
Knock and Talk: Investigating Local Network Communications
on Websites

Dhruv Kuchhal
dkuchhal@gatech.edu

Georgia Institute of Technology
USA

Frank Li
frankli@gatech.edu

Georgia Institute of Technology
USA

ABSTRACT
Modern webpages are amalgamations of resources requested from
various public Internet services. In principle though, webpages can
also request resources from localhost and devices in the LAN, pro-
viding a degree of internal network access to external entities. Prior
work has demonstrated how this access can be used for supporting
web attacks, particularly for profiling and fingerprinting users.

In this paper, we empirically investigate if and how popular
websites are interacting with their visitors’ localhost and LAN re-
sources, and compare the behavior observed to that from known
malicious websites. We crawl and monitor the network requests
made by the landing pages of domains in the Tranco top 100K
domains as well as ∼145K websites that are known to be related
to malware, phishing, or abuse. For both popular and malicious
sites, we detect over 100 sites in each category making requests
to internal network destinations, including several highly-ranked
sites (within the top 10K). Investigating these sites in-depth, we
identify that over 40% of the ones from the top 100K list do so to
conduct host profiling, purportedly for fraud and bot detection.
We also uncover cases of legitimate native application communi-
cation and likely developer errors. For malicious sites, we do not
detect cases of internal network attacks. Rather, we believe that the
malicious sites generating local network traffic are compromised
or cloned phishing websites and that the traffic results from the
corresponding benign sites. We observe significantly more local
activity when on the Windows OS, compared to Linux or Mac OS
X, as well as extensive use of WebSockets, which are not bound
by the Same-Origin Policy. Ultimately, our exploration provides
empirical grounding on the localhost and LAN network activities
of websites, revealing both intentional and unintentional behavior.

CCS CONCEPTS
• Networks → Network measurement; Network privacy and
anonymity; • Security and privacy→ Network security.
ACM Reference Format:
Dhruv Kuchhal and Frank Li. 2021. Knock and Talk: Investigating Local
Network Communications on Websites. In ACM Internet Measurement Con-
ference (IMC ’21), November 2–4, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3487552.3487857

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’21, November 2–4, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9129-0/21/11. . . $15.00
https://doi.org/10.1145/3487552.3487857

1 INTRODUCTION
Websites today stitch togetherweb resources fromnumerous sources.
Beyond its own first-party content, a website fetches various third-
party resources such as JavaScript (JS) libraries, CSS style sheets,
images and videos, and even other webpages via inline frames. Typ-
ically, we think of these third-party resources as hosted by public
Internet services, including other web servers, content distribution
networks, and API endpoints. However, nothing in modern web
browsers prevents a website from also attempting to communicate
with internal network services, such as those on the browser’s lo-
calhost and other devices within the Local Area Network (LAN),
the addresses as defined in RFC1918 [48]. For example, a website
could include JS code that initiates a request to a service running on
a visitor’s localhost. As a consequence, a browser affords a degree
of internal network access to external entities.

Why would websites need to communicate with local destina-
tions, given the uncertainty and diversity of local devices and net-
work services? One legitimate reason might be for a website to
coordinate with an affiliated native application (e.g., visiting a video
meeting URL opens the native video conferencing software). How-
ever, prior work [8, 24, 32, 38, 39, 52] has identified that in theory,
such access could also be used for malicious purposes. These stud-
ies have developed proof-of-concept demonstrations of user and
LAN device fingerprinting, as well as network attacks on internal
services. Particularly with user profiling and tracking, websites and
advertisers have escalated to ever more complex and surreptitious
methods for gathering user identifiable information [7], and one
can plausibly envision the adoption of these internal network based
approaches. The proliferation of consumer IoT devices [36] further
exposes users to potential security and privacy violations.

In this paper, we explore whether websites are using local net-
work communications in practice. We empirically evaluate the
local network behaviors of both popular and malicious websites at
scale. We crawl and monitor the requests made by landing pages
of the Tranco top 100K domains [45], performing two sets of mea-
surements, half a year apart. We similarly crawl and monitor the
requests made by ∼145K malicious websites drawn from abuse,
malware, and phishing blacklists. Across these websites, we assess
whether they generate locally-bound traffic, what the nature of the
local traffic is, and why they may be communicating with inter-
nal network services. As different OSes support varying network
services, a website’s locally-bound traffic may depend on the un-
derlying host OS. Thus, we also explore how websites’ localhost
and LAN behavior may differ across three popular desktop OSes:
Windows, Ubuntu, and Mac OS X.

