks) can be
largely eliminated while still preserving some functionality (e.g., for
22% of users), offering a security-focused operating point that is of
theoretical interest (albeit likely impractical).

Table 10 in the Appendix provides the model performance when
the training data label threshold is 25%. This label threshold pri-
oritizes functionality, as only distinct passwords that are often
susceptible (in over a quarter of the instances) are labeled as such.
As a consequence, we generally witness low model susceptibility
prediction rates (all below 51%) but high FNRs (as high as 85%). For
example, the CTop2 model operating at a 50% recall level predicts
susceptibility for only 8% of emails while exhibiting a 49% FNR.
This model configuration significantly reduces (but does not largely
eliminate) the security impact of the CTop2 typo-tolerance policy,
with limited functionality loss.

Ultimately, this holdout test set evaluation revealed that these
models offer different functionality versus security tradeoffs than
with fully enabling or disabling typo-tolerance.While we conducted
an initial exploration here, we believe such models are of value in
practice. Note that we lack real-world user data on password typo
behaviors, preventing a precise analysis of the usability impact that
our machine learning models have on typo-tolerant password au-
thentication systems. However, we can determine the lower bound
impact by analyzing the user passwords that could be affected by
a typo-tolerance corrector (i.e., the passwords exhibit a structure
where a user could make a typo that is fixed by a corrector). Specifi-
cally, we observe that when randomly selecting a password for each
user from the holdout test dataset, 86% of users have a password
that could be typo-corrected by CTop1 and CTop26. For CTop3—CTop5,
100% of users have passwords that could be typo-corrected, as every
password could potentially exhibit a typo correctable by the rm_last
corrector (present in all three typo-tolerance policies). Thus, the
vast majority of users’ passwords could exhibit a correctable typo,
yet our models only disable typo-tolerance for a minority of users,
indicating that a significant portion of users could still benefit from
typo-tolerant authentication even with our models deployed (al-
though we leave it to future work to analyze what fraction of users
precisely benefit in practice given real-world typo behaviors).

5.3.3 Computational Costs. We evaluate the computational costs
of our machine learning models on a 48-core Ubuntu server with
256 GBs of memory. We find that our models can be efficiently
trained and deployed for practical use by major online services.

Model Training. As discussed in Section 5.3.1, we constructed
our training dataset using the BreachCompilation data, consisting of
1.4B credentials associated with 463M unique passwords (as detailed
in Section 3). Processing that data to extract password features and
labels for our full training dataset required approximately 12 hours
total, using 20 parallel threads. Training the model for a given typo-
tolerance policy took one hour on a single process. Thus, the model
training process can be completed quickly even without extensive
computational resources. Similarly, the model can be efficiently
retrained, such as if to occasionally incorporate data from newly
released breaches. (Note, incorporating new data into the training
dataset would require less time than our original training dataset
construction, as only the new data would need to be processed.)

6CTop2 consists of the swc_all and swc_first correctors, while CTop1 consists of only
swc_all. However, any password that could exhibit a typo correctable by swc_first
could also exhibit a typo correctable by swc_all. As a consequence, CTop1 and CTop2
exhibit identical proportions of users with typo-correctable passwords.

Model Deployment. The resulting decision tree model is effi-
cient at classification. Deploying the model as a single process, it
can extract a password’s feature vector and produce a classification
label at a rate of approximately 10K passwords per minute. Note
that the model is only needed when users create or change their
passwords (to determine whether typo-tolerance should be enabled
for the users), and not for user logins (which occur more frequently).
In addition, classification throughput can be scaled up by running
multiple instances of the model in parallel. Thus, our model can be
practically deployed even at the scale of major online services such
as Facebook.

