
The Matter of Heartbleed

*Zakir Durumeric1, James Kasten1,
David Adrian1, J. Alex Halderman1,

Michael Bailey1,2

1 University of Michigan
2 University of Illinois, Urbana Champaign
{zakir, jdkasten, davadria, jhalderm}@umich.edu,

mdbailey@illinois.edu

*Frank Li3, Nicholas Weaver3,4,
Johanna Amann4, Jethro Beekman3,

Mathias Payer3,5, Vern Paxson3,4

3 EECS, University of California, Berkeley
4 International Computer Science Institute

5 Purdue University
{frankli, nweaver, jbeekman, vern}@cs.berkeley.edu,

johanna@icir.org, mpayer@purdue.edu

ABSTRACT
The Heartbleed vulnerability took the Internet by surprise in April
2014. The vulnerability, one of the most consequential since the ad-
vent of the commercial Internet, allowed attackers to remotely read
protected memory from an estimated 24–55% of popular HTTPS
sites. In this work, we perform a comprehensive, measurement-
based analysis of the vulnerability’s impact, including (1) tracking
the vulnerable population, (2) monitoring patching behavior over
time, (3) assessing the impact on the HTTPS certificate ecosys-
tem, and (4) exposing real attacks that attempted to exploit the bug.
Furthermore, we conduct a large-scale vulnerability notification ex-
periment involving 150,000 hosts and observe a nearly 50% increase
in patching by notified hosts. Drawing upon these analyses, we dis-
cuss what went well and what went poorly, in an effort to understand
how the technical community can respond more effectively to such
events in the future.

1. INTRODUCTION
In March 2014, researchers found a catastrophic vulnerability

in OpenSSL, the cryptographic library used to secure connections
in popular server products including Apache and Nginx. While
OpenSSL has had several notable security issues during its 16 year
history, this flaw—the Heartbleed vulnerability—was one of the
most impactful. Heartbleed allows attackers to read sensitive mem-
ory from vulnerable servers, potentially including cryptographic
keys, login credentials, and other private data. Exacerbating its
severity, the bug is simple to understand and exploit.

In this work, we analyze the impact of the vulnerability and track
the server operator community’s responses. Using extensive ac-
tive scanning, we assess who was vulnerable, characterizing Heart-
bleed’s scope across popular HTTPS websites and the full IPv4
address space. We also survey the range of protocols and server
products affected. We estimate that 24–55% of HTTPS servers in
the Alexa Top 1 Million were initially vulnerable, including 44 of

*These authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
IMC’14, November 5–7, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-3213-2/14/11.
http://dx.doi.org/10.1145/2663716.2663755 .

the Alexa Top 100. Two days after disclosure, we observed that 11%
of HTTPS sites in the Alexa Top 1 Million remained vulnerable, as
did 6% of all HTTPS servers in the public IPv4 address space. We
find that vulnerable hosts were not randomly distributed, with more
than 50% located in only 10 ASes that do not reflect the ASes with
the most HTTPS hosts. In our scans of the IPv4 address space, we
identify over 70 models of vulnerable embedded devices and soft-
ware packages. We also observe that both SMTP+TLS and Tor were
heavily affected; more than half of all Tor nodes were vulnerable in
the days following disclosure.

Our investigation of the operator community’s response finds
that within the first 24 hours, all but 5 of the Alexa Top 100 sites
were patched, and within 48 hours, all of the vulnerable hosts in the
top 500 were patched. While popular sites responded quickly, we
observe that patching plateaued after about two weeks, and 3% of
HTTPS sites in the Alexa Top 1 Million remained vulnerable almost
two months after disclosure.

In addition to patching, many sites replaced their TLS certificates
due to the possibility that the private keys could have been leaked.
We analyze certificate replacement and find that while many of
the most popular websites reacted quickly, less than a quarter of
Alexa Top 1 Million sites replaced certificates in the week following
disclosure. Even more worryingly, only 10% of the sites that were
vulnerable 48 hours after disclosure replaced their certificates within
the next month, and of those that did, 14% neglected to change the
private key, gaining no protection from certificate replacement.

We also investigate widespread attempts to exploit Heartbleed, as
seen in extensive bulk traffic traces recorded at four sites. We find no
evidence of exploitation prior to the vulnerability’s public disclosure,
but we detect subsequent exploit attempts from almost 700 sources,
beginning less than 24 hours after disclosure. Comparing attack
attempts across sites, we observe that despite the large number
of sources and scans, only a handful appear to reflect exhaustive
Internet-wide scans.

Finally, starting three weeks after disclosure, we undertook a
large-scale notification effort and contacted the operators responsible
for the remaining vulnerable servers. By contacting the operators in
two waves, we could conduct a controlled experiment and measure
the impact of notification on patching. We report the effects of our
notifications, observing a surprisingly high 47% increase in patching
by notified operators.

We draw upon these observations to discuss both what went well
and what went poorly in the aftermath of Heartbleed. By better
understanding the lessons of this security disaster, the technical
community can respond more effectively to such events in the future.

01 length «length» bytes e7f0d31...

HeartbeatRequest

02 length «length» bytes dc06848...

HeartbeatResponse

type length payload random padding

Figure 1: Heartbeat Protocol. Heartbeat requests include user
data and random padding. The receiving peer responds by echoing
back the data in the initial request along with its own padding.

2. BACKGROUND
On April 7, 2014, the OpenSSL project publicly disclosed the

Heartbleed vulnerability, a bug in their implementation of the TLS
Heartbeat Extension. The vulnerability allowed attackers to re-
motely dump protected memory—including data passed over the
secure channel and private cryptographic keys—from both clients
and servers. In this section, we provide a brief history of OpenSSL,
the Heartbeat Extension, and details of the vulnerability and its
disclosure.

2.1 OpenSSL: A Brief History
OpenSSL is a popular open-source cryptographic library that

implements the SSL and TLS protocols. It is widely used by server
software to facilitate secure connections for web, email, VPN, and
messaging services. The project started in 1998 and began tracking
vulnerabilities in April 2001.

Over the last 13 years, OpenSSL has documented six code ex-
ecution vulnerabilities that allowed attackers to compromise pri-
vate server data (e.g., private cryptographic keys and messages in
memory) and execute arbitrary code. The project has faced eight
information leak vulnerabilities, four of which allowed attackers to
retrieve plaintext, and two of which exposed private keys. Two of
the vulnerabilities arose due to protocol weaknesses; the remainder
came from implementation errors.

The Heartbleed bug reflects one of the most impactful vulnera-
bilities during OpenSSL’s history for several reasons: (1) it allowed
attackers to retrieve private cryptographic keys and private user
data, (2) it was easy to exploit, and (3) HTTPS and other TLS ser-
vices have become increasingly popular, resulting in more affected
services.

2.2 TLS Heartbeat Extension
The Heartbeat Extension allows either end-point of a TLS con-

nection to detect whether its peer is still present, and was motivated
by the need for session management in Datagram TLS (DTLS).
Standard implementations of TLS do not require the extension as
they can rely on TCP for equivalent session management.

Peers indicate support for the extension during the initial TLS
handshake. Following negotiation, either end-point can send a
HeartbeatRequest message to verify connectivity. The exten-
sion was introduced in February 2012 in RFC 6520 [66], added to
OpenSSL on December 31, 2011, and released in OpenSSL Version
1.0.1 on March 14, 2012.

HeartbeatRequest messages consist of a one-byte type field, a
two-byte payload length field, a payload, and at least 16 bytes of
random padding. Upon receipt of the request, the receiving end-
point responds with a similar HeartbeatResponse message, in
which it echoes back the HeartbeatRequest payload and its own
random padding, per Figure 1.

Date Event

03/21 Neel Mehta of Google discovers Heartbleed
03/21 Google patches OpenSSL on their servers
03/31 CloudFlare is privately notified and patches
04/01 Google notifies the OpenSSL core team
04/02 Codenomicon independently discovers Heartbleed
04/03 Codenomicon informs NCSC-FI
04/04 Akamai is privately notified and patches
04/05 Codenomicon purchases the heartbleed.com domain
04/06 OpenSSL notifies several Linux distributions
04/07 NCSC-FI notifies OpenSSL core team
04/07 OpenSSL releases version 1.0.1g and a security advisory
04/07 CloudFlare and Codenomicon disclose on Twitter
04/08 Al-Bassam scans the Alexa Top 10,000
04/09 University of Michigan begins scanning

Table 1: Timeline of Events in March and April 2014. The dis-
covery of Heartbleed was originally kept private by Google as part
of responsible disclosure efforts. News of the bug spread privately
among inner tech circles. However, after Codenomicon indepen-
dently discovered the bug and began separate disclosure processes,
the news rapidly became public [36, 53].

2.3 Heartbleed Vulnerability
The OpenSSL implementation of the Heartbeat Extension con-

tained a vulnerability that allowed either end-point to read data
following the payload message in its peer’s memory by spec-
ifying a payload length larger than the amount of data in the
HeartbeatRequest message. Because the payload length field is
two bytes, the peer responds with up to 216 bytes (~64 KB) of mem-
ory. The bug itself is simple: the peer trusts the attacker-specified
length of an attacker-controlled message.

The OpenSSL patch adds a bounds check that discards the
HeartbeatRequest message if the payload length field exceeds
the length of the payload. However, while the bug is easy to con-
ceptualize and the fix is straight-forward, the potential impact of the
bug is severe: it allows an attacker to read private memory, poten-
tially including information transferred over the secure channel and
cryptographic secrets [31, 59, 67].

2.4 Heartbleed Timeline
The Heartbleed vulnerability was originally found by Neel Mehta,

a Google computer security employee, in March 2014 [36]. Upon
finding the bug and patching its servers, Google notified the core
OpenSSL team on April 1. Independently, a security consulting
firm, Codenomicon, found the vulnerability on April 2, and reported
it to National Cyber Security Centre Finland (NCSC-FI). After re-
ceiving notification that two groups independently discovered the
vulnerability, the OpenSSL core team decided to release a patched
version.

The public disclosure of Heartbleed started on April 7, 2014 at
17:49 UTC with the version 1.0.1g release announcement [53], fol-
lowed by the public security advisory [52] released at 20:37 UTC;
both announcements were sent to the OpenSSL mailing list. Several
parties knew of the vulnerability in advance, including CloudFlare,
Akamai and Facebook. Red Hat, SuSE, Debian, FreeBSD and ALT
Linux were notified less than 24 hours before the public disclo-
sure [36]. Others, such as Ubuntu, Gentoo, Chromium, Cisco, and
Juniper were not aware of the bug prior to its public release. We
present a timeline of events in Table 1.

3. THE IMPACT OF HEARTBLEED
Heartbleed had the potential to affect any service that used

OpenSSL to facilitate TLS connections, including popular web,
mail, messaging, and database servers (Table 2). To track its dam-
age, we performed regular vulnerability scans against the Alexa
Top 1 Million domains [1] and against 1% samples of the public,
non-reserved IPv4 address space. We generated these samples using
random selection with removal, per ZMap’s existing randomization
function [30]. We excluded hosts and networks that previously
requested removal from our daily HTTPS scans [29]. In this sec-
tion, we analyze the impact on those services—particularly HTTPS.
We have publicly released all of the data used for this analysis at
https://scans.io/study/umich-heartbleed.

