
Who You Gonna Call? An Empirical Evaluation of Website
security.txt Deployment

Tara Poteat
tpoteat3@gatech.edu

Georgia Institute of Technology
USA

Frank Li
frankli@gatech.edu

Georgia Institute of Technology
USA

ABSTRACT
The security.txt proposed standard allows organizations to de-
fine how security researchers should disclose security issues. While
it is still proceeding through the final stages of standardization,
major online services have already adopted the standard (such as
Google, Facebook, LinkedIn, and Github). In this work, we con-
duct an empirical investigation into how websites are deploying
security.txt. We first monitor security.txt adoption over a
15-month period, identifying the level of deployment for top web-
sites. We also characterize the information being provided through
security.txt and issues present in the provided data. Ultimately,
our analysis sheds light on how the security.txtmechanismman-
ifests in practice and its implications for vulnerability reporting,
particularly for large-scale automated notification campaigns.

CCS CONCEPTS
• Security and privacy→Web protocol security.
ACM Reference Format:
Tara Poteat and Frank Li. 2021. Who You Gonna Call? An Empirical Evalua-
tion of Website security.txt Deployment. In ACM Internet Measurement
Conference (IMC ’21), November 2–4, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3487552.3487841

1 INTRODUCTION
Every year, security researchers identify thousands of new vulner-
abilities and misconfigurations. Methods such as large-scale web
crawling and Internet-wide scans often afford researchers the oppor-
tunity to detect en masse which Internet systems and organizations
are vulnerable. While the security community has demonstrated
consistency in uncovering new security problems, disclosing and
remediating these issues in practice remains a distinct challenge.

While some organizations support well-publicized and concretely
defined vulnerability disclosure processes, such as with bug bounty
programs [9, 10], information on reporting security concerns is not
commonplace for many organizations. Prior efforts into large-scale
security notifications to system operators [4, 5, 15, 16, 18, 19] have
identified that while such notifications can drive significant levels
of remediation, one of the main barriers to successful disclosure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’21, November 2–4, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9129-0/21/11. . . $15.00
https://doi.org/10.1145/3487552.3487841

is simply identifying a proper point of contact for affected hosts.
These works have revealed that existing methods for finding con-
tacts, such as relying on WHOIS information, attempting generic
administrator email addresses (e.g., admin@ or hostmaster@), or
manually searching on websites and social media, are insufficient
and often labor-intensive.

The security.txt proposed standard [7] aims to remedy this
information gap by standardizing how organizations publish their
vulnerability disclosure practices, guiding security researchers in re-
porting security concerns. Specifically, security.txt specifies the
format of a text file to be hosted at a well-defined location on an or-
ganization’s website (similar to standards such as robots.txt [12]
and ads.txt [14], which publicize a website’s crawling and ad-
vertising policies, respectively). The security.txt file contains
various information fields, including points of contact, a disclosure
policy, preferred languages for security reports, and the location of
an encryption key to use for securing disclosure communication.
First proposed in 2017, security.txt is still in the final stages of
standardization. However, it has already been adopted by major
online services for several years, such as Google, Facebook, Github,
LinkedIn, and Dropbox, and is being recommended for use through-
out U.S. government agencies [22].With numerous websites already
deploying security.txt, we consider it salient to investigate how
organizations are using the standard and the characteristics of their
published vulnerability disclosure information.

In this paper, we provide a large-scale empirical evaluation of
security.txt deployment on the Alexa top 100K websites [2].
Over a 15-month period, we crawl the security.txt files acces-
sible on these popular sites, measuring how deployment levels
have changed longitudinally. We also investigate the nature of the
information provided, including information at external references.

We observe that thousands of top websites already support
security.txt, with adoption growing over time, especially among
higher-ranked sites. Our analysis of security.txt content iden-
tifies common patterns in the points of contact listed for security
reporting, as well as a large portion of websites providing contact
information in non-standard ways. The specification also requires
that security.txt files provide an expiration date (the only other
data field required besides the contact field), yet we discover that
less than 2% of websites adhere to this requirement, making it the
least provided field even among various other optional fields. We
also find that few sites provide a signature for their security.txt
file, as recommended, although a fifth of sites provide encryption
key information for securing disclosure communication.

Ultimately, our empirical investigation into security.txt’s de-
ployment across websites sheds light on how it can be used in

https://doi.org/10.1145/3487552.3487841
https://doi.org/10.1145/3487552.3487841

IMC ’21, November 2–4, 2021, Virtual Event, USA Tara Poteat and Frank Li

practice for vulnerability disclosure, notably in identifying non-
standard representations of information and implications for large-
scale automated security notifications to system operators.