In total, we detect landing pages of over 100 benign domains
and over 150 malicious websites communicating with localhost ser-
vices or private network IP addresses. While this population may

https://doi.org/10.1145/3487552.3487857
https://doi.org/10.1145/3487552.3487857

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

be relatively small, indicating that this behavior is not widespread
(yet) among websites, it is a non-trivial number of sites exhibit-
ing rather unexpected network activity. Furthermore, several of
the observed websites are highly ranked with millions of users,
including 19 sites ranked within the top 10K. We identify that for
many sites, the internal network activity is not uniform across
OSes, particularly skewing towards activity exclusively on Win-
dows. Additionally, we note the extensive use of WebSockets for
initiating such communication, which bypasses the Same-Origin
Policy. These characteristics potentially suggest the intentional
targeting of certain platforms.

To understand why these websites may be contacting services
hosted on the local network, we manually analyze their behavior.
For popular websites, we find that over 40% of them explicitly con-
duct host profiling. Upon deeper investigation, we determine that
this profiling is performed for fraud protection and bot detection,
rather than explicit advertising or user tracking purposes (although
this approach could be readily adapted for such uses). We also ob-
serve a large set of top websites whose local network activity arises
due to remnants of website development and testing. These cases
should be benign, but highlight a class of web developer errors that
should be straightforward to detect and remediate. Finally, we also
identify a legitimate scenario for localhost communication where a
top website communicates with its affiliated native application. Ef-
forts to protect users from malicious local network traffic generated
by a website must preserve these valid use cases.

For malicious sites, we do not find evidence of internal network
attacks. Rather, the observed local network traffic mirrors that of
top sites. We detect that some phishing sites have cloned their web
interfaces from a legitimate site, where the legitimate site itself is
conducting localhost profiling. As a consequence, the phishing sites
host the same JavaScript libraries as the target site, and thus also
generate the same local network traffic. For the other malicious
sites, we find that the local network activity reflects the same sorts
of web developer errors seen on top sites, indicating that either the
attackers made similar errors while developing their attack sites,
or that perhaps more likely, these sites are compromised and the
local traffic reflects the developer errors exhibited on the original
benign sites. Overall, we do not attribute malicious intent to the
local network traffic witnessed on these malicious sites.

Ultimately, our study provides the first large-scale measurement
of the internal network behaviors of modern websites, uncovering
both intentional and unintentional causes of locally-destined traffic.
We conclude by discussing the implications of our findings on web
security and privacy, as well as potential directions for advancing
user online safety.

2 RELATEDWORK
Here we summarize the prior work on developing web-based meth-
ods for discovering, fingerprinting, and attacking LAN devices,
along with the prior work empirically evaluating the security and
privacy behaviors of websites.

2.1 Web-based LAN Attacks
Web-based methods for identifying, profiling, and attacking devices
on a user’s LAN have existed for years. Over a decade ago, Lam
et al. [38] demonstrated how a malicious webpage could scan for

and exploit vulnerabilities on LAN devices, potentially propagat-
ing worms and profiling users. Grossman and Niedzialkowski [32]
similarly presented a web-based method for scanning the local net-
work using the onerror JavaScript handlers of image resources.
Stamm et al. [52] leveraged this scanning method to hijack the DNS
configurations of local routers. More recently, Gallagher [23, 24]
refined web-based LAN scanning by using WebSockets and Web
Workers, and Lee et al. [39] did likewise leveraging HTML5 Ap-
pCache to identify cross-origin resource statuses. Acar et al. [8]
further built upon these advancements to demonstrate how a web-
page can discover and interact with local IoT devices that expose
HTTP interfaces, potentially triggering malicious commands as
well as fingerprinting the network. Beyond these academic studies,
several different web-based network and port scanners have been
developed, demonstrating the feasibility of web-based targeting of
LAN devices [9, 28, 34, 37, 41, 44, 58].

These works highlight the potential threats that websites pose
given internal network access. However, we currently lack aware-
ness of whether websites actually leverage this access in practice.
Our study establishes empirical ground on the localhost and LAN
network behaviors of modern websites.