3.1 Scanning Methodology
We tested for the Heartbleed bug by modifying ZMap [30] to

send Heartbeat requests with no payload nor padding, and the length
field set to zero. Per the RFC [66], these requests should be re-
jected. However, vulnerable versions of OpenSSL send a response
containing only padding, rather than simply drop the request. The
patched version of OpenSSL—as well as other popular libraries,
including GnuTLS, NSS, Bouncy Castle, PolarSSL, CyaSSL and
MatrixSSL—correctly discard the request (or do not support the
Heartbeat Extension).

We emphasize that this approach does not exploit the vulnerability
or access any private memory—only random padding is sent back
by the server. While it was later found that Heartbleed scanning
caused HP Integrated Lights-Out (iLO) devices to crash [11], we
received no reports of our scans disrupting these devices—likely
because our approach did not exploit the vulnerability. We have
publicly released our scanner at https://zmap.io.

3.2 False Negatives
Our Heartbleed scanner contained a bug that caused vulnerable

sites to sometimes appear safe due to a timeout when probing in-
dividual hosts. The root cause was that the scanner labelled each
host’s vulnerability as false by default, rather than null or unknown.
If a Heartbleed test timed out, the scanner returned the host’s vul-
nerability status as the default false, providing no indication of a
failed test. The result is a potential false negative, where the scan
reports the system as immune. Note that our scanner does not how-
ever err when reporting a system as vulnerable. As we develop in
this section, the likelihood of a given scan exhibiting such as false
negative fortunately does not appear to depend on the particular ad-
dress being scanned, and this allows us to estimate the false negative
rate.

We first assessed whether some addresses were more prone to
manifest false negatives than others. To do so, we compared three
complete IPv4 scans and examined systems reported as vulnerable
in one scan but immune in previous scans. Since the scanner does
not err in reporting a host as vulnerable, any prior report of immunity
reflects a false negative (assuming no one unpatches systems). We
found the IP addresses associated with such false negatives spread
evenly across the address space, without any apparent correlations.
This observation leads us to believe the false negatives manifest in
an address-independent manner.

Although our initial scanner did not fetch the web page itself, a
subsequent change in the comprehensive scan (but not the incremen-
tal scans) attempted to fetch the server’s home page. As the home
page fetch occurred after the Heartbleed check, any reported home
page data implicitly indicates that the Heartbleed test successfully
completed without a timeout.

To investigate the false negative rate, we use two full scans of the
IPv4 address space, one with and one without home page fetching.
The full scan conducted on April 24 did not grab server home pages,
while the May 1 scan did, hence we know the validity of scan
results from the May 1 scan. To soundly conduct this comparison
we need to remove servers that may have switched IP addresses
between the two scans. To do so, we only considered servers that
presented identical TLS certificates between the two scans. While
this restriction potentially introduces a bias because some sites will
have both patched and changed their TLS certificates, the address-
independent nature of the false negatives should cause this effect to
even out.

Our scanner failed to grab the server home page for 24% of the
hosts in the May scan. Of these 24% of hosts, we observe 44%
appear immune. False negatives could only have occurred when
testing these hosts. The remaining 56% of hosts appeared vulnerable
(and hence are correctly labelled). From this, we conclude that at
most (0.24 · 0.44) = 0.105, or 10.5%, of hosts were incorrectly
labelled in the May 1 scan.

For the April scan, the only observable signal of a false negative
is if a host was reported immune and then reported vulnerable in
the May scan. We find 6.5% of hosts exhibit this behavior. As-
suming that people do not unpatch their systems, this provides an
estimated lower bound of 6.5% for the April scan false negative
rate. This estimate represents a lower bound because we cannot
determine the vulnerability in April of a host that appears immune
in both scans. In that case, a false negative is a host vulnerable
in April but reported as immune, and patched by May. However,
we do observe that of hosts reported as vulnerable in the April
scan and successfully tested in May (so the server page was re-
trieved), only 0.36% appeared immune in May, indicating a very
modest overall patching rate between the two scans (which accords
with Figure 3 below). Given that our false negatives are address-
independent, we expect a similarly low patch rate for all vulnera-
ble April hosts. Thus, while a 6.5% false negative rate is a lower
bound for the April scan, the true rate should not be significantly
higher.

Given the similarity of these two false negative estimates using
two different scans, ultimately we conclude that the scanner exhib-
ited a false negative rate between 6.5% and 10.5%, but that these
manifest independently of the particular server scanned. Due to
this address-independent behavior, we can assume a similar false
negative rate for sampled scans. We attempt to account for this
error whenever possible. In particular, the bias implies that any
population-based survey based on a single scan underestimates the
vulnerable population. Finally, for our assessment of the impact
of notifications (Section 7), we only consider a given server as
non-vulnerable when it consistently reports as immune in repeated
scans, which would require multiple (presumably independent) false
negatives to occur before introducing a bias.

3.3 Impact on Popular Websites
Determining which websites were initially vulnerable poses sig-

nificant difficulties. Little attention was paid to the Heartbeat Ex-
tension prior to the vulnerability announcement, and many popular
sites patched the vulnerability within hours of the disclosure. Code-
nomicon, one of the groups that discovered Heartbleed, speculated
that 66% of HTTPS sites were vulnerable [45]. However, this num-
ber represented the Apache and Nginx market share and may well
reflect an overestimate, because some operators may have disabled
the extension, deployed dedicated SSL endpoints, or used older,
non-vulnerable versions of OpenSSL.

https://scans.io/study/umich-heartbleed
https://zmap.io

Web Servers Mail Servers Database Servers XMPP Servers Other Servers

Apache (mod_ssl) [45] Yes Sendmail [62] Yes MySQL [62] Yes OpenFire [12] No OpenVPN [54] Yes
Microsoft IIS [46] No Postfix [62] Yes PostgreSQL [62] Yes Ejabberd [5] Yes OpenLDAP [63] Yes
Nginx [14] Yes Qmail [62] Yes SQL Server [46] No Jabberd14 [70] Yes Stunnel [65] Yes
Lighttpd [62] Yes Exim [35] Yes Oracle [55] No Jabberd2 [41] Yes Openswan [49] Yes
Tomcat [17] Yes Courier [37] Yes IBM DB2 [38] No Telnetd-ssl [4] Yes
Google GWS [50] Yes Exchange [46] No MongoDB [47] Yes OpenDKIM [3] Yes
LiteSpeed [42] Yes Dovecot [35] Yes CouchDB [32] No Proftpd [64] Yes
IBM Web Server [38] Yes Cyrus [48] Yes Cassandra [6] No Bitcoin Client [24] Yes
Tengine [13] Yes Zimbra [56] Yes Redis [35] No
Jetty [51] No

Table 2: Vulnerable Server Products. We survey which server products were affected by Heartbleed.

3.3.1 Top 100 Websites
All of the Alexa Top 100 websites were patched within 48 hours

of disclosure—prior to the start of our scans. To document the
impact on these websites, we aggregated press releases, other’s
targeted scans, and quotes provided to Mashable, a news site that
hosted one of the popular lists of sites for which users should change
their passwords due to possible exposure via Heartbleed [10].

Al-Bassam completed a vulnerability scan of the Alexa Top
10,000 domains on April 8, 2014 at 16:00 UTC (22 hours af-
ter the vulnerability disclosure) [20]. His scan found 630 vul-
nerable sites, 3,687 supporting HTTPS but not vulnerable, and
5,683 not supporting HTTPS. Several prominent sites, includ-
ing Yahoo, Imgur, Stack Overflow, Flickr, Sogou, OkCupid, and
DuckDuckGo, were found vulnerable. We investigated other sites
in the Alexa Top 100 and found that half made a public state-
ment regarding vulnerability or provided information to Mash-
able [8, 10, 18–21, 23, 26, 28, 33, 39, 40, 50, 58, 61, 68, 69, 71, 73, 74].
Combining these press releases, Mashable’s report, and Al-Bassam’s
scan, we find that at least 44 of the Alexa Top 100 websites were
vulnerable. However, this figure reflects a lower bound, as we
were unable to find information for some sites. Table 3 lists the
vulnerability status of the top 30 HTTPS-enabled sites in the US.

Site Vuln. Site Vuln. Site Vuln.

Google Yes Bing No Wordpress Yes
Facebook No Pinterest Yes Huff. Post ?
Youtube Yes Blogspot Yes ESPN ?
Yahoo Yes Go.com ? Reddit Yes
Amazon No Live No Netflix Yes
Wikipedia Yes CNN ? MSN.com No
LinkedIn No Instagram Yes Weather.com ?
eBay No Paypal No IMDB No
Twitter No Tumblr Yes Apple No
Craigslist ? Imgur Yes Yelp ?

Table 3: Vulnerability of Top 30 US HTTPS-Enabled Websites.
We aggregate published lists of vulnerable sites, press releases, and
news sources to determine which of the top sites were vulnerable
before the discovery of Heartbleed.

3.3.2 Estimating Broader Impact
Within 48 hours of the initial disclosure, we conducted our first

vulnerability scan of the Alexa Top 1 Million. At that point, we
found that 45% of all sites supported HTTPS. 60% of those sup-
ported the Heartbeat Extension, and 11% of all HTTPS sites were
vulnerable. While 60% of HTTPS sites supported the extension,
91% of these were powered by known vulnerable web servers (e.g.,
Nginx or Apache Web Server), as shown in Table 4. If all of these

servers were initially vulnerable and operators installed a patched
OpenSSL version (rather than rebuilding OpenSSL with Heartbeat
disabled), at most about 55% of the HTTPS sites in the Alexa Top
1 Million were initially vulnerable.

While disabling the largely unused extension would appear to
provide an obvious solution, it is not possible to disable the ex-
tension through a configuration file. Instead, this change requires
recompiling OpenSSL with a specific flag—an option likely more
laborious than updating the OpenSSL software package.

Some sites may possibly have used an older version of OpenSSL
that was not vulnerable. To estimate a lower bound for the number
of vulnerable sites, we considered sites that used vulnerable web
servers and supported TLS 1.1 and 1.2—features first introduced
in OpenSSL 1.0.1 along with the Heartbeat Extension. Such sites
would have been vulnerable unless administrators had recompiled
OpenSSL to explicitly disable the extension.

To estimate the number of sites that supported TLS 1.1 and 1.2
prior to the Heartbleed disclosure, we analyzed the data collected
by the Trustworthy Internet Movement’s SSL Pulse [16], which pro-
vides monthly statistics of SSL-enabled websites within the Alexa
Top 1 Million. We find that 56,019 of the 171,608 (32.6%) sites
in the SSL Pulse dataset supported TLS 1.1 or 1.2. Of these sites,
72.7% used known vulnerable web servers, yielding an estimated
lower bound of 23.7% of the sites being vulnerable.

In summary, we can reasonably bound the proportion of vulnera-
ble Alexa Top 1 Million HTTPS-enabled websites as lying between
24–55% at the time of the Heartbleed disclosure.