2 BACKGROUND
2.1 security.txt Proposed Standard
The security.txt proposed standard [7] defines a method for
organizations to publish their vulnerability disclosure practices,
aiding security researchers in reporting discovered security issues.
Similar to robots.txt [12] and ads.txt [14], used by websites to
publicize crawling and advertising practices1, security.txt speci-
fies the format of a text file accessible on an organization’s website
at a well-defined location (specifically the .well-known [17] or root
URL paths). For example, Google’s security.txt file is available
at: https://www.google.com/ .well-known/security.txt.

The security.txt file is formatted as lines of key-value pairs
(separated by colons), where the key is a field name (although free-
form comments are supported as lines starting with the pound sign).
There are currently eight fields defined:
(1) Acknowledgements: Links to a webpage where researchers

can be recognized for their vulnerability reporting.
(2) Canonical: Lists the canonical URI of the security.txt file,

useful if a researcher obtains a security.txt file through
means other than directly accessing that location.

(3) Contact (Required): Provides information on where to report
vulnerabilities, such as an email address, a phone number, or a
web page with contact information.

(4) Encryption: Locates an encryption key that should be used for
secure communication when reporting security issues. (Note,
this field should not contain the key itself.)

(5) Expires (Required): Indicates when the data in the file should
be considered stale and no longer used.

(6) Hiring: Links to a webpage on security-related job positions
at the organization.

(7) Policy: Provides the location of the organization’s vulnerability
disclosure policy.

(8) Preferred-Languages: Enumerates the languages that the or-
ganization would prefer used when submitting security reports.
The standard also recommends that the security.txt file is

digitally signed using an OpenPGP cleartext signature.

2.2 Related Work
To our knowledge, security.txt has not been previously empir-
ically studied. However, prior work has empirically assessed the
deployment of similar standards based on websites publishing in-
formation files at standardized locations, such as robots.txt [12]
and ads.txt [14]. Sun et al. [21] measured the deployment of
robots.txt files in 2007, while Kolay et al. [11] provided a larger-
scale measurement and characterization of robots.txt content in
2008. Sun et al. [20] also investigated search engine biases exhibited
in robots.txt policies, while Giles et al. [8] analyzed the extent
to which web crawlers adhered to robots.txt policies. Bashir et
al. [3] provided a longitudinal analysis of ads.txt deployment,
1Neither robots.txt nor ads.txt are IETF standards currently, although robots.txt
is also proceeding through IETF standardization. Both have enjoyed significant levels
of adoption though [11, 14].

characterizing the ad ecosystem entities listed in ads.txt files and
their compliance with the specifications. We note that several of
these prior works [3, 21] observed syntactic and semantic inconsis-
tencies in how websites deployed these other standards, similar to
our study’s observations with security.txt.

3 METHOD
To obtain data on the use of security.txt by websites, we crawled
the security.txt files on the Alexa Top 100K websites [2] every
7 days over a 15-month period, from January 29, 2020 to April 19,
2021 (we had a 1.5-month measurement interruption throughout
November and the first half of December, 2020).

For each measurement instance, we first downloaded the latest
Alexa top list snapshot, and crawled only the top 100K ranked
domains in a randomized order (to distribute load induced on
crawled websites). To collect the security.txt files for these do-
mains, we implemented a parallelized wget-based crawler that sup-
plied a Chrome browser user-agent. We attempted to fetch the
security.txt file at both a domain’s root and .well-known paths.
While the security.txt standard mandates that the file be acces-
sible over HTTPS (for transport security), we attempted to connect
to websites using both HTTP and HTTPS. Thus, our crawler issued
four requests per domain, timing out after 5 seconds per request.

For many domains, fetching the security.txtURL returned un-
expected data. The returned data was typically an HTML document
(e.g., error webpage), but we also occasionally observed image files
and other text files (including ads.txt and robots.txt files). We
filtered all non-text files, and classified security.txt files heuristi-
cally through pattern-matching on the security.txt specified file
format and defined fields. We manually inspected a random sample
of 100 fetched text files that were labeled as security.txt and 100
files labeled otherwise, and did not identify any false positive or
false negative classifications, giving us confidence in the accuracy
of our data labeling.

For the security.txt files obtained, we parsed non-comment
lines as colon-delimited key-value pairs to extract the provided
fields and their values. Some fields may contain a webpage URL as a
value. For security-relevant fields, we fetched these webpage URLs
using the same crawling process as with accessing security.txt
files, affording analysis of this external content (further details in
Section 4).

4 RESULTS
In this section, we analyze the security.txt data collected. Except
for our longitudinal analysis in Section 4.1, we will consider all
security.txt files that we crawled across our observation period,
evaluating the most recently crawled version for each domain.