6 CONCLUSION
In this paper, we reconsidered the security impact of typo-tolerant
password authentication. The prior analysis of such schemes [7]
demonstrated that they provide notable authentication usability
benefits, without affording a significant advantage to password
spraying attacks. In our investigation, we considered a more com-
prehensive threat model that expands beyond password spraying,
to additionally account for credential stuffing and tweaking at-
tacks. Using password leak datasets, we empirically evaluated the
security implications of typo-tolerant password schemes under the
broader threat model. Initially, we replicated the prior findings
that password spraying attacks gained little from typo-tolerance,
with at most 1.24% of users becoming newly vulnerable once a
typo-tolerant scheme was enabled. However, credential stuffing
and tweaking attacks were significantly strengthened under typo-
tolerance. Under realistic settings, up to 8.8% of users became newly
vulnerable with typo-tolerance deployed, and as many as a third of
users were negatively affected in the worst-case scenario. Thus, the
security degradation of typo-tolerance is significantly more severe
than previously understood.

To mitigate the security costs of typo-tolerant password au-
thentication while maintaining its functionality, we explored the
development of machine learning models that could predict if a
password would likely become newly vulnerable to credential stuff-
ing attacks once a typo-tolerance policy is enabled. Such models
could be used to selectively disable typo-tolerance for users of
predicted susceptible passwords, trading functionality for secu-
rity. Our resulting models exhibit suitable operating points on the
functionality-security tradeoff spectrum, offering online services
the opportunity to deploy typo-tolerance in a different capacity.

Future work can expand upon our initial investigation into hard-
ening typo-tolerant password authentication. While we consid-
ered multiple machine learning algorithms and model parameters,
broader exploration of other machine learning approaches could
produce models offering better functionality-security tradeoffs.
Moreover, future work can investigate the exact usability impact of
such models, by considering the extent to which these models pre-
serve typo-tolerance for users who actually make password typos.
Additionally, our models focused on limiting the impact of creden-
tial stuffing attacks on typo-tolerant schemes, and further work
is needed to address credential tweaking attacks. More recently,
a personalized variant of typo-tolerance was developed [8] that
learns to correct the specific password typos of individual users
over time, providing further usability benefits compared to vanilla

typo-tolerance, without significant security degradation against
online and offline brute-force guessing attacks. Revisiting the secu-
rity analysis of this variant under a similar threat model as used in
this paper would be interesting, as credential stuffing and tweaking
attacks may similarly benefit from the typo corrections, but to what
extent is unclear given the personalized nature of the corrections.
Finally, researchers could explore whether online services using
typo-tolerant password authentication may be able to better pro-
tect their users by disallowing password changes/resets where the
old password could be corrected to the new one under the typo-
tolerance policy used. Such an approach could help prevent old
or leaked passwords from being successfully leveraged against a
typo-tolerant system during credential stuffing attacks.

7 ACKNOWLEDGMENTS
This work was supported in part by the National Science Founda-
tion award CNS-2055549, for which we are grateful. The opinions
expressed in this paper do not necessarily reflect those of the re-
search sponsors.

REFERENCES
[1] 4iQ. 2020. Weaponized Data Breaches: Fueling Identity-based Attacks Across the

Globe. https://https://4iq.com/2020-identity-breach-report/.
[2] Susan Antilla. 2015. Is Vanguard Making It Too Easy for Cybercriminals to Access

Your Account? https://www.thestreet.com/opinion/is-vanguard-making-it-too-
easy-for-cybercriminals-to-access-your-account-13213265.

[3] Bijeeta Pal. 2019. Password Similarity Models using Neural Networks. https:
//github.com/Bijeeta/credtweak/tree/master/credTweakAttack.

[4] Enka Blanchard. 2020. Making More Extensive and Efficient Typo-Tolerant Pass-
word Checkers. In IEEE Annual Computers, Software, and Applications Conference
(COMPSAC).

[5] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. 2012.
The Quest to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes. In IEEE Symposium on Security and Privacy (S&P).

[6] Julio Casal. 2017. 1.4 billion cleartext credentials discovered in a single
database. https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-
discovered-in-a-single-database-3131d0a1ae14.

[7] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas
Ristenpart. 2016. pASSWORD tYPOS and How to Correct Them Securely. In IEEE
Symposium on Security and Privacy (S&P).