Web Server Alexa Sites Heartbeat Ext. Vulnerable

Apache 451,270 (47.3%) 95,217 (58.4%) 28,548 (64.4%)
Nginx 182,379 (19.1%) 46,450 (28.5%) 11,185 (25.2%)
Microsoft IIS 96,259 (10.1%) 637 (0.4%) 195 (0.4%)
Litespeed 17,597 (1.8%) 6,838 (4.2%) 1,601 (3.6%)
Other 76,817 (8.1%) 5,383 (3.3%) 962 (2.2%)
Unknown 129,006 (13.5%) 8,545 (5.2%) 1,833 (4.1%)

Table 4: Alexa Top 1 Million Web Servers. We classify the web
servers used by the Alexa Top 1 Million Sites, as observed in our
first scan on April 9, 2014. Percentages represent the breakdown
of server products for each category. We note that while Microsoft
IIS was not vulnerable to Heartbleed, a small number of IIS servers
used vulnerable SSL terminators.

3.4 Pre-Disclosure Patching
Google, Akamai, and other sites disabled the Heartbeat Exten-

sion prior to public disclosure. To detect when services disabled
the Heartbeat Extension, we examined data from the ICSI Cer-
tificate Notary, which passively monitors TLS connections from

seven research and university networks (approximately 314K active
users) [22].

The Notary data shows that Google disabled Heartbeat starting at
least 12 days prior to public disclosure, with all servers Heartbeat-
disabled by April 15. While some servers still had Heartbeat enabled
after disclosure, they may not have been exploitable. Google may
have already patched those servers, and decided afterwards to dis-
able the Heartbeat Extension as a company-wide policy. Similarly,
Akamai began disabling Heartbeat at least 4 days prior to disclosure,
completing the process by April 18.

3.5 Internet-Wide HTTPS Vulnerability
We began performing daily 1% scans of the IPv4 address space

on April 9, 48 hours after the disclosure. Our first scan found that
11.4% of HTTPS hosts supported the Heartbeat Extension and 5.9%
of all HTTPS hosts were vulnerable. Combining these proportions
from random sampling with our daily scans of the HTTPS ecosys-
tem [29] (which do not include Heartbleed vulnerability testing),
we estimate that 2.0 million HTTPS hosts were vulnerable two days
after disclosure.

Surprisingly, 10 ASes accounted for over 50% of vulnerable
HTTPS hosts but represented only 8.6% of all HTTPS hosts (Fig-
ure 2). With the exception of Comcast Cable Communications, the
ASes all belonged to web hosting companies or cloud providers
(Table 5). The vulnerable hosts in the Comcast AS were Fortinet
devices. In the case of Strato Hosting, vulnerable addresses were
hosting Parallels Plesk Panel, a web hosting management software.
The vulnerable addresses of Minotavar Computers, ZeXoTeK IT-
Services, Euclid systems, Vivid Hosting, and ACCESSPEOPLE-DE
all served the default Apache page, likely reflecting named-based
virtual hosts. In the case of the two Amazon ASes and Hetzner
Online, a large number of the vulnerable hosts served public facing
websites, and used Apache or Nginx.

AS % of Vulnerable % of HTTPS

Minotavar Computers EOOD 18.5% 1.7%
ZeXoTeK IT-Services GmbH 13.0% 0.9%
ACCESSPEOPLE-DE ISP-Service 7.4% 0.7%
Amazon.com, Inc. 4.6% 0.8%
Amazon.com, Inc. 4.1% 0.9%
Hetzner Online AG 2.6% 0.4%
Comcast Cable Communications 2.3% 2.8%
Vivid Hosting 2.0% 0.1%
Euclid Systems 1.5% 0.1%
Strato Hosting 1.4% 0.1%

Total 57.4% 8.6%

Table 5: Top ASes with Most Vulnerable Hosts. We aggregate
hosts by AS and find that 57% of vulnerable hosts in the April 9
scan were located in only 10 ASes.

3.6 Vulnerable Devices and Products
Heartbleed also affected many embedded systems, including print-

ers, firewalls, VPN endpoints, NAS devices, video conferencing
systems, and security cameras. To understand the embedded systems
that were affected, we analyzed the self-signed certificates employed
by vulnerable hosts. We clustered these by fields in the certificate
Subject and manually inspected large clusters. From this, we devel-
oped device “fingerprints”. We took a conservative approach and
chose the most restrictive fingerprints in order to minimize false
positive identifications. This, and the manual effort required, means
that our fingerprints lack comprehensive coverage. However, we

 0

 20

 40

 60

 80

 100

 1 10 100 1000

Pe
rc

en
ta

ge
 o

f V
ul

ne
ra

bl
e

H
TT

PS
 S

er
ve

rs

Number of Autonomous Systems

4/9/2014
4/21/2014

Figure 2: Vulnerable Servers by AS. We aggregate vulnerable
hosts by AS and find that over 50% of vulnerable hosts are located
in ten ASes.

still identified 74 distinct sets of vulnerable devices and software
packages that fall into a number of broad categories:

Communication Servers: IceWarp messaging, Zimbra collabo-
ration servers, iPECS VoIP systems, and Polycom and Cisco video
conference products.

Software Control Panels: Puppet Enterprise Dashboard, IBM
System X Integrated Management Modules, Kloxo Web hosting
control panel, PowerMTA, Chef/Opscode management consoles,
VMWare servers, and Parallels control panels for Plesk and Confixx.

Network Attached Storage: QNAP, D-Link, ReadyNAS, LaCie,
Synology, and Western Digital NAS devices.

Firewall and VPN Devices: Devices from Barracuda Networks,
Cisco, SonicWALL, WatchGuard, OpenVPN, pfSense, TOPSEC
Network Security (a Chinese vendor), and Fortinet.

Printers: Dell, Lexmark, Brother, and HP printers.
Miscellaneous: Hikvision and SWANN security cameras, Ac-

quiSuite power monitors, IPACCT (a management tool used by
Russian ISPs), Aruba Networks WiFi login portals, INSYS VPN
access for industrial controllers, and SpeedLine Solutions (the “#1-
rated Pizza POS System”).

3.7 Other Impacts
While our study focuses on Heartbleed’s impact on public HTTPS

web services, Heartbleed also affected mail servers, the Tor network,
Bitcoin, Android, and wireless networks, as we briefly assess in this
section.

Mail Servers. SMTP, IMAP, and POP3 can use TLS for transport
security via use of a StartTLS directive within a plaintext session.
As such, if mail servers used OpenSSL to facilitate TLS connections,
they could have been similarly vulnerable to Heartbleed. On April
10, we scanned a random 1% sample of the IPv4 address space for
vulnerable SMTP servers. We found that 45% of those providing
SMTP+TLS supported the Heartbeat Extension, and 7.5% were
vulnerable to Heartbleed.

These estimates only provide a lower bound, because similar to
HTTPS, our scanner sometimes timed out, causing false negatives.
(We also scanned for IMAP and POP3 servers, but later analysis of
the data found systematic flaws that rendered the results unusable.)

Tor Project. Tor relays and bridges use OpenSSL to provide
TLS-enabled inter-relay communication. In our April 10 scan, we
found that 97% of relays supported Heartbeat and could have been

vulnerable. 48% of the relays remained vulnerable at that time, three
days after announcement of the vulnerability. The vulnerability
could have allowed an attacker to extract both short-term onion and
long-term identity keys, ultimately allowing an attacker to intercept
traffic and impersonate a relay. In the case of a hidden service, the
bug could have allowed an entry guard to locate a hidden service.
The Tor client was similarly affected, potentially allowing entry
guards to read sensitive information from a client’s memory, such
as recently visited websites [27].

Bitcoin Clients. Heartbleed affected both Bitcoin clients and
exchanges, and in the most severe case, allowed an attacker to
compromise the accounts on a popular exchange, BTCJam [15].
The value of Bitcoin did not change drastically on April 7, the date
of public disclosure, falling only 3.1% from the previous day (a
figure within its regular volatility) and returned to its April 6 value
by April 14.

All versions of the Bitcoin software from May 2012 to April
2014 used a vulnerable OpenSSL version [2]. Immediately after
Heartbleed’s disclosure, a new Bitcoin version was released linking
to the newly patched OpenSSL version. Because clients were also
affected by the bug, attackers could potentially compromise wallets
or retrieve private keys if a susceptible user followed a payment
request link [24]. However, we have not found any reports of the
theft of Bitcoins from local wallets.

Several companies, including Bitstamp and Bitfinex, temporar-
ily suspended transactions on April 8 until they could patch their
servers. In the most severe case, 12 customers had a total of 28
BTC (⇡ $6,500) stolen from BTCJam after account credentials were
compromised, though with all funds subsequently reinstated by the
exchange [15].

Android. Heartbleed only affected Android version 4.1.1 [50].
It is unclear how many devices currently run the affected version,
but Google recently estimated that 33.5% of all Android devices
currently run Android 4.1.x [7]. A vulnerable device would have
been susceptible to having memory read by a malicious server.

Wireless Networks. Several variants of the Extended Authenti-
cation Protocol, a commonly used framework for wireless network
authentication, use TLS, including EAP-PEAP, EAP-TLS, and EAP-
TTLS. For implementations based on OpenSSL, Heartbleed would
have allowed attackers to retrieve network keys and user creden-
tials from wireless clients and access points [34]. We do not know
of any statistics regarding what sort of vulnerable population this
potentially represents.

4. PATCHING
In Section 3, we estimated the initial impact of Heartbleed. In this

section, we discuss the patching behavior that occurred subsequent
to the disclosure.

4.1 Popular Websites
Popular websites did well at patching. As mentioned above,

only five sites in the Alexa Top 100 remained vulnerable when
Al-Bassam completed his scan 22 hours after disclosure. All of
the top 100 sites were patched by the time we started our scans,
48 hours after disclosure. As discussed in Section 3, our first scan of
the Alexa Top 1 Million found that 11.5% of HTTPS sites remained
vulnerable. The most popular site that remained vulnerable was
mpnrs.com, ranked 689th globally and 27th in Germany. Similarly,
all but seven of the vulnerable top 100 sites replaced their certificate
in the first couple of weeks following disclosure. Most interest-
ingly, godaddy.com, operator of the largest commercial certificate

 0

 2

 4

 6

 8

 10

 12

04/12 04/19 04/26 05/03 05/10 05/17 05/24

Vu
ln

er
ab

le
 P

er
ce

nt
ag

e
of

 H
TT

PS
 H

os
ts

Date

Alexa Top 1 Million Sites
Public IPv4 Address Space

Figure 3: HTTPS Patch Rate. We track vulnerable web servers
in the Alexa Top 1 Million and the public IPv4 address space. We
track the latter by scanning independent 1% samples of the public
IPv4 address space every 8 hours. Between April 9 and June 4,
the vulnerable population of the Alexa Top 1 Million shrank from
11.5% to 3.1%, and for all HTTPS hosts from 6.0% to 1.9%.

authority, did not change their certificates until much later. The
other six sites are mail.ru, instagram.com, vk.com, sohu.com,
adobe.com, and kickass.to.

As shown in Figure 3, while many Alexa Top 1 Million sites
patched within the first week, the patch rate quickly dropped after
two weeks, with only a very modest decline between April 26 and
June 4, 2014. While top sites in North America and Europe were
initially more vulnerable than Asia and Oceania (presumably due to
more prevalent use of OpenSSL-based servers), they all followed
the same general patching pattern visible in Figure 3.