4.1 Longitudinal Analysis
We first evaluate how the use of security.txt by Alexa top web-
sites changed longitudinally.

Deployment Levels Among Top Sites. In Figure 1, we plot the
proportion of websites deploying security.txt over our measure-
ment period for different groups of websites: the top 100, top 1K, top
10K, and top 100K sites. Note that as the Alexa top list is dynamic,

https://www.google.com/.well-known/security.txt

Who You Gonna Call? An Empirical Evaluation of Website security.txt Deployment IMC ’21, November 2–4, 2021, Virtual Event, USA

20
20

-03

20
20

-05

20
20

-07

20
20

-09

20
20

-11

20
21

-01

20
21

-03

20
21

-05

Date

0

2

4

6

8

10

12

14

16

18

%
 o

f W
eb

sit
es

 U
sin

g
se

cu
rit

y.
tx

t

Top 100
Top 1K

Top 10K
Top 100K

Figure 1: Deployment of security.txt over time by the
Alexa top 100, top 1K, top 10K, and top 100K websites. Note
that the set of websites is dynamic over time, and this graph
represents the proportion of top sites using security.txt at
a given time.We lack data points during ameasurement out-
age in November and early December, 2020.

at a given time, this graph represents the top sites at that particu-
lar time (rather than a static set of sites tracked over time). Over
the 15-month period of our study, the deployment levels remained
largely stable for all website categories. We observe that a non-
trivial proportion of top websites already deployed security.txt,
with higher-ranked websites exhibiting higher deployment rates.
The top 100 sites exhibited a deployment rate largely varying be-
tween 11–16% (the variation over time arises due to the small pop-
ulation size and regular churn in the set of top 100 sites). In com-
parison, 8–10% of the top 1K websites used security.txt. This
percentage decreases to 3–4% for the top 10K sites, and only a per-
cent for the top 100K. We hypothesize that higher-ranked websites
may be better provisioned for managing security matters and may
have greater stakes in ensuring organization security, and thus may
be more likely to deploy security.txt.

Adoption Rate by Top Sites. While the proportion of top sites
deploying security.txt does not exhibit significant variation dur-
ing our observation period, this may reflect the churn in the top
list itself, as sites that may have adopted security.txt later may
change rankings or may no longer remain in the top list. To better
quantify whether websites are adopting security.txt over time,
we consider a static set of websites, using the set of sites and their
rankings from our first crawl. However, our subsequent crawls may
not have consistently measured this entire set of sites, and we may
no longer measure a site after a certain point in time.

To account for this, we apply survival analysis, which is a sta-
tistical framework for characterizing the probability that a subject
experiences an event (e.g., death) over time. It adjusts for right-
censored data, where not all subjects may be observed until the
end of data collection (i.e., subjects drop out from the observations).

20
20

-03

20
20

-05

20
20

-07

20
20

-09

20
20

-11

20
21

-01

20
21

-03

20
21

-05

Date

0

1

2

3

4

5

6

7

8

Ad
op

tio
n

Ra
te

 o
f s

ec
ur

ity
.tx

t
(%

 o
f W

eb
sit

es
)

Top 100
Top 1K

Top 10K
Top 100K

Figure 2: Adoption rate of security.txt over time by the
Alexa top 100, top 1K, top 10K, and top 100K websites, using
a static set of websites and rankings from our first crawl. As
we do not consistentlymeasure this entire set of sites in sub-
sequent crawls, we plot inverted survival curves to account
for sites dropping out from ourmeasurements.We lack data
points during ameasurement outage in November and early
December, 2020.

In our scenario, the subjects are individual websites and an event
is the adoption of security.txt. We compute the Kaplan-Meier
survival curve estimate, which estimates the probability of sur-
viving (i.e., not experiencing the event) over time. In Figure 2, we
plot the inverted survival curve, which represents the probability
of adopting security.txt over time. We find that by tracking a
static set of sites, security.txt is indeed slowly being adopted
over time. We observe a higher adoption rate for higher-ranked
websites, aligning with our observation that higher-ranked sites
exhibit greater security.txt deployment levels.

Removal of security.txt Files. For all sites we observed ever
deploying security.txt during our observation period, we detect
that 5.2% of sites remained online yet removed their security.txt
file. This proportion is small but non-trivial, suggesting that some
sites may experience negative consequences from deploying the
standard, perhaps receiving spam emails or low-quality security
reports. Nonetheless, the vast majority of sites that have deployed
security.txt continue to support it.

Changes in security.txt File Content. We identify that web-
sites occasionally update their security.txt files, with 14.4% of
security.txt sites ever changing their security.txt file’s con-
tent. Upon manual inspection, we observe a wide range of file
updates, with approximately half involving minor changes to URLs
in the file and a third modifying the contact information.