2.2 Measurements of Website Security and
Privacy Behavior

Numerous empirical studies have evaluated the security and privacy
behaviors of websites. Prior work has examined how websites have
deployed various security mechanisms. For example, Felt et al. [22]
tracked the deployment and configuration of HTTPS across the
web. Similarly, Stark et al. [53] evaluated the adoption of certificate
transparency on websites. Both Calzavara et al. [11] and Roth et
al. [50] examined the content security policies deployed by websites,
evaluating their effectiveness in practice.

On the privacy side, existing studies have analyzed the real-world
data collection and web tracking mechanisms deployed by websites.
As an example, Englehardt et al. [15] developed an open-source
web privacy measurement tool and used it to measure different
types of tracking on the top 1 million websites. Similarly, Acar et
al. [7] uncovered how websites were using surreptitious techniques
for profiling and tracking users longitudinally, including through
canvas fingerprinting, evercookies, and cookie syncing. Snyder et
al. [51] investigated the browser features used by popular websites
for advertising and tracking purposes.

As with these prior studies, our work seeks to understand the
security and privacy behaviors of websites. Expanding beyond the
existing explorations though, we explore how websites interact
with localhost and LAN network services, and the security and
privacy implications of this behavior.

3 METHOD
In this section, we describe our method for examining if and how
websites interact with users’ localhost and LAN resources. We
consider two sets of websites, one consisting of popular sites, and
the other consisting of known malicious webpages (e.g., phishing
and malware sites).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Chrome on
Ubuntu 20.04 VMs

Chrome on
Windows 10 VMs

Georgia
Tech's

ISP

Comcast's
Residential ISP

Parse NetLogs

Chrome on
 Mac OS X

10.15.6

1

2

3

4

Figure 1: Data collectionmethod: 1)We crawl target webpages
(i.e., landing pages of top domains or malicious webpages)
using full Google Chrome instances running in Linux and
Windows VMs on an academic ISP (i.e., Georgia Tech). 2) We
similarly conduct a Chrome-based web crawl on a MacBook
Air laptop on a residential network (i.e., Comcast) in Atlanta.
3) During page visits, we collect all network events as logged
by Chrome’s network logging system, before 4) parsing the
logs and storing the network events.

3.1 Data Collection
Measurement Populations. To study popular websites, we focus

on the top 100K domains in the Tranco top list [45]. This set of
domains affords a large-scale exploration of top websites that users
visit. We conduct two sets of measurements of the landing pages
of the top 100K domains – one using the Tranco snapshot taken
on June 3, 2020, and the other taken on March 11, 2021. To evalu-
ate the local network behavior of malicious webpages, we collect
∼145K known malicious URLs that were actively listed on one of
several blocklists: SURBL (abuse, malware, and phishing sites) [54],
Abuse.ch’s URLHaus (malware sites) [6] and PhishTank (phishing
sites) [4]. As these blocklists often list multiple malicious URLs
mapping to the same domain, we only select one malicious URL
per domain to increase our measurement’s coverage of malicious
domains. We monitored and crawled webpages on the blocklists
from March – April 2021.

Measurement Setup. As depicted in Figure 1, for both the landing
pages of top websites and malicious webpages, we fetch and render
(with JavaScript enabled) the target webpage using a full browser
instance running within a virtual machine (VM), while monitoring
the network requests generated by the website. Our web crawler
starts a full Google Chrome (v84) instance with a clean profile
(incognito mode) via Chrome’s command-line interface1. As we
are exploring how a website may interact with localhost and LAN
resources, which are external to the browser and may vary depend-
ing on the underlying OS, we visit all websites across three popular
1We avoid using more popular crawling tools, such as Puppeteer [29] and Selenium
[30], as a website can detect their presence [61] and change its behavior – potentially
contaminating our measurement.

desktop OSes: Windows 10, Linux (specifically Ubuntu 20.04), and
Mac OS X (v10.15.6). We conduct the Windows 10 and Linux web
crawls within VMWare VMs, running on a server within Georgia
Tech’s network. For the web crawl on Mac OS X, we perform the
crawl directly on a MacBook Air laptop residing on a residential
Comcast network in Atlanta.2 Throughout our measurements, we
disable Chrome’s Safe Browsing feature, which blocks network
requests to destinations on Google’s Safe Browsing blocklist [31].
This configuration is necessary to ensure that Safe Browsing does
not interfere with our measurements, such as blocking the browser
instance from visiting a malicious page.