4.2 Internet-Wide HTTPS
As can be seen in Figure 3, the patching trend for the entire IPv4

address space differs from that of the Alexa Top 1 Million. The
largest discrepancy occurs between April 22, 14:35 EDT and April
23, 14:35 EDT, during which the total number of vulnerable hosts
fell by nearly a factor of two, from 4.6% to 2.6%. This dropoff
occurred because several heavily affected ASes patched many of
their systems within a short time frame. The shift from 4.6% to 3.8%
between 14:35 and 22:35 on April 22 reflects Minotavar Computers
patching 29% of their systems, ZeXoTeK IT-Services patching 60%,
and Euclid Systems patching 43%. Between April 22, 22:35 and
April 23, 06:35, Minotavar Computers continued to patch systems.
The last major drop from 3.4% to 2.6% (06:35–14:35 on April
23) was primarily due to Minotavar Computers patched remaining
systems, and to a lesser extent, Euclid Systems and Vivid Hosting.

4.3 Comparison to Debian Weak Keys
In 2008, a bug was discovered in the Debian OpenSSL package,

in which the generation of cryptographic keys had a severely limited
source of entropy, reducing the space of possible keys to a few
hundred thousand. The lack of entropy allowed attackers to fully
enumerate the SSL and SSH keys generated on Debian systems,
thus making it vital for Debian OpenSSL users to generate fresh
replacement keys.

Yilek et al. measured the impact of the vulnerability and patching
behavior by performing daily scans of HTTPS servers [72]. Given
the similarities in the severity and nature of remediation between

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 3 6 9 12 15

N
o
rm

a
liz

e
d
 F

ra
ct

io
n
 o

f
U

n
p
a
tc

h
e
d
 E

n
tit

ie
s

y=0.19

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 15 30 45 60 75 90 105 120

t=Days since Public Disclosure

Heartbleed (cert change)
Heartbleed (patched)

Debian PRNG

Figure 4: Comparison of the Patch Rates of the Debian PRNG
and Heartbleed Vulnerabilities. The y-axis is normalized at
8.7 days, indicated by the vertical striped line. Thus, the fraction
of unpatched entities at a given time is relative to the fraction at
8.7 days after disclosure, for each dataset. Except for the points
marked by �, for each measurement the size of the Debian PRNG
entity population was n = 41,200±2,000, and for Heartbleed, n =
100,900± 7,500. Due to a misconfiguration in our measurement
setup, no Heartbleed data is available days 58–85.

this event and Heartbleed, we compared the community’s responses
to both disclosures.

A key methodological issue with conducting such a comparison
concerns ensuring we use an “apples-to-apples” metric for assess-
ing the extent of the community’s response to each event. The
comparison is further complicated by the fact that our Heartbleed
measurements sample a different 1% of the Internet each scan. We
do the comparison by framing the basic unit of “did an affected
party respond” in terms of aggregate entities very likely controlled
by the same party (and thus will update at the same time). To do so,
we define an entity as a group of servers that all present the same
certificate during a particular measurement. This has the potential
for fragmenting groups that have partially replaced their certificates,
but we argue that this effect is likely negligible since the number
of entities stays roughly constant across our measurements. Note
that this definition of entity differs from the “host-cert” unit used
in [72], in which groups were tracked as a whole from the first
measurement.

Figure 4 shows for both datasets the fraction of unfixed entities to
the total number of entities per measurement. We consider an entity
as “fixed” in the Debian PRNG dataset if the certificate now has a
strong public key (and previously did not), otherwise “unfixed”. For
our Heartbleed IPv4 dataset (labelled “patch”), we deem an entity
as “fixed” if all servers presenting the same certificate are now no
longer vulnerable, “unfixed” otherwise.

This data shows that entities vulnerable to Heartbleed patched
somewhat more quickly than in the Debian scenario, and continue
to do so at a faster rate. It would appear that aspects of the disclo-
sure and publicity of Heartbleed did indeed help with motivating
patching, although the exact causes are difficult to determine.

Note that for the Debian event, it was very clear that affected sites
had to not only patch but to also issue new certificates, because there
was no question that the previous certificates were compromised.
For Heartbleed, the latter step of issuing new certificates was not
as pressing, because the previous certificates were compromised

only if attackers had employed the attack against the site prior
to patching and the attack indeed yielded the certificate’s private
key.

Given this distinction, we also measured whether entities changed
their certificates after patching Heartbleed.⇤ To do so, we now define
an entity as a group of servers that all present the same certificate
during both a particular measurement and all previous measure-
ments. We regard an entity as “unfixed” if any server presenting
that certificate is vulnerable at any time during this time frame and
“fixed” otherwise. Again, we argue that fragmentation due to groups
having their servers only been partially patched is likely negligible.
We label this data as “cert change” in Figure 4. We see that while
entities patched Heartbleed faster than the Debian PRNG bug, they
replaced certificates more slowly, which we speculate reflects a per-
ception that the less-definitive risk of certificate compromise led a
number of entities to forgo the work that reissuing entails.

5. CERTIFICATE ECOSYSTEM
Heartbleed allowed attackers to extract private cryptographic

keys [67]. As such, the security community recommended that
administrators generate new cryptographic keys and revoke compro-
mised certificates [35]. In this section, we analyze to what degree
operators followed these recommendations.

5.1 Certificate Replacement
To track which sites replaced certificates and cryptographic keys,

we combined data from our Heartbleed scans, Michigan’s daily
scans of the HTTPS ecosystem [29], and ICSI’s Certificate Notary
service [22]. Of the Alexa sites we found vulnerable on April 9
(2 days after disclosure), only 10.1% replaced their certificates in
the month following disclosure (Figure 5). For comparison, we
observed that 73% of vulnerable hosts detected on April 9 patched
in that same time frame, indicating that most hosts who patched did
not replace certificates. In addition, it is striking to observe that only
19% of the vulnerable sites that did replace their certificates also
revoked the original certificate in the same time frame, and even
more striking that 14% re-used the same private key, thus gaining
no actual protection by the replacement.

We find that 23% of all HTTPS sites in the Alexa Top 1 Million
replaced certificates and 4% revoked their certificates between April
9 and April 30, 2014. While it may seem inverted that fewer vul-
nerable sites changed their certificates compared to all HTTPS sites
in the Alexa Top 1 Million, our first scan was two days after initial
disclosure. We expect that diligent network operators both patched
their systems and replaced certificates within the first 48 hours post
disclosure, prior to our first scan.

The ICSI Certificate Notary (see Section 6.1) provides another
perspective on changes in the certificate ecosystem, namely in terms
of Heartbleed’s impact on the sites that its set of users visit during
their routine Internet use. In Figure 6, we show the difference
in certificate replacement between March and April 2014. For
the first four days after public disclosure on April 7, we observed
a large drop in the number of servers with the same certificate
as on April 6, indicating a spike in new certificates. After that,
certificate changes progressed slowly yet steadily for the rest of the
month. This matches our expectations that a number of operators
patched their systems prior to our scans and immediately replaced
certificates.

Ultimately, while popular websites did well at patching the ac-
tual vulnerability, a significantly smaller number replaced their

⇤See Section 5.1 for a discussion on the replacement of pub-
lic/private key pairs in addition to certificates.

 0

 2

 4

 6

 8

 10

 12

04/09
04/11

04/13
04/15

04/17
04/19

04/21
04/23

04/25
04/27

04/29
05/01

Pe
rc

en
ta

ge
 o

f K
no

w
n

Vu
ln

er
ab

le
 S

ite
s

Date

Figure 5: Certificate Replacement on Vulnerable Alexa Sites.
We monitored certificate replacement on vulnerable Alexa Top 1 Mil-
lion sites and observe only 10% replaced certificates in the month
following public disclosure.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 6 8 10 12 14 16 18 20 22 24 26 28

N
u

m
b

e
r

o
f

IP
s

w
ith

 S
a

m
e

 C
e

rt
ifi

ca
te

Day

March
April

Figure 6: ICSI Notary Certificate Changes. Over both March and
April, we track the number of servers who have the same certificate
as on the 6th of each month. We only include servers that served the
same certificate for the previous month.

 0

 100000

 200000

 300000

 400000

 500000

01/01
02/01

03/01
04/01

05/01
06/01

07/01

C
um

ul
at

iv
e

R
ev

oc
at

io
ns

 2
01

4

Date

Heartbleed Disclosed

Figure 7: Revocations after Heartbleed. Certificate revocations
dramatically increased after the disclosure. The jumps reflect Glob-
alSign (first) and GoDaddy (rest). However, still only 4% of HTTPS
sites in the Alexa Top 1 Million revoked their certificates between
April 9 and April 30, 2014.

certificates, and an even smaller number revoked their vulnerable
certificates.

5.2 Certificate Revocation
When a certificate or key can no longer be trusted, sites can

request the issuing CA to revoke the certificate. CAs accomplish
this by publishing certificate revocation lists (CRLs) and supporting
the Online Certificate Status Protocol (OCSP) for live queries. Even
though most vulnerable hosts failed to revoke old certificates, we
observed about as many revocations in the three months following
public disclosure as in the three previous years.

Prior to the vulnerability disclosure, we saw on average 491
(s=101) revocations per day for certificates found in our scans. As
seen in Figure 7, in the days following disclosure, the number of
revocations dramatically increased. The sudden increases were due
to individual CAs invalidating large portions of their certificates.
Most notably, GlobalSign revoked 56,353 certificates over two days
(50.2% of their visible certificates), and GoDaddy, the largest CA,
revoked 243,823 certificates in week-long bursts over the follow-
ing three months. GlobalSign’s large number of revocations were
precipitated by a major customer, CloudFlare, revoking all of their
customers’ certificates [60].

Revoking such a large number of certificates burdens both clients
and servers. Clients must download large CRLs, which CAs must
host. GlobalSign’s CRL expanded the most, from 2 KB to 4.7 MB
due to CloudFlare’s revocations. CloudFlare hesitated to revoke their
certificates, citing its significant cost, which they estimated would
require an additional 40 Gbps of sustained traffic, corresponding
to approximately $400,000 per month [60]. StartCom, a CA that
offers free SSL certificates, came under fire for continuing their
policy of charging for revocation after the Heartbleed disclosure [44].
However, revocation places a sizable financial strain on CAs due to
bandwidth costs [9, 60].

5.3 Forward Secrecy
Heartbleed highlights the importance of using forward secret

cipher suites in TLS. Without forward secrecy, the compromise
of a server’s private key, such as due to Heartbleed, allows an
attacker who recorded previous communications encrypted with
TLS to recover the session key used to protect that communication,
subverting its confidentiality. Thus, we might expect operators to
respond to Heartbleed by ensuring that at least in the future their
servers will support forward secrecy.

Unfortunately, we find that only 44% of the connections observed
by the ICSI Notary in May 2014 used forward secrecy. There
has been a slow increase in adoption between December 2013 and
April 2014, a gain of 1.0–4.3% each month. We observe a 4.2%
increase between March and April 2014, but no larger than that
between January and February. Surprisingly, this trend stagnated
from April to August; the percentage of connections using forward
secrecy stayed virtually the same. Currently, we are not sure why the
increase in forward secrecy cipher use ceased. However, it appears
clear that Heartbleed did not spur adoption of forward secrecy.

6. ATTACK SCENE
In addition to tracking vulnerable servers, we analyzed who was

scanning for the Heartbleed vulnerability by examining network
traffic collected from passive taps at Lawrence Berkeley National
Laboratory (LBNL), the International Computer Science Institute
(ICSI), and the National Energy Research Scientific Computing
Center (NERSC), as well as a honeypot operated by a colleague on
Amazon EC2.