Common security.txt File Content. Over time, we observe that
many domains share the same security.txt file. Across our 15-
month study, we detect a total of 7.5K distinct domains hosting a

IMC ’21, November 2–4, 2021, Virtual Event, USA Tara Poteat and Frank Li

security.txt file. These domains form 2.2K clusters with identical
file content. From Figure 3 in the Appendix, which plots the CDF of
domain cluster sizes, we see that most clusters are small. Singletons
make up 81% of clusters, and 95% of clusters have up to 4 domains.
However, we do find several large clusters, with the largest con-
taining 2025 domains. By manually inspecting these clusters, we
identify that these websites are affiliated with a common organiza-
tion. For example, the largest clusters are domains affiliated with
Tumblr, Google, and Shoptet (a Czech e-shop hosting platform).

In our subsequent analysis, we consider both the number of
security.txt domains aswell as distinct security.txt files (when
relevant, which approximately represents distinct organizations).
We note that different domains sharing the same security.txt
content do not necessarily represent the same website. For exam-
ple, doubleclick.net and google.com both are associated with
Google and share the same security.txt file, but security issues
on one do not necessarily affect the other. Thus it is valuable to
consider both domain and file granularities.

4.2 Accessing security.txt
Here, for all domains that we retrieved a security.txt file for, we
characterize the location of those files2.

URL Path. We find that 82% of domains host their security.txt
file at the preferred .well-known location (with 65% of sites host-
ing only at that location). The remaining 18% of websites support
security.txt only at the root path. Thus, both URL path locations
should be checked when searching for security.txt files.

Protocol. We observe that for security.txt files located both at
the root and .well-known URL paths, 90% are accessible over both
HTTP and HTTPS, and an additional 3.8% are accessible only on
HTTPS. However, the remaining 6.2% can only be retrieved over
HTTP, mostly due to the site not supporting HTTPS itself. We note
that while the standard requires the file to be accessed only on
HTTPS, researchers may need to access it over HTTP as well.

4.3 security.txt Content
As discussed in Section 2.1, security.txt defines eight informa-
tion fields, of which two are required (Contact and Expires). In Ta-
ble 1, for all domains hosting security.txt files observed through-
out our study’s measurements, we list the number of domains and
distinct security.txt files providing each field. In this section,
we analyze these fields in more detail, focusing on those directly
relevant for vulnerability disclosure.

4.3.1 Contact and OpenBugBounty Fields. The Contact field is the
most salient field, as the central purpose of the security.txt stan-
dard is to standardize the vulnerability reporting process. It is re-
quired by the security.txt specification, and multiple contacts
can be provided.

Use of the Fields. While most sites provide a single Contact field
(83% of domains, 74% of distinct security.txt files), we observe
that 9% of domains (11% of files) provide two Contact fields, with a

2In rare cases, a domain provides different security.txt files based on the access
method. Thus, researchers may need to occasionally resolve conflicting information
(potentially aggregating across files).

Field Num. Domains Num. Files
Contact 6988 (93.1%) 1912 (87.2%)
Expires 128 (1.7%) 86 (3.9%)
Acknowledgements 675 (9.0%) 282 (12.9%)
Canonical 1184 (15.8%) 477 (21.8%)
Encryption 1561 (20.8%) 782 (35.7%)
Hiring 4473 (59.6%) 570 (26.0%)
Preferred-Languages 1820 (24.2%) 763 (34.8%)
Policy 4005 (53.3%) 680 (31.0%)
OpenBugBounty 924 (12.3%) 495 (22.6%)
Signature 185 (2.5%) 122 (5.6%)
Total 7506 2192

Table 1: Number of security.txt domains and distinct files
containing each field. The first two bolded fields are re-
quired, and the italicizedOpenBugBountyfield is commonly
provided but not a defined field in the security.txt specifi-
cation. We also list the number of signed security.txt files
(the italicized Signature row), although the signature is not
a distinct field.

couple of domains providing up to six listed contacts. Despite being
a required field, we found nearly 7% of domains and 13% of files
without a Contact field listed. However, we identify that a large
number of websites (12% of sites and 23% of files) contain a Open-
BugBounty field that can link to an Open Bug Bounty program URL
for disclosure [1]. This field is not defined in the security.txt pro-
posal though. We observe that 92% of domains (84% of files) without
the Contact field provide the OpenBugBounty field instead (with
6% of domains and 12% of files listing both fields). A remaining 1%
of domains (2% of files) provide no structured contact information.

Field Values. The security.txt specification discusses using
email addresses, webpage URLs (e.g., with contact information or
with a reporting form), and telephone numbers as contacts. For the
Contact field values in our security.txt files, we classify them as
emails, URLs, and phone numbers using regular expressions3.

Of sites providing a Contact field, 49% of domains (75% of files)
provide an email address and 49% of domains (18% of files4) provide
a URL link. Typically only one form of contact is provided, as only
8% of domains (9% of files) provide both an email and a URL link.
We also find a small number of telephone contacts (less than 1% of
both domains and files), as well as empty or malformed Contact
values. Upon manual inspection, we observe that several of the
malformed Contact values provided emails in a divided format
(e.g., security [at] example dot org), which is often done to prevent
automatic email extraction by crawlers. This hints at concern that
some security.txt adopters may have of receiving spam emails
or low-quality reports at their contact points.