[8] Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and
Thomas Ristenpart. 2017. The TypTop System: Personalized Typo-Tolerant Pass-
word Checking. In ACM Conference on Computer and Communications Security
(CCS).

[9] Katie Collins. 2017. Facebook buys black market passwords to keep your account
safe. https://www.cnet.com/news/facebook-chief-security-officer-alex-stamos-
web-summit-lisbon-hackers/.

[10] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. 2014. The Tangled Web of Password Reuse. In Network and Distributed
System Security Symposium (NDSS).

[11] Xavier de Carne de Carnavalet and Mohammad Mannan. 2014. From Very Weak
to Very Strong: Analyzing Password-Strength Meters. In Network and Distributed
System Security Symposium (NDSS).

[12] Dropbox. 2016. zxcvbn. https://github.com/dropbox/zxcvbn.
[13] Maximilian Golla, Miranda Wei, Juliette Hainline, Lydia Filipe, Markus Dürmuth,

Elissa Redmiles, and Blase Ur. 2018. “What was that site doing with my Facebook
password?”: Designing Password-Reuse Notifications. In ACM Conference on
Computer and Communications Security (CCS).

[14] Hana Habib, Jessica Colnago,WilliamMelicher, Blase Ur, Sean Segreti, Lujo Bauer,
Nicolas Christin, and Lorrie Cranor. 2017. Password Creation in the Presence of
Blacklists. In Workshop on Usable Security and Privacy (USEC).

[15] Josh Hendrickson. 2019. Facebook Fudges Your Password for Your Conve-
nience. https://www.howtogeek.com/402761/facebook-fudges-your-password-
for-your-convenience/.

[16] Cormac Herley and Stuart E Schechter. 2019. Distinguishing Attacks from
Legitimate Authentication Traffic at Scale. In Network and Distributed System
Security Symposium (NDSS).

[17] Troy Hunt. 2020. The 773 Million Record "Collection #1" Data Breach. https:
//www.troyhunt.com/the-773-million-record-collection-1-data-reach/.

https://https://4iq.com/2020-identity-breach-report/
https://www.thestreet.com/opinion/is-vanguard-making-it-too-easy-for-cybercriminals-to-access-your-account-13213265
https://www.thestreet.com/opinion/is-vanguard-making-it-too-easy-for-cybercriminals-to-access-your-account-13213265
https://github.com/Bijeeta/credtweak/tree/master/credTweakAttack
https://github.com/Bijeeta/credtweak/tree/master/credTweakAttack
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials -discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials -discovered-in-a-single-database-3131d0a1ae14
https://www.cnet.com/news/facebook-chief-security-officer-alex-stamos-web-summit-lisbon-hackers/
https://www.cnet.com/news/facebook-chief-security-officer-alex-stamos-web-summit-lisbon-hackers/
https://github.com/dropbox/zxcvbn
https://www.howtogeek.com/402761/facebook-fudges-your-password-for-your-convenience/
https://www.howtogeek.com/402761/facebook-fudges-your-password-for-your-convenience/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/

[18] Mark Keith, Benjamin Shao, and Paul Steinbart. 2009. A Behavioral Analysis of
Passphrase Design and Effectiveness. Journal of the Association for Information
Systems 10 (02 2009), 63–89.

[19] Mark Keith, Benjamin Shao, and Paul John Steinbart. 2007. The usability of
passphrases for authentication: An empirical field study. International Journal of
Human-Computer Studies 65, 1 (2007), 17 – 28.

[20] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas
Ristenpart. 2019. Protocols for Checking Compromised Credentials. In ACM
Conference on Computer and Communications Security (CCS).

[21] MITRE. 2020. Credential Stuffing. https://attack.mitre.org/techniques/T1110/
004/.

[22] MITRE. 2020. Password Spraying. https://attack.mitre.org/techniques/T1110/
003/.