To detect Heartbleed scanning, we extended the Bro’s SSL/TLS
analyzer to recognize Heartbeat messages [25, 57]. Note that this
approach parses the full TLS protocol data stream, including the
TLS record layer which remains unencrypted throughout the ses-
sion, and thus achieves an accuracy significantly better than that
provided by simple byte pattern matching. We have released our
Bro modifications along with our detection script via the Bro git
repository.

6.1 Pre-Disclosure Activity
LBNL’s network spans two /16s, one /20 and one /21. The insti-

tute frequently retains extensive packet traces for forensic purposes,
and for our purposes had full traces available from February–March
2012, February–March 2013, and January 23–April 30 2014. ICSI
uses a /23 network, for which we had access to 30-days of full traces
from April 2014. NERSC has a /16 network, for which we analyzed
traces from February to April 2014. The EC2 honeypot provided
full packet traces starting in November 2013.

For all four networks, over these time periods our detector found
no evidence of any exploit attempt up through April 7, 2014. This
provides strong evidence that at least for those time periods, no
attacker with prior knowledge of Heartbleed conducted widespread
scanning looking for vulnerable servers. Such scanning however
could have occurred during other time periods.

6.2 Post-disclosure Activity
To detect post-disclosure scanning, we similarly examined packet

traces from LBNL, ICSI, and the EC2 honeypot. The first activity
we observed originated from a host at the University of Latvia on
April 8, starting at 15:18 UTC (21 hours 29 minutes after public
disclosure), targeting 13 hosts at LBNL. This first attack was unusual
in that it sent both unencrypted (pre-handshake) and encrypted (post-
handshake) Heartbleed exploit packets to each host, likely trying to
gauge the effectiveness of both approaches. We observed scanning
of the other two networks within a few more hours.

In total, we observed 5,948 attempts to exploit the vulnerability
from 692 distinct hosts (Table 7). These connections targeted a total
217 hosts. 7 attackers successfully completed 103 exploit attempts
against 12 distinct hosts (excluding the intentionally vulnerable
honeypot). Figure 8 presents the temporal behavior of scanning as
seen at each location.

We detected several different types of exploit attempts, which we
list in Table 6. In types (1) and (2), attackers sent exploit attempts
prior to completely establishing the TLS session, which allowed
us to directly inspect the attack payload. After establishment of
the TLS session, the only pieces of information we can retrieve
are the message type and size, which are both transferred in the
clear. To detect scanning conducted in a fashion similar to our
own, we checked the length of the encrypted message (3). We
also consider all Heartbeat messages that we see prior to the first
transmission of application data (4) to reflect exploit attempts.* We
identify attacks as successful when the destination server responds
with more data than included in the original request (5), though as
noted above we do not consider attacks on the EC2 honeypot as
“successful”.

The sixteen most aggressive probe sources (by number of scans)
reside in Amazon address space. The scans originating from these
hosts share many characteristics, including the use of encryption,
the same packet length, and identical cipher suites. Closer exam-

⇤Heartbeat messages should never precede application data. We
verified this does not happen in real-world traffic by manually re-
viewing traces prior to the Heartbleed disclosure. We observed no
such instances.

 0

 50

 100

 150

 200

 250

 300

 350

04-08

04-09

04-10

04-11

04-12

04-13

04-14

04-15

04-16

04-17

04-18

04-19

04-20

04-21

04-22

04-23

04-24

04-25

04-26

04-27

04-28

04-29

04-30

N
u
m

b
e
r

o
f
S

ca
n
 A

tt
e
m

p
ts

Day

LBNL
ICSI
EC2

Figure 8: Incoming Attacks. We track the number of incoming
connections containing Heartbleed exploit messages seen at ICSI,
LBNL, and the EC2 honeypot per day.

Type Sources Targets Connections

(1) Cleartext attacks 628 191 1,691
(2) Successful cleartext attacks 4 10 26
(3) Short Heartbeats 8 10 187
(4) Heartbeats before data 61 132 4,070
(5) Successful attacks after encryption 5 6 77

Total 692 217 5,948

Table 6: Attack Types. We list different stages of attacks observed
against LBNL, ICSI and the EC2 honeypot.

ination reveals that these hosts belong to two popular Heartbleed
scan services: filippio.io (3,964 attempts from 40 hosts) and
ssllabs.com (16 attempts from 5 hosts).

Examining connection attempts across each site, we find only
three sources that attempted to scan all three networks. However,
LBNL aggressively blocks scan traffic, so most hosts scanning it
were likely blocked before they could locate a server against which
to attempt Heartbleed exploits. Considering only the EC2 honeypot
and the ICSI network (neither of which block scanning), we find
11 sources that scanned both.

Apart from our scans at the University of Michigan and another
research group at TU Berlin, we found four sources that targeted
more than 100 addresses at ICSI. Two of the sources were located
in CHINANET, one at Nagravision, and one at Rackspace. The re-
maining Heartbleed exploit attempts only targeted smaller numbers
of hosts without performing widespread scanning.

Hosts performing widespread scans exclusively targeted port 443
(HTTPS). We observed a small number of exploit against ports 993
(IMAPS), 995 (POP3S), 465 (SMTPS), as well as GridFTP. We also
found a small number of exploit attempts against services running
on other ports.

While we observed Heartbleed attacks originating from a large
number of sources, we find that most hosts did not target more than
one of our sites and likely do not represent Internet-wide scanning.
Given the low volume of widespread scanning, the 201 sources
attempting to exploit the EC2 honeypot appears surprisingly high.
Our hypothesis is that attackers may preferentially scan denser
address spaces, such as those of Amazon EC2, as they will likely
yield a greater number of vulnerable targets.

AS Name ASN Scans Hosts

Amazon.com 14618 4,267 206
China Telecom 4812 507 139
China169 Backbone 4837 147 34
Chinanet 4134 115 23
University of Michigan 36375 92 3
SoftLayer 36351 85 2
University of Latvia 8605 50 1
Rackspace 19994 47 11
GoDaddy.com 26496 34 15
OVH 16276 30 9
ViaWest 13649 30 1
Guangdong Mobile 9808 29 1
New York Internet Company 11403 29 1
ServerStack 46652 27 1
Comcast 7922 20 5
Global Village Telecom 18881 19 4
China Telecom 4816 16 1
Turk Telekomunikasyon 9121 15 8
DFN 680 15 2
Amazon.com 16509 12 5
TekSavvy Solutions 5645 11 2
Oversun 48172 11 2
HKNet 4645 11 1
CariNet 10439 10 8
PowerTech 5381 10 1
Nagravision 42570 10 1
CYBERDYNE 37560 10 1

Table 7: ASes Responsible for Attacks. We list the ASNs/ISPs
that sent 10 or more Heartbleed exploit attempts to LBNL, ICSI,
and our EC2 honeypot.

7. NOTIFICATION
Three weeks after the initial disclosure a large number of hosts

remained vulnerable, and we began notifying the system operators
responsible for unpatched systems. This endeavor provided us with
an opportunity to study the impact of large-scale vulnerability notifi-
cation. In this section we describe our notification methodology and
analyze the reactions to our notifications and its impact on patching.

7.1 Methodology
In order to find the appropriate operators to contact, we performed

WHOIS lookups for the IP address of each vulnerable host appearing
in our April 24, 2014 scan of the full IPv4 address space. We used
the “abuse” e-mail contact extracted from each WHOIS record as
our point of notification. We chose to use WHOIS abuse emails
because they struck us as more reliable than emails from other
sources. There also appeared to be less risk in offending a network
operator through contacting the abuse contact. For example, many
emails extracted from certificate Subject fields were not valid emails,
and we observed several WHOIS records with comments instructing
anything related to spam or abuse be sent to the abuse contact rather
than the technical contact.

Our scan found 588,686 vulnerable hosts. However, we excluded
embedded devices—which accounted for 56% of vulnerable hosts—
because administrators likely had no avenue for patching many of
these devices at the time. These devices were detected using the
fingerprints described in Section 3.6. The remaining 212,805 hosts
corresponded to 4,648 distinct abuse contacts. Approximately
30,000 hosts belonged to RIPE and Amazon each. Because nei-
ther of these organizations directly manage hosts, we omitted them
from our notifications.

To measure the impact of our notifications, we randomly split
the abuse contacts into two groups, which we notified in stages.

��

���

���

���

���

���

���

��	�

��	��

��	��
��	��

��
�
��
��
��
��
��
��
��
��
��
��
���
��
��

��
��
��
��
��
��
�

�������������

 �!"�#
�������

$"�%��&����������������' �!"�$(
)�*�+����������������' �!"�#(

Figure 9: Patch Rates of Group A vs Group B. The patch rates
for our two notification sets show that notification had statistically
significant impact on patch rate.

We sent notifications to the first half (Group A) on April 28, 2014,
and the second half (Group B) on May 7, 2014. Our notification e-
mail introduced our research and provided a list of vulnerable hosts,
information on the vulnerability, and a link to the EFF’s Heartbleed
recovery guide for systems administrators.

7.2 Patching Behavior
To track patching behavior, we conducted regular scans of the

known vulnerable hosts every eight hours. We considered a contact
as having reacted and begun patching if we found at least one host
in the list we sent to the contact as patched. Figure 9 shows a
comparison of the patch rates between the two groups. Within
24 hours of the initial notification, 20.6% of the Group A operators
had begun to patch, whereas only 10.8% of Group B contacts (not
yet notified) had reacted. After eight days (just before the second
group of notifications), 39.5% of Group A contacts had patched
versus 26.8% in Group B. This is a 47% increase in patching for
notified operators.

Fisher’s Exact Test yields a one-sided p-value of very nearly zero
for the null hypothesis that both groups reflect identical population
characteristics. We thus conclude that our notification efforts had
a statistically significant positive effect in spurring notified sites
to patch. Our second round of notifications followed a similar
pattern as the first. As Group A’s rate of patching had decreased
at that point, Group B caught up, resulting in both converging to
around 57% of contacts having reacted within a couple of weeks of
notification.

We also investigated the relationship between the reactions of net-
work operators (per Section 7.3) and their patching behavior. First,
we sent our notification message in English, possibly creating a lan-
guage barrier between us and the contact. We analyzed the Group A
responses and found that email responses entirely in English had no
statistically significant difference in the corresponding patching rate
than for responses containing non-English text (Fisher’s Exact Test
yielded a two-sided p-value of 0.407).

We did, however, find statistically significant differences between
each of the categories of responses framed below in Section 7.3, as
shown in Figure 10, with human responders patching at the highest
rate. Within the first day post-notification, 48% of human responders
had begun patching, while none of the other categories had a patch
rate higher than 32%.

The second strongest reactions came from contacts configured to
send automated responses. 32% had reacted after one day, and 75%
had reacted after three weeks. This indicates that operators using a

��

���

���

���

���

����

����	
�
���

�
���
�
���

�
��

�
��

�
��

��
��

��
��

�
��

���
��

��
�

 �
��

��
��

�
�

!�����������

"#����$�%����
&#�������$�%����

���$�%����
'(�)�*�+��(#��$�%����

Figure 10: Patch Rates for Different Response Types. Condi-
tioning on the sort of reply we received for a given notification
reveals statistically significant differences.

system to automatically process notifications and complaints will
still often react appropriately.