3We briefly note that security.txt specifies that each contact listed follows the
standard URI prefix (i.e., “mailto:” for email, “https://” for webpages, and “tel:” for
phone numbers). We find low adherence to these requirements, with over a third of
domains that provide an email not using the “mailto:” URI prefix (although 99% of all
contact URLs are HTTPS). Thus, these URI prefixes may not serve as reliable indicators
for classifying the contact value.
4The largest domain clusters sharing identical security.txt files provide URLs, re-
sulting in the significant discrepancy in the number of domains versus the number of
distinct files providing a URL contact.

Who You Gonna Call? An Empirical Evaluation of Website security.txt Deployment IMC ’21, November 2–4, 2021, Virtual Event, USA

We analyze the most common email usernames across distinct
security.txt files, finding that the most popular username by
far is security@, appearing for 46% of emails. No other username
appeared for more than 5% of emails (with the next most popu-
lar usernames being info@, support@, and admin@). Interestingly,
abuse@ was not a common username, which has been used by
numerous prior operator notification studies [4, 5, 15, 16, 18, 19].

Shifting attention to the most common contact URLs, we ob-
serve that 76% of domains list a hackerone.com URL, a major vul-
nerability disclosure coordination and bug bounty platform. We
also note that some URLs point to other bug bounty platforms as
well as social media accounts (especially on Twitter). Surprisingly,
openbugbounty.org was listed for only 24 domains’ Contact field,
indicating that the OpenBugBounty field is typically used instead
of the required Contact field for such URLs. We note that all of the
OpenBugBounty fields list an openbugbounty.org URL (except one
domain with an empty field value). For other URLs, it is challeng-
ing to analyze their content in an automated fashion, due to the
lack of standardized structure. By manually investigating a random
sample of these URLs, we observe that some URLs are to webpages
with contact forms, while others list additional information about
contacting the organization.

4.3.2 Expires. Besides the Contact field, the only other required
field is the Expires field.

Use of the Field. Surprisingly, we observe that only 128 (1.7%)
domains and 86 (3.9%) distinct files provide an expiration field in
their security.txt file, despite being mandated. This makes the
Expires field the least utilized field, suggesting that organizations
do not find it valuable to consider while likely incurring some
management overhead (e.g., in updating the security.txt file
once expired).

Field Values. The security.txt specification recommends that
the expiration date is no further than a year away, to avoid extensive
file staleness. For files providing an Expires date, we compare that
date with the latest date that we fetched the file. We find that
83% of files provide an expiration date within 365 days. However,
we observe some abnormally distant expiration dates, including
5 domains with expiration periods exceeding a decade. We found
only 1 file with a past expiration date, having expired 6 days earlier
(but this file was subsequently updated).

4.3.3 Encryption and Signatures. The Encryption field provides
the location of an encryption key to use for securing vulnerability
reporting communication with the organization. Related, organiza-
tions are encouraged to sign their security.txt files, although the
signature is not a distinct field (rather the file should be signed with
an OpenPGP cleartext signature). We consider both cryptographic-
related content types here.

Use of the Fields. We find that 21% of domains (36% of files)
provide the Encryption field, although the field is empty for 20% of
these domains (and 25% of these files). Signing the security.txt
file is uncommon though, with only 185 (2.5%) domains (5.5% of
files) containing an OpenPGP cleartext signature.

Field Values. Of domains providing non-empty information in
the Encryption field, 91% list a web URL (93% of distinct files do like-
wise). An additional 4% of domains (3% of files) list an openpgp4fpr
URI [13], which references a public key’s fingerprint for lookup.
For remaining domains, we observe other key fingerprinting for-
mats, email addresses (presumably to contact for the public key),
human-readable descriptions (e.g., jcb.com asking for non-sensitive
initial communication), and two domains providing the public key
content in ASCII-armored format directly in the Encryption field
itself (which is forbidden by the standard). We note that no domains
provided a DNS record reference, one of the formats mentioned in
the security.txt specification.

For the 544 distinct security.txt files listing a web URL in the
Encryption field, we crawled those URLs to try obtaining the public
keys (receiving an HTTP error status for 9% of URLs requested). Of
the supposed key files fetched, we detect that 29% are not standard
OpenPGP public keys. Half of these key files are empty, and upon
manual inspection, the vast majority of the remaining half are
HTML webpages with more information about the organization’s
key, often listing the public key within the webpage. Among public
keys successfully crawled, 95% are RSA keys (versus DSA keys).
We note that all but 5% of keys are greater than 1024-bits, which is
recommended for both RSA and DSA. Thus, the vast majority of
organizations that do publish a public key provide a strong one.