[23] Moni Naor, Benny Pinkas, and Eyal Ronen. 2019. How to (not) Share a Pass-
word: Privacy Preserving Protocols for Finding Heavy Hitters with Adversarial
Behavior. In ACM Conference on Computer and Communications Security (CCS).

[24] OWASP. 2020. Credential Stuffing. https://owasp.org/www-community/attacks/
Credential_stuffing.

[25] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas Ristenpart. 2019. Beyond
Credential Stuffing: Password Similarity Models using Neural Networks. In IEEE
Symposium on Security and Privacy (S&P).

[26] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.
Let’s Go in for a Closer Look: Observing Passwords in Their Natural Habitat. In
ACM Conference on Computer and Communications Security (CCS).

[27] Shannon Riley. 2006. Password security: What users know and what they actually
do. Usability News 8, 1 (2006), 2833–2836.

[28] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. 2010. Popularity is
everything: A new approach to protecting passwords from statistical-guessing
attacks. In USENIX Conference on Hot Topics in Security (HotSec).

[29] Stuart Schechter, Yuan Tian, and Cormac Herley. 2019. StopGuessing: Using
Guessed Passwords to Thwart Online Guessing. In IEEE European Symposium on

Security and Privacy (EuroS&P).
[30] Shape. 2020. Credential Spill Report. https://federalnewsnetwork.com/wp-

content/uploads/2020/06/Shape-Threat-Research-Credential-Spill-Report.pdf.
[31] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon,

Michelle L Mazurek, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2010.
Encountering stronger password requirements: user attitudes and behaviors. In
USENIX Symposium on Usable Privacy and Security (SOUPS).

[32] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik
Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, Daniel Margolis,
Vern Paxson, and Elie Bursztein. 2017. Data Breaches, Phishing, or Malware?
Understanding the Risks of Stolen Credentials. In ACM Conference on Computer
and Communications Security (CCS).

[33] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage
Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
et al. 2019. Protecting Accounts from Credential Stuffing with Password Breach
Alerting. In USENIX Security Symposium.

[34] Dylan Tweney. 2011. Amazon.com Security Flaw Accepts Passwords That
Are Close, But Not Exact. https://www.wired.com/2011/01/amazon-password-
problem/.

[35] ChunWang, Steve TK Jan, Hang Hu, Douglas Bossart, and GangWang. 2018. The
next domino to fall: Empirical analysis of user passwords across online services.
In ACM Conference on Data and Application Security and Privacy (CODASPY).

[36] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. 2016. Targeted
Online Password Guessing: An Underestimated Threat. In ACM Conference on
Computer and Communications Security (CCS).

[37] Ke Coby Wang and Michael K Reiter. 2020. Detecting Stuffing of a User’s Cre-
dentials at Her Own Accounts. In USENIX Security Symposium.

[38] Yinqian Zhang, Fabian Monrose, and Michael K Reiter. 2010. The Security of
Modern Password Expiration: AnAlgorithmic Framework and Empirical Analysis.
In ACM Conference on Computer and Communications Security (CCS).

https://attack.mitre.org/techniques/T1110/004/
https://attack.mitre.org/techniques/T1110/004/
https://attack.mitre.org/techniques/T1110/003/
https://attack.mitre.org/techniques/T1110/003/
https://owasp.org/www-community/attacks/Credential_stuffing
https://owasp.org/www-community/attacks/Credential_stuffing
https://federalnewsnetwork.com/wp-content/uploads/2020/06/Shape-Threat-Research-Credential-Spill-Report.pdf
https://federalnewsnetwork.com/wp-content/uploads/2020/06/Shape-Threat-Research-Credential-Spill-Report.pdf
https://www.wired.com/2011/01/amazon-password-problem/
https://www.wired.com/2011/01/amazon-password-problem/

Password Leak Datasets Password
Reuse Rate (%)