Over 77% of the contacts never responded. After one day,
20% of such contacts had conducted some patching; after three
weeks, 59% had. Right before Group B’s notifications, the patch
rate of these contacts was statistically significantly higher than
Group B’s patch rate. This shows that even when system opera-
tors do not respond when notified, they often still patch vulnerable
systems.

7.3 Responses
In our first group of notifications, on April 28, 2014, we contacted

2,308 abuse contacts and received email responses from 514 con-
tacts. Of these 59 (11%) were clearly human-generated, 197 (38%)
were automated, and 258 (50%) were delivery failures. We received
16 automated emails where we subsequently received a human re-
sponse; these we classified as human (thus, in total we received
530 emails). The vast majority of responses (88%) were in English;
other common languages included Russian, German, Portuguese,
and Spanish.

We classified a positive response as one that thanked us or stated
their plan to remedy their vulnerable hosts. The human-generated
responses were overall very positive (54/59), with only three that
we deemed neutral, and two negative. The two negative responses
questioned the legality of our scan despite our explicit explanation
that we did not exploit the vulnerability.

Automated messages came in four forms: confirmations (24%),
tickets (44%), trackers (23%), and miscellaneous bounces (9%; pri-
marily out-of-office notices and “no longer working here" messages).
Confirmation emails confirmed the receipt of our notification; tick-
ets provided a reference or ticket identifier to associate with our
notification message; and trackers were tickets that also explicitly
provided a link to a support site to track progress on opened tickets.
Curiously, 21 of the 45 trackers did not provide the credentials to
log into the support website, 2 provided invalid credentials, and
3 did not have our ticket listed on their support site. In the week
following our notification, we were informed that 19 tickets were
closed, although only 4 provided any reasoning.

Out of the 258 delivery failure replies, 197 indicated the recipient
did not receive our notification. Other error messages included full
inboxes or filtering due to spam, and several did not describe a clear
error. We observed 30 delayed and retrying emails, but all timed-out
within three days.

7.4 Network Operator Survey
We sent a brief survey to positive human responders, where all

questions were optional, and received anonymous submissions from
17 contacts. Surprisingly, all 17 expressed awareness of the vulnera-
bility and stated their organizations had performed some remedia-
tion effort prior to our notification, typically through informing their
clients/customers and patching machines if accessible. When we
asked why might the hosts we detected still be vulnerable, the most
common responses were that they did not have direct control over
those servers, or their own scans must have missed those hosts. It
appears ignorance of the vulnerability and its threat did not play a
factor in slow patching, although our sample size is small. When
asked if they replaced or revoked vulnerable certificates, nine said
yes, two said no, and one was unaware of the recommendation. Fi-
nally, we asked if these contacts would like to receive notifications
of similar vulnerabilities in the future. Twelve said yes, two said
no, and the others did not respond. This again demonstrates that our
notifications were in general well-received.

8. DISCUSSION
Heartbleed’s severe risks, widespread impact, and costly global

cleanup qualify it as a security disaster. However, by analyzing
such events and learning from them, the community can be better
prepared to address major security failures in the future. In this
section, we use our results to highlight weaknesses in the security
ecosystem, suggest improved techniques for recovery, and identify
important areas for future research.

HTTPS Administration. Heartbleed revealed important short-
comings in the public key infrastructure that underlies HTTPS. One
set of problems concerns certificate replacement and revocation.
As discussed in Section 5, only 10% of known vulnerable sites
replaced their certificates, and an astounding 14% of those reused
the existing, potentially leaked, private key. This data suggests that
many server administrators have only a superficial understanding
of how the HTTPS PKI operates or failed to understand the conse-
quences of the Heartbleed information leak. This underscores the
importance for the security community of providing specific, clear,
and actionable advice for network operators if similar vulnerabili-
ties occur in the future. Certificate management remains difficult
for operators, highlighting the pressing need for solutions that en-
able server operators to correctly deploy HTTPS and its associated
infrastructure.

One of the ironies of Heartbleed was that using HTTPS, a protocol
intended to provide security and privacy, introduced vulnerabilities
that were in some cases more dangerous than those of unencrypted
HTTP. However, we emphasize that HTTPS is ultimately the more
secure protocol for a wide variety of threat models. Unfortunately,
only 45% of the Top 1 Million websites support HTTPS, despite
efforts by organizations such as the EFF and Google to push for
global HTTPS deployment.

Revocation and Scalability. Even though only a small fraction
of vulnerable sites revoked their certificates, Heartbleed placed an
unprecedented strain on certificate authorities and revocation infras-
tructure. In the three months following public disclosure, about as
many revocations were processed by CAs as in the three years pro-
ceeding the incident. Wholesale revocation such as required by an
event like Heartbleed stresses the scalability of basing revocation on
the distribution of large lists of revoked certificates. As a result, CAs
were backlogged with revocation processing and saddled with unex-
pected financial costs for CRL distribution—CloudFlare alone paid
$400,000 per month in bandwidth [60]. The community needs to de-

velop methods for scalable revocation that can gracefully accommo-
date mass revocation events, as seen in the aftermath of Heartbleed.

Support for Critical Projects. While not a focus of our research,
many in the community have argued that this event dramatically
underscores shortcomings in how our community develops, deploys,
and supports security software. Given the unending nature of soft-
ware bugs, the Heartbleed vulnerability raises the question of why
the Heartbeat extension was enabled for popular websites. The
extension is intended for use in DTLS, an extension unneeded for
these sites. Ultimately, the inclusion and default configuration of this
largely unnecessary extension precipitated the Heartbleed catastro-
phe. It also appears likely that a code review would have uncovered
the vulnerability. Despite the fact that OpenSSL is critical to the
secure operation of the majority of websites, it receives negligible
support [43]. Our community needs to determine effective support
models for these core open-source projects.

Vulnerability Disclosure. With the exception of a small handful,
the most prominent websites patched within 24 hours. In many
ways, this represents an impressive feat. However, we also observed
vulnerability scans from potential attackers within 22 hours, and it
is likely that popular sites were targeted before the onset of large,
indiscriminate scans.

Several factors indicate that patching was delayed because the
Heartbleed disclosure process unfolded in a hasty and poorly co-
ordinated fashion. Several major operating system vendors were
not notified in advance of public disclosure, ultimately leading to
delayed user recovery. As discussed in Section 3, a number of
important sites remained vulnerable more than 24 hours after ini-
tial disclosure, including Yahoo, the fourth most popular site on
the Internet. The security community needs to be better prepared
for mass vulnerability disclosure before a similar incident happens
again. This includes addressing difficult questions, such as how to
determine which software maintainers and users to notify, and how
to balance advance disclosure against the risk of premature leaks.

Notification and Patching. Perhaps the most interesting lesson
from our study of Heartbleed is the surprising impact that direct noti-
fication of network operators can have on patching. Even with global
publicity and automatic update mechanisms, Heartbleed patching
plateaued two weeks after disclosure with 2.4% of HTTPS hosts
remaining vulnerable, suggesting that widespread awareness of the
problem is not enough to ensure patching. However, as discussed
in Section 7, when we notified network operators of the unpatched
systems in their address space, the rate of patching increased by
47%. Many operators reported that they had intended to patch, but
that they had missed the systems we detected.

Although Internet-wide measurement techniques have enabled
the mass detection of vulnerable systems, many researchers (includ-
ing us) had assumed that performing mass vulnerability notifications
for an incident like Heartbleed would be either too difficult or inef-
fective. Our findings challenge this view. Future work is needed to
understand what factors influence the effectiveness of mass notifica-
tions and determine how best to perform them. For instance, was
Heartbleed’s infamy a precondition for the high response rate we
observed? Can we develop systems that combine horizontal scan-
ning with automatically generated notifications to quickly respond
to future events? Can we standardize machine-readable notification
formats that can allow firewalls and intrusion detection systems to
act on them automatically? What role should coordinating bodies
such as CERT play in this process? With additional work along
these lines, automatic, measurement-driven mass notifications may
someday be an important tool in the defensive security arsenal.

9. CONCLUSION
In this work we analyzed numerous aspects of the recent OpenSSL

Heartbleed vulnerability, including (1) who was initially vulnerable,
(2) patching behavior, and (3) impact on the certificate authority
ecosystem. We found that the vulnerability was widespread, and
estimated that between 24–55% of HTTPS-enabled servers in the
Alexa Top 1 Million were initially vulnerable, including 44 of the
Alexa Top 100. Sites patched heavily in the first two weeks after
disclosure, but patching subsequently plateaued, and 3% of the
HTTPS Alexa Top 1 Million sites remained vulnerable after two
months. We further observed that only 10% of vulnerable sites
replaced their certificates compared to 73% that patched, and 14%
of sites doing so used the same private key, providing no protection.

We investigated the attack landscape, finding no evidence of large-
scale attacks prior to the public disclosure, but vulnerability scans
began within 22 hours. We observed post-disclosure attackers em-
ploying several distinct types of attacks from 692 sources, many
coming from Amazon EC2 and Chinese ASes. We also conducted a
mass notification of vulnerable hosts, finding a significant positive
impact on the patching of hosts to which we sent notifications, indi-
cating that this type of notification helps reduce global vulnerability.
Finally, we drew upon our analyses to frame what went well and
what went poorly in our community’s response, providing perspec-
tives on how we might respond more effectively to such events in
the future.

Acknowledgments
The authors thank Ivan Ristic for providing historical data on TLS
support, as well as Elie Bursztein, Paul Pearce, Hovav Shacham,
Aashish Sharma, and Matthias Vallentin. We similarly thank the
exceptional sysadmins at the University of Michigan for their help
and support throughout this project.

This work was supported in part by the Department of Home-
land Security Science and Technology Directorate under contracts
D08PC75388, FA8750-12-2-0235, and FA8750-12-2-0314; the Na-
tional Science Foundation under contracts CNS-0751116, CNS-
08311174, CNS-091639, CNS-1111699, CNS-1255153, and CNS-
1330142; DARPA award HR0011-12-2-005; and the Department of
the Navy under contract N000.14-09-1-1042.

10. REFERENCES
[1] Alexa Top 1,000,000 Sites.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
[2] Bitcoin Core Version History.

https://bitcoin.org/en/version-history.
[3] Installing OpenDKIM. http://www.opendkim.org/INSTALL.
[4] Telnet Server with SSL Encryption Support.

https://packages.debian.org/stable/net/telnetd-ssl.
[5] Install Ejabberd, Oct. 2004.

http://www.ejabberd.im/tuto-install-ejabberd.
[6] Cassandra Wiki - Internode Encryption, Nov. 2013.

http://wiki.apache.org/cassandra/InternodeEncryption.
[7] Android Platform Versions, Apr. 2014.

https://developer.android.com/about/dashboards/
index.html#Platform.

[8] Apple Says iOS, OSX and “Key Web Services” Not Affected
by Heartbleed Security Flaw, Apr. 2014.
http://recode.net/2014/04/10/apple-says-ios-osx-and-key-
web-services-not-affected-by-heartbleed-security-flaw/.