For the 185 domains with signed security.txt files, we observe
that all but 7 use SHA256 or SHA512 as the signature’s hashing algo-
rithm (as recommended due to weaknesses in SHA1 and MD5). All
but 10 domains supply an Encryption field value, so we attempted
to verify these signatures using the public key accessible there. We
were not able to fetch a standard public key file for 30 domains
providing the Encryption field (17%), and successfully verified the
security.txt signatures for 125 domains (71%). Among the re-
maining domains, we observe cases of failed signature verification
as well as malformed key or signature data. Thus, many domains
that do sign their security.txt files provide the corresponding
public key in the Encryption field, although automated verification
encountered a non-trivial number of failure conditions.

4.3.4 Preferred-Languages. As security researchersmay come from
a variety of backgrounds, organizations can suggest preferred lan-
guages for receiving vulnerability reports through the Preferred-
Languages field.

Use of the Field. 24% of domains (35% of files) list this field.

Field Values. We observe that 99% of domains (97% of files) list
English as one of the preferred languages, the most common by far.
Czech was listed the second most frequently for domains (39%), but
only for 1% of distinct files5. German ranks third among domains
(6%) and second among distinct files (9%). This suggests that Eng-
lish serves as a universal language for reporting security concerns
(although this field is not present in the majority of security.txt
files), aligning with prior investigation into different languages
used for security notifications [15].

5The discrepancy between domains versus distinct files with Czech as a preferred
language stems from the cluster of shoptet.cz-associated domains with identical
security.txt files, one of our data’s largest clusters.

IMC ’21, November 2–4, 2021, Virtual Event, USA Tara Poteat and Frank Li

4.3.5 Policy. The Policy field allows an organization to provide
further vulnerability disclosure information.

Use of the Field. We find that 53% of domains (31% of files) list a
Policy field. However, for 7% of these domains and 27% of distinct
files with this field, the value is empty.

Field Values. Of those providing a non-empty Policy field, nearly
all (over 99% of both domains and files) list a webpage URL pointing
to policy information. We note that several policy URLs are to
hackerone.com and bugcrowd.com pages, both bug bounty platforms,
as well as to Github documents. However, no policy URL domain
occurred in more than 5% of files, and overall nearly all policy
URL domains were distinct. Assessing the policy content on these
external URLs in an automated fashion is difficult, as the content is
human-readable rather than machine-parsable. We briefly discuss
case studies of several domains’ policies in Appendix A.

4.3.6 Other Fields. security.txt files allow for several other
fields that do not relate directly to vulnerability disclosure, but
relate to other aspects of security operations. We note that a quar-
ter of distinct security.txt files list a Hiring field, indicating de-
mand for hiring security professionals by many organizations. We
also observe that 9% of domains (13% of files) provide an Acknowl-
edgement field, hopefully incentivizing/rewarding researchers who
responsibly disclose issues. For the Canonical field, 16% of domains
(22% of files) list this information.

5 DISCUSSION
In this paper, we conducted a longitudinal empirical evaluation of
security.txt deployment on top websites. We tracked the adop-
tion rate of the standard over a 15-month period, and characterized
the information being provided through security.txt files. Our
findings highlight issues present in the provided data, as well as
lessons for vulnerability reporting, which we discuss further here.

Compliance with the Standard. Through analyzing the content
of the security.txt files deployed on top websites, we identified
various discrepancies between the information provided and what
the standard specifies. Most notably, the Contact field provides
critical vulnerability reporting information but was not always
provided, as required. In many such cases, the security.txt file
listed a non-standard OpenBugBounty field instead, even though
the field is only used to list an openbugbounty.org URL that would
be suitable for listing in the Contact field. Besides the Contact field,
the Expires field is the only other field required. The security.txt
specification argues that stale security.txt information can re-
sult in vulnerability reports not being received by an organization
or being sent to the wrong contact, thus the need to invalidate old
security.txt files. Yet we found that few sites provided an expi-
ration date. In fact, it was the least used field by far, suggesting that
organizations consider the management overhead of maintaining
an up-to-date file as outweighing the risks introduced by outdated
data. This calls into question the value of this field, and whether
a different mechanism is needed for revoking security.txt con-
tent. We observed further discrepancies (e.g., empty or malformed
fields, incorrect signatures or keys) that highlight a diversity in
how security.txt manifests in the wild.