No. of Total
Distinct Emails

No. of Distinct Emails
w/ Multiple Passwords

*BreachCompilation 20.9 1.1B 182.1M
Collection#1: BT_Combos 87.0 18.9M 3.2M
Collection#1: Dumps_dehashed 98.6 4.5M 1.8M
*Collection#1: EUcombos 49.8 186.6M 23.5M
*Collection#1: EUcombos_1 30.7 125M 13.3M
*Collection#1: Gamescombos 30.1 67.5M 6.9M
Collection#1: Gamescombos_Dumps 53.6 92.4M 9M
Collection#1: Gamescombos_Sharpening 84.4 120.1M 27.4M
Collection#1: MAILACCESScombos 81.9 26M 7.5M
Collection#1: Monetarycombos 64.6 4.9M 1.5M
Collection#1: NEWcombosemiprivate_Dumps 89.2 7.5M 1.9M
*Collection#1: NEWcombosemiprivate_EUcombo < 0.1 313.1M 27.8M
Collection#1: NEWcombosemiprivate_Privatecombos 95.1 301.7M 171.3M
Collection#1: NEWcombosemiprivate_UpdateDumps 72.7 23.8M 1.2M
Collection#1: Numberpasscombos 50.0 3285 15
*Collection#1: OLDCLOUD_BTCcombos 47.6 6.6M 1.5M
Collection#1: OLDCLOUD_CHINAcombos 62.9 13.6M 1.7M
Collection#1: OLDCLOUD_Dumpcleaned-deletedduplicate 85.0 8.7M 2.9M
Collection#1: OLDCLOUD_Gamingcombos 63.5 84.2M 9.4M
Collection#1: OLDCLOUD_Hackingcombo 27.5 449K 4266
Collection#1: OLDCLOUD_Japancombos 96.4 12.5M 7M
Collection#1: OLDCLOUD_Monetarycombos 58.5 20.1M 3.7M
Collection#1: OLDCLOUD_OLDDUMPSDEHASHED 57.8 109.3M 15.2M
*Collection#1: OLDCLOUD_Porncombos 11.4 4.5M 257K
Collection#1: OLDCLOUD_Shoppingcombos 84.0 12.8M 2.1M
Collection#1: OLDCLOUD_Tradingcombos 0.7 455K 6826
*Collection#1: OLDCLOUD_UKcombos 11.8 15.9M 2M
Collection#1: OLDCLOUD_USAcombos 90.0 28M 7M
*Collection#1: RUcombo 7.5 18.1M 3.7M
Collection#1: Shoppingcombos 52.5 4.4M 240K
Collection#1: USAcombos 81.9 26M 7.5M
Collection#1: USERPASScombos 25.0 54.7K 12

Table 6: For all password leak datasets that we collected, we list the password reuse rates (i.e., the percent of emails associated
with the same password multiple times, out of all emails associated with multiple passwords), as well as the number of total
unique emails and the number of distinct emails associated with multiple passwords. As discussed in Section 3, we do not
investigate leaks with few (<10K) multi-password emails or those exhibiting a password reuse rate exceeding 50% (as such
reuse rates are not commensurate with prior findings [10, 32], indicating likely data duplication). We indicate which leaks we
use for our study with an asterisk (*).

Dataset Policy
q = 10 q = 100 q = 1000

All Multi All Multi All Multi
Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower

BreachCompilation CNone 1.73 1.34 2.62 0.22 3.24 2.54 4.87 0.61 6.73 5.25 10.48 1.52
CTop5 +0.10 +0.07 +0.20 +0.02 +0.14 +0.12 +0.23 +0.06 +0.38 +0.31 +0.66 +0.22

C#1: EUcombos CNone 2.09 1.87 2.52 0.73 3.93 3.54 4.53 1.41 8.39 7.51 10.35 3.32
CTop5 +0.03 +0.03 +0.05 +0.03 +0.18 +0.17 +0.25 +0.17 +0.48 +0.47 +0.70 +0.66

C#1: EUcombos_1 CNone 2.29 2.05 2.80 0.50 4.11 3.68 5.16 1.12 8.96 8.04 11.15 2.48
CTop5 +0.04 +0.03 +0.05 +0.02 +0.19 +0.18 +0.29 +0.22 +0.49 +0.47 +0.83 +0.66