[9] Heartbleed F.A.Q., 2014. https://www.startssl.com/?app=43.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://bitcoin.org/en/version-history
http://www.opendkim.org/INSTALL
https://packages.debian.org/stable/net/telnetd-ssl
http://www.ejabberd.im/tuto-install-ejabberd
http://wiki.apache.org/cassandra/InternodeEncryption
https://developer.android.com/about/dashboards/index.html#Platform
https://developer.android.com/about/dashboards/index.html#Platform
http://recode.net/2014/04/10/apple-says-ios-osx-and-key-web-services-not-affected-by-heartbleed-security-flaw/
http://recode.net/2014/04/10/apple-says-ios-osx-and-key-web-services-not-affected-by-heartbleed-security-flaw/
https://www.startssl.com/?app=43

[10] The Heartbleed Hit List: The Passwords You Need to Change
Right Now, Apr. 2014. http://mashable.com/2014/04/09/
heartbleed-bug-websites-affected/.

[11] HP Support Document c04249852, May 2014.
http://goo.gl/AcUG8I.

[12] Is Openfire Affected by Heartbleed?, Apr. 2014.
https://community.igniterealtime.org/thread/52272.

[13] June 2014 Web Server Survey, 2014. http://news.netcraft.com/
archives/2014/06/06/june-2014-web-server-survey.html.

[14] NGINX and the Heartbleed Vulnerability, Apr. 2014. http://
nginx.com/blog/nginx-and-the-heartbleed-vulnerability/.

[15] Official BTCJam Update, Apr. 2014. http://blog.btcjam.com/
post/82158642922/official-btcjam-update.

[16] SSL Pulse, Apr. 2014.
https://www.trustworthyinternet.org/ssl-pulse/.

[17] Tomcat Heartbleed, Apr. 2014.
https://wiki.apache.org/tomcat/Security/Heartbleed.

[18] Wikimedia’s Response to the “Heartbleed” Security
Vulnerability, Apr. 2014.
https://blog.wikimedia.org/2014/04/10/wikimedias-response-
to-the-heartbleed-security-vulnerability/.

[19] Adobe. Heartbleed Update, Apr. 2014.
http://blogs.adobe.com/psirt/?p=1085.

[20] M. Al-Bassam. Top Alexa 10,000 Heartbleed Scan—April 14,
2014. https://github.com/musalbas/heartbleed-masstest/blob/
94cd9b6426311f0d20539e696496ed3d7bdd2a94/
top1000.txt.

[21] Alienth. We Recommend that You Change Your Reddit
Password, Apr. 2014.
http://www.reddit.com/r/announcements/comments/231hl7/
we_recommend_that_you_change_your_reddit_password/.

[22] B. Amann, M. Vallentin, S. Hall, and R. Sommer. Extracting
Certificates from Live Traffic: A Near Real-Time SSL Notary
Service. Technical Report TR-12-014, ICSI, Nov. 2012.

[23] AWeber Communications. Heartbleed: We’re Not Affected.
Here’s What You Can Do To Protect Yourself, Apr. 2014.
http://blog.aweber.com/articles-tips/
heartbleed-how-to-protect-yourself.htm.

[24] Bitcoin. OpenSSL Heartbleed Vulnerability, Apr. 2014.
https://bitcoin.org/en/alert/2014-04-11-heartbleed.

[25] Bro Network Security Monitor Web Site. http://www.bro.org.
[26] N. Craver. Is Stack Exchange Safe from Heartbleed?, Apr.

2014. http://meta.stackexchange.com/questions/228758/
is-stack-exchange-safe-from-heartbleed.

[27] R. Dingledine. Tor OpenSSL Bug CVE-2014-0160, Apr. 2014.
https://blog.torproject.org/blog/openssl-bug-cve-2014-0160.

[28] Dropbox Support. https://twitter.com/dropbox_support/status/
453673783480832000, Apr. 2014. Quick Update on
Heartbleed: We’ve Patched All of Our User-Facing Services
& Will Continue to Work to Make Sure Your Stuff is Always
Safe.

[29] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman.
Analysis of the HTTPS Certificate Ecosystem. In Proc. ACM
Internet Measurement Conference, Oct. 2013.

[30] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast
Internet-Wide Scanning and its Security Applications. In Proc.
USENIX Security Symposium, Aug. 2013.

[31] A. Ellis. Akamai heartbleed Update (V3), Apr. 2014. https://
blogs.akamai.com/2014/04/heartbleed-update-v3.html.

[32] A. S. Foundation. CouchDB and the Heartbleed SSL/TLS
Vulnerability, Apr. 2014. https://blogs.apache.org/couchdb/
entry/couchdb_and_the_heartbleed_ssl.

[33] GoDaddy. OpenSSL Heartbleed: We’ve Patched Our Servers,
Apr. 2014. http://support.godaddy.com/godaddy/
openssl-and-heartbleed-vulnerabilities/.

[34] L. Grangeia. Heartbleed, Cupid and Wireless, May 2014.
http://www.sysvalue.com/en/heartbleed-cupid-wireless/.

[35] S. Grant. The Bleeding Hearts Club: Heartbleed Recovery for
System Administrators, Apr. 2014.
https://www.eff.org/deeplinks/2014/04/bleeding-hearts-club-
heartbleed-recovery-system-administrators.

[36] B. Grubb. Heartbleed Disclosure Timeline: Who Knew What
and When. Apr. 2014. http://www.smh.com.au/it-pro/
security-it/heartbleed-disclosure-timeline-who-knew-what-
and-when-20140415-zqurk.html.

[37] L. Haisley. OpenSSL Crash with STARTTLS in Courier, May
2014. http://sourceforge.net/p/courier/mailman/message/
32298514/.

[38] IBM. OpenSSL Heartbleed (CVE-2014-0160), May 2014.
https://www-304.ibm.com/connections/blogs/PSIRT/entry/
openssl_heartbleed_cve_2014_0160.

[39] Infusionsoft. What You Need to Know About Heartbleed, Apr.
2014. http://blog.infusionsoft.com/company-news/
need-know-heartbleed/.

[40] Internal Revenue Service. IRS Statement on “Heartbleed” and
Filing Season, Apr. 2014. http://www.irs.gov/uac/Newsroom/
IRS-Statement-on-Heartbleed-and-Filing-Season.

[41] W. Kamishlian and R. Norris. Installing OpenSSL for Jabberd
2. http://www.jabberdoc.org/app_openssl.html.

[42] Litespeed Technologies. LSWS 4.2.9 Patches Heartbleed Bug,
Apr. 2014. http://www.litespeedtech.com/support/forum/
threads/lsws-4-2-9-patches-heartbleed-bug.8504/.

[43] S. Marquess. Of Money, Responsibility, and Pride, Apr. 2014.
http://veridicalsystems.com/blog/
of-money-responsibility-and-pride/.

[44] M. Masnick. Shameful Security: StartCom Charges People To
Revoke SSL Certs Vulnerable to Heartbleed, Apr. 2014.
http://www.techdirt.com/articles/20140409/11442426859/
shameful-security-startcom-charges-people-to-revoke-ssl-
certs-vulnerable-to-heartbleed.shtml.

[45] N. Mehta and Codenomicon. The Heartbleed Bug.
http://heartbleed.com/.

[46] Microsoft. Microsoft Services unaffected by OpenSSL
Heartbleed vulnerability, Apr. 2014. http://blogs.technet.com/
b/security/archive/2014/04/10/microsoft-devices-and-
services-and-the-openssl-heartbleed-vulnerability.aspx.

[47] MongoDB. MongoDB Response on Heartbleed OpenSSL
Vulnerability, Apr. 2014. http://www.mongodb.com/blog/post/
mongodb-response-heartbleed-openssl-vulnerability.

[48] K. Murchison. Heartbleed Warning - Cyrus Admin Passowrd
Leak!, Apr. 2014. http://lists.andrew.cmu.edu/pipermail/
info-cyrus/2014-April/037351.html.

[49] E. Ng. Tunnel Fails after OpenSSL Patch, Apr. 2014. https://
lists.openswan.org/pipermail/users/2014-April/022934.html.

[50] M. O’Connor. Google Services Updated to Address OpenSSL
CVE-2014-0160 (the Heartbleed Bug), Apr. 2014.
http://googleonlinesecurity.blogspot.com/2014/04/
google-services-updated-to-address.html.

[51] P. Ondruska. Does OpenSSL CVE-2014-0160 Effect Jetty
Users?, Apr. 2014. http://dev.eclipse.org/mhonarc/lists/
jetty-users/msg04624.html.

http://mashable.com/2014/04/09/heartbleed-bug-websites-affected/
http://mashable.com/2014/04/09/heartbleed-bug-websites-affected/
http://goo.gl/AcUG8I
https://community.igniterealtime.org/thread/52272
http://news.netcraft.com/archives/2014/06/06/june-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/06/06/june-2014-web-server-survey.html
http://nginx.com/blog/nginx-and-the-heartbleed-vulnerability/
http://nginx.com/blog/nginx-and-the-heartbleed-vulnerability/
http://blog.btcjam.com/post/82158642922/official-btcjam-update
http://blog.btcjam.com/post/82158642922/official-btcjam-update
https://www.trustworthyinternet.org/ssl-pulse/
https://wiki.apache.org/tomcat/Security/Heartbleed
https://blog.wikimedia.org/2014/04/10/wikimedias-response-to-the-heartbleed-security-vulnerability/
https://blog.wikimedia.org/2014/04/10/wikimedias-response-to-the-heartbleed-security-vulnerability/
http://blogs.adobe.com/psirt/?p=1085
https://github.com/musalbas/heartbleed-masstest/blob/94cd9b6426311f0d20539e696496ed3d7bdd2a94/top1000.txt
https://github.com/musalbas/heartbleed-masstest/blob/94cd9b6426311f0d20539e696496ed3d7bdd2a94/top1000.txt
https://github.com/musalbas/heartbleed-masstest/blob/94cd9b6426311f0d20539e696496ed3d7bdd2a94/top1000.txt
http://www.reddit.com/r/announcements/comments/231hl7/we_recommend_that_you_change_your_reddit_password/
http://www.reddit.com/r/announcements/comments/231hl7/we_recommend_that_you_change_your_reddit_password/
http://blog.aweber.com/articles-tips/heartbleed-how-to-protect-yourself.htm
http://blog.aweber.com/articles-tips/heartbleed-how-to-protect-yourself.htm
https://bitcoin.org/en/alert/2014-04-11-heartbleed
http://www.bro.org
http://meta.stackexchange.com/questions/228758/is-stack-exchange-safe-from-heartbleed
http://meta.stackexchange.com/questions/228758/is-stack-exchange-safe-from-heartbleed
https://blog.torproject.org/blog/openssl-bug-cve-2014-0160
https://twitter.com/dropbox_support/status/453673783480832000
https://twitter.com/dropbox_support/status/453673783480832000
https://blogs.akamai.com/2014/04/heartbleed-update-v3.html
https://blogs.akamai.com/2014/04/heartbleed-update-v3.html
https://blogs.apache.org/couchdb/entry/couchdb_and_the_heartbleed_ssl
https://blogs.apache.org/couchdb/entry/couchdb_and_the_heartbleed_ssl
http://support.godaddy.com/godaddy/openssl-and-heartbleed-vulnerabilities/
http://support.godaddy.com/godaddy/openssl-and-heartbleed-vulnerabilities/
http://www.sysvalue.com/en/heartbleed-cupid-wireless/
https://www.eff.org/deeplinks/2014/04/bleeding-hearts-club-heartbleed-recovery-system-administrators
https://www.eff.org/deeplinks/2014/04/bleeding-hearts-club-heartbleed-recovery-system-administrators
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140415-zqurk.html
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140415-zqurk.html
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140415-zqurk.html
http://sourceforge.net/p/courier/mailman/message/32298514/
http://sourceforge.net/p/courier/mailman/message/32298514/
https://www-304.ibm.com/connections/blogs/PSIRT/entry/openssl_heartbleed_cve_2014_0160
https://www-304.ibm.com/connections/blogs/PSIRT/entry/openssl_heartbleed_cve_2014_0160
http://blog.infusionsoft.com/company-news/need-know-heartbleed/
http://blog.infusionsoft.com/company-news/need-know-heartbleed/
http://www.irs.gov/uac/Newsroom/IRS-Statement-on-Heartbleed-and-Filing-Season
http://www.irs.gov/uac/Newsroom/IRS-Statement-on-Heartbleed-and-Filing-Season
http://www.jabberdoc.org/app_openssl.html
http://www.litespeedtech.com/support/forum/threads/lsws-4-2-9-patches-heartbleed-bug.8504/
http://www.litespeedtech.com/support/forum/threads/lsws-4-2-9-patches-heartbleed-bug.8504/
http://veridicalsystems.com/blog/of-money-responsibility-and-pride/
http://veridicalsystems.com/blog/of-money-responsibility-and-pride/
http://www.techdirt.com/articles/20140409/11442426859/shameful-security-startcom-charges-people-to-revoke-ssl-certs-vulnerable-to-heartbleed.shtml
http://www.techdirt.com/articles/20140409/11442426859/shameful-security-startcom-charges-people-to-revoke-ssl-certs-vulnerable-to-heartbleed.shtml
http://www.techdirt.com/articles/20140409/11442426859/shameful-security-startcom-charges-people-to-revoke-ssl-certs-vulnerable-to-heartbleed.shtml
http://heartbleed.com/
http://blogs.technet.com/b/security/archive/2014/04/10/microsoft-devices-and-services-and-the-openssl-heartbleed-vulnerability.aspx
http://blogs.technet.com/b/security/archive/2014/04/10/microsoft-devices-and-services-and-the-openssl-heartbleed-vulnerability.aspx
http://blogs.technet.com/b/security/archive/2014/04/10/microsoft-devices-and-services-and-the-openssl-heartbleed-vulnerability.aspx
http://www.mongodb.com/blog/post/mongodb-response-heartbleed-openssl-vulnerability
http://www.mongodb.com/blog/post/mongodb-response-heartbleed-openssl-vulnerability
http://lists.andrew.cmu.edu/pipermail/info-cyrus/2014-April/037351.html
http://lists.andrew.cmu.edu/pipermail/info-cyrus/2014-April/037351.html
https://lists.openswan.org/pipermail/users/2014-April/022934.html
https://lists.openswan.org/pipermail/users/2014-April/022934.html
http://googleonlinesecurity.blogspot.com/2014/04/google-services-updated-to-address.html
http://googleonlinesecurity.blogspot.com/2014/04/google-services-updated-to-address.html
http://dev.eclipse.org/mhonarc/lists/jetty-users/msg04624.html
http://dev.eclipse.org/mhonarc/lists/jetty-users/msg04624.html