Automated Uses of security.txt. security.txt was explic-
itly designed to be machine-parsable [7]. As a result, a compelling
use case is for large-scale automated vulnerability reporting, which
prior research has demonstrated can drive significant levels of
remediation, but often encounters challenges with discovering con-
tacts [4, 5, 15, 16, 18, 19]. In addition, security.txt provides richer
information than data sources used in the prior large-scale secu-
rity notification efforts, which primarily relied on WHOIS records
(now largely gutted of useful contact information due to GDPR [6]).
We note though that the various discrepancies in field and value
formats discussed throughout our study inhibit reliable automated
processing, and security researchers using security.txt files for
automated notification efforts will need to account for these differ-
ences (e.g., searching for contacts in both the Contact and OpenBug-
Bounty fields). In addition, the information on external links (such
as in Contact, Encryption, and Policy fields) is directly relevant
for vulnerability reporting but rarely machine-parsable, also limit-
ing how effectively security.txt files can be used for automated
purposes. Expanding the security.txt specification to consoli-
date some of this information directly into the security.txt files
(while maintaining a machine-parsable format) would better sup-
port automated vulnerability notification efforts. While supporting
automationmay raise concerns about receiving spam, we argue that
spammers can already fruitfully mine contact information from
existing security.txt files, and the further information would
support better legitimate reporting.

Lessons for Vulnerability Reporting. The information presented in
security.txt files provides insights useful for security researchers
performing vulnerability disclosure. For example, we identified a di-
versity in contact types. Besides using email, a researcher may need
to reach an organization through a program hosted on a common
bug bounty platform, via social media, or through report forms on
the organization’s website. We found that if using email, the secu-
rity@ username was predominant, and may be fruitful to use when
attempting to reach administrators of a domain lacking a clear con-
tact (whereas prior notification efforts [4, 16, 18, 19] tested various
other generic email usernames such as abuse@ or hostmaster@).
We also observed that English appeared to be a nearly-universally
accepted language for reporting (aligning with prior security notifi-
cation findings [15]), and many organizations do support encrypted
communication. In addition, many websites publish a vulnerability
disclosure policy that researchers should consider when reporting.

Future Directions. Our study provides an initial look at the real-
world use of security.txt. Future work can continue monitoring
its adoption over time, and also investigate the information it pro-
vides in more depth. In particular, the external information linked to
from security.txt files may provide a rich data source to evaluate
the types of information organizations prefer to be reported, as well
as their vulnerability disclosure policies. Research into automated
extraction of this information could help support security.txt’s
use in large-scale automated notifications (as discussed above).
Also, public tools could be developed for web administrators to self-
assess the conformity of their security.txt deployments. Overall,
security.txt adoption has been limited to date though, so addi-
tional efforts in raising awareness of the standard and incentivizing
deployment are needed for it to reach its full potential.

Who You Gonna Call? An Empirical Evaluation of Website security.txt Deployment IMC ’21, November 2–4, 2021, Virtual Event, USA

REFERENCES
[1] 2021. Open Bug Bounty. https://www.openbugbounty.org/.
[2] Alexa. 2021. Top Sites. https://www.alexa.com/topsites.
[3] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, and

Christo Wilson. 2019. A Longitudinal Analysis of the Ads.Txt Standard. In ACM
Internet Measurement Conference (IMC).

[4] Orcun Cetin, Carlos Ganán, Maciej Korczynski, andMichel van Eeten. 2017. Make
Notifications Great Again: Learning How to Notify in the Age of Large-Scale
Vulnerability Scanning. In Workshop on the Economy of Information Security
(WEIS).

[5] Zakir Durumeric, Frank Li, James Kasten, Nicholas Weaver, Johanna Amann,
Jethro Beekman, Mathias Payer, David Adrian, Vern Paxson, Michael Bailey, and
J. Alex Halderman. 2014. The Matter of Heartbleed. In ACM Internet Measurement
Conference (IMC).

[6] Anthony Eden. 2019. GDPR and WHOIS Privacy. https://blog.dnsimple.com/
2019/04/gdpr-and-whois-privacy.

[7] Edwin Foudil and Yakov Shafranovich. 2021. A File Format to Aid in Security
Vulnerability Disclosure (draft-foudil-securitytxt-11). https://datatracker.ietf.
org/doc/html/draft-foudil-securitytxt-11.

[8] C. Lee Giles, Yang Sun, and Isaac G. Councill. 2010. Measuring The Web Crawler
Ethics. In International Conference on World Wide Web (WWW).

[9] Github. 2021. GitHub Security Bug Bounty. https://bounty.github.com/.
[10] Google. 2021. Vulnerability Reward Program (VRP) Rules. https://www.google.

com/about/appsecurity/reward-program/.
[11] Santanu Kolay, Paolo D’Alberto, Ali Dasdan, and Arnab Bhattacharjee. 2008. A

Larger Scale Study of Robots.Txt. In International Conference on World Wide Web
(WWW).

[12] Martijn Koster, Gary Illyes, Henner Zeller, and Lizzi Harvey. 2020. Robots Exclu-
sion Protocol (draft-koster-rep-04). https://datatracker.ietf.org/doc/html/draft-
koster-rep.