C#1: Gamescombos CNone 2.24 1.99 3.05 0.57 4.20 3.71 5.97 1.13 8.07 7.12 11.35 2.04
CTop5 +0.18 +0.16 +0.21 +0.05 +0.18 +0.16 +0.25 +0.10 +0.41 +0.38 +0.62 +0.33

C#1: NEW_csp_EUcombo CNone 2.37 2.01 4.10 0.08 4.09 3.50 6.95 0.28 7.82 6.71 13.21 0.78
CTop5 +0.02 +0.01 +0.05 +0.01 +0.15 +0.13 +0.30 +0.06 +0.33 +0.29 +0.64 +0.19

C#1: OC_BTCcombos CNone 1.20 0.78 2.77 0.92 2.57 1.72 5.78 2.01 5.66 3.90 11.98 4.26
CTop5 +0.11 +0.08 +0.26 +0.15 +0.11 +0.09 +0.21 +0.12 +0.35 +0.28 +0.58 +0.27

C#1: OC_Porncombos CNone 2.75 2.44 6.08 0.67 5.22 4.69 10.48 1.29 11.68 10.70 19.85 2.89
CTop5 +0.05 +0.04 +0.11 +0.04 +0.22 +0.21 +0.47 +0.18 +0.48 +0.45 +0.94 +0.44

C#1: OC_UKcombos CNone 1.64 1.34 2.41 0.07 4.39 3.58 7.00 0.56 9.95 8.09 16.72 2.06
CTop5 +0.13 +0.11 +0.18 +0.02 +0.23 +0.20 +0.41 +0.15 +0.72 +0.63 +1.24 +0.58

C#1: RUcombo CNone 6.40 1.96 23.81 1.44 9.61 3.66 31.60 1.64 13.55 6.69 36.75 2.20
CTop5 +0.37 +0.23 +0.72 +0.02 +0.33 +0.21 +0.64 +0.04 +0.49 +0.33 +0.88 +0.09

Table 7: The effectiveness of password spraying attacks when password typo-tolerance is disabled (CNone) comparedwith using
the CTop5 typo-tolerance policy, across different datasets and different numbers of attack queries 𝑞. For each leak, we evaluate
attack success on all emails (labeled asAll) and only emails withmultiple passwords (labeled asMulti), using the upper bound
and lower bound attack success metrics. For ease of comparison, the CTop5 attack success metrics are the percentage point
increases/deltas (as indicated by the + sign) in password spraying success over CNone, rather than the total attack success rate.

Feature Type Index Description

Categorical Features
1-15 The combination of character classes appearing in the password, considering four classes

(uppercase letters, lowercase letters, digits, and symbols)
16-19 Character class of the first password character
20-23 Character class of the last password character

Numerical Features

24 Password length
25 Password Shannon entropy
26 Password strength (as outputted by the zxcvbn password strength meter [12])
27 Password popularity/rank
28 Number of character classes appearing in the password
29 Number of character class transitions in the password
30 Number of character class transitions divided by password length
31 Proportion of the password for the longest single-character-class substring
32 Proportion of the password for the shortest single-character-class substring
33 Number of characters of the same class at the end of the password
34 Longest sequence of repeated characters in the password
35 Proportion of the password for the longest sequence of repeated characters

Boolean Features

36 Last character is uppercase letter or symbol
37 Last two characters are identical
38 Last two characters are sequential digits or letters (e.g., 12 or “ab”)
39 Shift-key modified last character is identical to the second-to-last character
40 Second-to-last character and the shift-key modified last character are sequential
41 First two characters are identical
42 First two characters are sequential
43 Case-swapped first character is identical to the second character
44 Case-swapped first character and the second character are sequential
45 First two characters are the same character class
46 Last two characters are the same character class