[52] OpenSSL Project Team. OpenSSL Security Advisory, Apr.
2014. http://www.mail-archive.com/
openssl-users@openssl.org/msg73408.html.

[53] OpenSSL Project Team. OpenSSL Version 1.0.1g Released,
Apr. 2014. http://www.mail-archive.com/
openssl-users@openssl.org/msg73407.html.

[54] OpenVPN. OpenSSL Vulnerability—Heartbleed.
https://community.openvpn.net/openvpn/wiki/heartbleed.

[55] Oracle. OpenSSL Security Bug—Heartbleed /
CVE-2014-0160, Apr. 2014.
http://www.oracle.com/technetwork/topics/security/
opensslheartbleedcve-2014-0160-2188454.html.

[56] L. Padron. Important Read – Critical Security Advisory And
Patch for OpenSSL Heartbleed Vulnerability, Apr. 2014.
http://blog.zimbra.com/blog/archives/2014/04/
important-read-critical-security-advisory-patch-openssl-
heartbleed-vulnerability.html.

[57] V. Paxson. Bro: A System for Detecting Network Intruders in
Real-Time. Computer Networks, 31(23-24):2435–2463, 1999.

[58] PayPal. OpenSSL Heartbleed Bug—PayPal Account Holders
are Secure, Apr. 2014. https://www.paypal-community.com/
t5/PayPal-Forward/OpenSSL-Heartbleed-Bug-PayPal-
Account-Holders-are-Secure/ba-p/797568.

[59] W. Pinckaers. http://lekkertech.net/akamai.txt.
[60] M. Prince. The Hidden Costs of Heartbleed, Apr. 2014.

http://blog.cloudflare.com/the-hard-costs-of-heartbleed.
[61] Publishers Clearing House. Stay Smart About The

“Heartbleed” Bug With PCH!, Apr. 2014.
http://blog.pch.com/blog/2014/04/16/
stay-smart-about-the-heartbleed-bug-with-pch/.

[62] Rackspace. Protect Your Systems From “Heartbleed”
OpenSSL Vulnerability, Apr. 2014.
http://www.rackspace.com/blog/protect-your-systems-from-
heartbleed-openssl-vulnerability/.

[63] Red Hat. How to Recover from the Heartbleed OpenSSL
vulnerability, Apr. 2014.
https://access.redhat.com/articles/786463.

[64] T. Saunders. ProFTPD and the OpenSSL “Heartbleed” Bug,
May 2014. http://comments.gmane.org/
gmane.network.proftpd.user/9465.

[65] B. Say. Bleedingheart Bug in OpenSSL, Apr. 2014.
http://www.stunnel.org/pipermail/stunnel-users/2014-April/
004578.html.

[66] R. Seggelmann, M. Tuexen, and M. Williams. Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension. IETF Request for Comments
(RFC) 6520, February 2012.
https://tools.ietf.org/html/rfc6520.

[67] N. Sullivan. The Results of the CloudFlare Challenge. Apr.
2014. http://blog.cloudflare.com/
the-results-of-the-cloudflare-challenge.

[68] Tumblr. Urgent Security Update, Apr. 2014. http://
staff.tumblr.com/post/82113034874/urgent-security-update.

[69] United States Postal Service. Avoiding Heartbleed, May 2014.
https://ribbs.usps.gov/importantupdates/
HeartbleedArticle.pdf.

[70] M. Wimmer. Removed Support for OpenSSL, 2007.
https://jabberd.org/hg/amessagingd/rev/bcb8eb80cbb9.

[71] WordPress. Heartbleed Security Update, Apr. 2014.
http://en.blog.wordpress.com/2014/04/15/security-update/.

[72] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage.
When Private Keys Are Public: Results from the 2008 Debian
OpenSSL Vulnerability. In Proc. ACM Internet Measurement
Conference, Nov. 2009.

[73] ZDNet. Heartbleed Bug Affects Yahoo, OKCupid Sites, Apr.
2014. http://www.zdnet.com/heartbleed-bug-affects-yahoo-
imgur-okcupid-convo-7000028213/.

[74] ZEDOinc.
https://twitter.com/ZEDOinc/status/456145140503957504,
Apr. 2014. Customers and partners: none of the ZEDO sites or
assets are affected by Heartbleed.

http://www.mail-archive.com/openssl-users@openssl.org/msg73408.html
http://www.mail-archive.com/openssl-users@openssl.org/msg73408.html
http://www.mail-archive.com/openssl-users@openssl.org/msg73407.html
http://www.mail-archive.com/openssl-users@openssl.org/msg73407.html
https://community.openvpn.net/openvpn/wiki/heartbleed
http://www.oracle.com/technetwork/topics/security/opensslheartbleedcve-2014-0160-2188454.html
http://www.oracle.com/technetwork/topics/security/opensslheartbleedcve-2014-0160-2188454.html
http://blog.zimbra.com/blog/archives/2014/04/important-read-critical-security-advisory-patch-openssl-heartbleed-vulnerability.html
http://blog.zimbra.com/blog/archives/2014/04/important-read-critical-security-advisory-patch-openssl-heartbleed-vulnerability.html
http://blog.zimbra.com/blog/archives/2014/04/important-read-critical-security-advisory-patch-openssl-heartbleed-vulnerability.html
https://www.paypal-community.com/t5/PayPal-Forward/OpenSSL-Heartbleed-Bug-PayPal-Account-Holders-are-Secure/ba-p/797568
https://www.paypal-community.com/t5/PayPal-Forward/OpenSSL-Heartbleed-Bug-PayPal-Account-Holders-are-Secure/ba-p/797568
https://www.paypal-community.com/t5/PayPal-Forward/OpenSSL-Heartbleed-Bug-PayPal-Account-Holders-are-Secure/ba-p/797568
http://lekkertech.net/akamai.txt
http://blog.cloudflare.com/the-hard-costs-of-heartbleed
http://blog.pch.com/blog/2014/04/16/stay-smart-about-the-heartbleed-bug-with-pch/
http://blog.pch.com/blog/2014/04/16/stay-smart-about-the-heartbleed-bug-with-pch/
http://www.rackspace.com/blog/protect-your-systems-from-heartbleed-openssl-vulnerability/
http://www.rackspace.com/blog/protect-your-systems-from-heartbleed-openssl-vulnerability/
https://access.redhat.com/articles/786463
http://comments.gmane.org/gmane.network.proftpd.user/9465
http://comments.gmane.org/gmane.network.proftpd.user/9465
http://www.stunnel.org/pipermail/stunnel-users/2014-April/004578.html
http://www.stunnel.org/pipermail/stunnel-users/2014-April/004578.html
https://tools.ietf.org/html/rfc6520
http://blog.cloudflare.com/the-results-of-the-cloudflare-challenge
http://blog.cloudflare.com/the-results-of-the-cloudflare-challenge
http://staff.tumblr.com/post/82113034874/urgent-security-update
http://staff.tumblr.com/post/82113034874/urgent-security-update
https://ribbs.usps.gov/importantupdates/HeartbleedArticle.pdf
https://ribbs.usps.gov/importantupdates/HeartbleedArticle.pdf
https://jabberd.org/hg/amessagingd/rev/bcb8eb80cbb9
http://en.blog.wordpress.com/2014/04/15/security-update/
http://www.zdnet.com/heartbleed-bug-affects-yahoo-imgur-okcupid-convo-7000028213/
http://www.zdnet.com/heartbleed-bug-affects-yahoo-imgur-okcupid-convo-7000028213/
https://twitter.com/ZEDOinc/status/456145140503957504

	Introduction
	Background
	OpenSSL: A Brief History
	TLS Heartbeat Extension
	Heartbleed Vulnerability
	Heartbleed Timeline

	The Impact of Heartbleed
	Scanning Methodology
	False Negatives
	Impact on Popular Websites
	Top 100 Websites
	Estimating Broader Impact

	Pre-Disclosure Patching
	Internet-Wide HTTPS Vulnerability
	Vulnerable Devices and Products
	Other Impacts

	Patching
	Popular Websites
	Internet-Wide HTTPS
	Comparison to Debian Weak Keys

	Certificate Ecosystem
	Certificate Replacement
	Certificate Revocation
	Forward Secrecy

	Attack Scene
	Pre-Disclosure Activity
	Post-disclosure Activity

	Notification
	Methodology
	Patching Behavior
	Responses
	Network Operator Survey

	Discussion
	Conclusion
	References