[13] Wiktor Kwapisiewicz. 2021. openpgp4fpr URI scheme. https://metacode.biz/
openpgp/openpgp4fpr.

[14] IAB Technology Laboratory. 2021. Ads.Txt - Authorized Digital Sellers. https:
//iabtechlab.com/ads-txt/.

[15] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey,
Damon McCoy, Stefan Savage, and Vern Paxson. 2016. You’ve Got Vulnerability:
Exploring Effective Vulnerability Notifications. In USENIX Security Symposium.

[16] Frank Li, Grant Ho, Eric Kuan, Yuan Niu, Lucas Ballard, Kurt Thomas, Elie
Bursztein, and Vern Paxson. 2016. Remedying Web Hijacking: Notification
Effectiveness and Webmaster Comprehension. In World Wide Web Conference
(WWW).

[17] Mark Nottingham. 2019. RFC 8615: Well-Known Uniform Resource Identifiers
(URIs). https://datatracker.ietf.org/doc/html/rfc8615.

[18] Ben Stock, Giancarlo Pellegrino, Frank Li, Michael Backes, and Christian Rossow.
2018. Didn’t You Hear Me? Towards More Successful Web Vulnerability Notifica-
tions. In Network and Distributed System Security Symposium (NDSS).

[19] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael
Backes. 2016. Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification. In USENIX Security Symposium.

[20] Yang Sun, Ziming Zhuang, Isaac G. Councill, and C. Lee Giles. 2007. Deter-
mining Bias to Search Engines from Robots.txt. In IEEE/WIC/ACM International
Conference on Web Intelligence (WI).

[21] Yang Sun, Ziming Zhuang, and C. Lee Giles. 2007. A Large-Scale Study of
Robots.Txt. In International Conference on World Wide Web (WWW).

[22] Bryan Ware. 2021. Improving Vulnerability Disclosure Together (Offi-
cially). https://www.cisa.gov/blog/2020/09/02/improving-vulnerability-
disclosure-together-officially.

[23] Wordfence. 2021. Wordfence: WordPress Security Plugin. https://www.
wordfence.com/.

A ORGANIZATION VULNERABILITY
DISCLOSURE POLICIES

Here we provide a brief case study of several organizations’ vulner-
ability disclosure policies, based on the webpages linked to in the
organization’s security.txt Policy field.
• login.gov: The policy for the US government website lists the
types of security research permitted and the systems that can be
evaluated, details on how to report vulnerabilities (including the
information to provide), and the 90-day coordinated disclosure
timeline.

• walmart.com: Walmart’s policy page discusses supporting re-
sponsible disclosure without the threat of legal action when
complying. It additionally lists actions that would be considered
non-compliant with responsible disclosure. It provides a form for
a Bugcrowd vulnerability report, giving clear guidance on the
information requested.

• wordfence.com: Wordfence, the popular WordPress security plu-
gin [23], provides a policy page with instructions on how to con-
tact its security team (including encouraging encrypting email
communications), and the step-by-step disclosure and remedi-
ation process (including permissible vulnerability publication
should a vulnerability report remain unacknowledged).
For several domains with well-known in-house bug bounty

programs, such as Google [10] and Github [9], we observe their
security.txt files’ policy URLs linking to their own bug bounty
programs’ pages.

100 101 102 103

Cluster Size

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

CD
F

Figure 3: CDF of domain cluster sizes, where clusters are do-
mains sharing identical security.txt files. Note that the y-
axis begins at 0.8.

https://www.openbugbounty.org/
https://www.alexa.com/topsites
https://blog.dnsimple.com/2019/04/gdpr-and-whois-privacy
https://blog.dnsimple.com/2019/04/gdpr-and-whois-privacy
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-11
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-11
https://bounty.github.com/
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/
https://datatracker.ietf.org/doc/html/draft-koster-rep
https://datatracker.ietf.org/doc/html/draft-koster-rep
https://metacode.biz/openpgp/openpgp4fpr
https://metacode.biz/openpgp/openpgp4fpr
https://iabtechlab.com/ads-txt/
https://iabtechlab.com/ads-txt/
https://datatracker.ietf.org/doc/html/rfc8615
https://www.cisa.gov/blog/2020/09/02/improving-vulnerability-disclosure-together-officially
https://www.cisa.gov/blog/2020/09/02/improving-vulnerability-disclosure-together-officially
https://www.wordfence.com/
https://www.wordfence.com/

	Abstract
	1 Introduction
	2 Background
	2.1 security.txt Proposed Standard
	2.2 Related Work

	3 Method
	4 Results
	4.1 Longitudinal Analysis
	4.2 Accessing security.txt
	4.3 security.txt Content

	5 Discussion
	References
	A Organization Vulnerability Disclosure Policies