Table 8: The description of password features used for our machine learning models.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

swc_all
swc_first
rm_last
rm_first
n2s_last

Figure 3: ROC curves for the individual corrector models
trained on data labeled using a 10% label threshold.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

swc_all
swc_first
rm_last
rm_first
n2s_last

Figure 4: ROC curves for the individual corrector models
trained on data labeled using a 25% label threshold.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 ra
te

Top1
Top2
Top3
Top4
Top5

Figure 5: ROC curves for the policy models trained on data
labeled using a 10% label threshold.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 ra
te

Top1
Top2
Top3
Top4
Top5

Figure 6: ROC curves for the policy models trained on data
labeled using a 25% label threshold.

Label
Threshold Policy Recall Susceptible FPR FNR

0%

Top1

10% 0.63 0.63 0.35
25% 0.68 0.68 0.27
50% 0.72 0.72 0.15
75% 0.75 0.75 0.11
90% 0.78 0.78 0.09

Top2

10% 0.70 0.71 0.38
25% 0.72 0.72 0.17
50% 0.73 0.73 0.08
75% 0.75 0.75 0.05
90% 0.78 0.78 0.03

Top3

10% 0.79 0.78 0.15
25% 0.79 0.79 0.10
50% 0.80 0.80 0.08
75% 0.88 0.88 0.04
90% 0.93 0.93 0.02

Top4

10% 0.78 0.78 0.15
25% 0.79 0.78 0.11
50% 0.84 0.83 0.07
75% 0.89 0.88 0.04
90% 0.94 0.94 0.01

Top5

10% 0.63 0.63 0.24
25% 0.64 0.63 0.18
50% 0.78 0.78 0.9
75% 0.87 0.87 0.04
90% 0.94 0.93 0.01

Table 9: The performance of the password classifier models
on the holdout test dataset, trained on data labeled using a
0% label threshold. We evaluate the five policy models each
tuned to varying recall operating points, and determine the
proportion of emails whose randomly selected password is
flagged as susceptible by our models, as well as the models’
false positive and false negative rates.

Label
Threshold Policy Recall Susceptible FPR FNR

25%

Top1

10% 0.03 0.03 0.70
25% 0.04 0.03 0.64
50% 0.04 0.04 0.53
75% 0.31 0.31 0.23
90% 0.51 0.51 0.14

Top2

10% 0.06 0.05 0.71
25% 0.07 0.06 0.60
50% 0.08 0.07 0.49
75% 0.27 0.26 0.35
90% 0.37 0.36 0.29

Top3

10% 0.05 0.04 0.81
25% 0.05 0.04 0.76
50% 0.13 0.11 0.64
75% 0.28 0.26 0.54
90% 0.35 0.34 0.50

Top4

10% 0.05 0.04 0.81
25% 0.06 0.05 0.76
50% 0.13 0.11 0.65
75% 0.29 0.28 0.54
90% 0.43 0.43 0.49

Top5

10% 0.03 0.02 0.85
25% 0.04 0.03 0.80
50% 0.11 0.10 0.66
75% 0.25 0.24 0.57
90% 0.40 0.40 0.50

Table 10: The performance of the password classifiermodels
on the holdout test dataset, trained on data labeled using a
25% label threshold.We evaluate the five policymodels each
tuned to varying recall operating points, and determine the
proportion of emails whose randomly selected password is
flagged as susceptible by our models, as well as the models’
false positive and false negative rates.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Typo-Tolerant Password Authentication
	2.2 Password Attacks and Defenses

	3 Methodology
	3.1 Data Source
	3.2 Data Processing

	4 Security Evaluation
	4.1 Attack Metrics
	4.2 Password Spraying Attacks (Replication)
	4.3 Credential Stuffing Attacks
	4.4 Credential Tweaking Attacks

	5 Hardening Typo-Tolerant Password Authentication
	5.1 Disabling Typo-Tolerance for Weak Passwords
	5.2 Machine Learning Model Design
	5.3 Machine Learning Model Evaluation

	6 Conclusion
	7 Acknowledgments
	References