Web Telemetry. Across all three OSes, for each target webpage,
we load the page and monitor its network activity over a 20 sec-
ond period, to permit time for execution of JS code and loading
of dynamic resources. To select this delay threshold, we randomly
sampled 100 websites (landing pages of domains from the top 100K
list) and noted the time that it takes to completely load the page. We
found that more than 98% of all requests (to any resource, local or
otherwise) were made within the first 15 seconds, with the majority
being made within the first 5 seconds. Prior research also suggests
that users often spend 10–20 seconds on a webpage before navigat-
ing elsewhere [42]. Therefore, to measure the most common effect
of these websites on users, we chose a delay threshold of 20 seconds.
Since our analysis of our first crawl of top websites (in Section 4.2)
suggested that this threshold suffices in detecting the majority of
localhost and LAN activity, we continued with the threshold in the
second crawl.

For gathering network telemetry generated by a webpage while
it loads, we record the network logs generated by Google Chrome’s
network logging system [17], which comprehensively logs all net-
work events (i.e., any network requests sent and responses received)
on Chrome’s network stack. Among other data, this telemetry in-
cludes the following for each event:
• time: specifies the timestamp for the network event.
• type: specifies the type of network event as defined by Chrome.
For example, URL_REQUEST events indicate GET/POST requests.

• source: specifies the entity that generated the event. When a
new network request is initiated, it is assigned a new source ID
(in serial order). Subsequent dependent events (e.g., responses)
are assigned the same source ID, allowing the events within a
network flow to be logically grouped together.

• phase: specifies the phase of the network event (either BEGIN,
END, or NONE).
We parse and store the network logs in a database for efficient

querying. From this telemetry, we can comprehensively observe
whenever a webpage initiates a request destined for localhost or
an IP address in the private IP address range, what precisely that
destination is (e.g., the full URL), and what entity generated this
request (the Chrome browser itself also generates network traffic,
whichwe filter out based on the network event source). Additionally,
we also consider websites that redirect to a local destination, since
in theory, websites can send a request to a local resource, even if
they can never receive the response.

2AsMac OS X is licensed only for use on Apple hardware, we conducted our Mac-based
crawls directly on a Mac laptop.

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

Type of Crawl OS # successful
loads

failed
loads

Error Type
NAME_NOT_
RESOLVED

CONN_
REFUSED

CONN_
RESET

CERT_CN_
INVALID Others

Top 100K: 2020 Windows 89744 (89.7%) 10256 (10.3%) 9179 (89.4%) 355 (3.5%) 248 (2.4%) 236 (2.3%) 238 (2.3%)
Top 100K: 2021 91765 (91.7%) 8235 (8.2%) 7287 (88.5%) 239 (3.0%) 230 (2.8%) 251 (3.1%) 228 (2.8%)

Top 100K: 2020 Mac 89819 (89.9%) 10181 (10.1%) 9001 (88.4%) 345 (3.8%) 193 (1.9%) 226 (2.2%) 416 (4%)

Linux 90175 (90.2%) 9825 (9.8%) 8612 (87.6%) 335 (3.4%) 247 (2.5%) 235 (2.4%) 396 (4%)
Top 100K: 2021 91719 (91.7%) 8281 (8.3%) 7309 (88.3%) 272 (3.2%) 126 (1.5%) 248 (3%) 326 (3.9%)

Malicious Windows 100317 (68.6%) 45864 (31.4%) 40715 (88.7%) 1475 (3.2%) 530 (1.1%) 1341 (2.9%) 1803 (3.9%)
Malicious Mac 103154 (70.6%) 43027 (29.4%) 37310 (86.7%) 1488 (3.4%) 523 (1.2%) 1314 (3%) 2392 (5.5%)
Malicious Linux 106078 (72.6%) 40103 (27.4%) 34723 (86.5%) 1346 (3.3%) 521 (1.3%) 1313 (3.2%) 2200 (5.5%)

Table 1:Web crawl statistics. We successfully load ∼90% of domain landing pages when crawling the top 100K domains, and ∼70%
of the ∼145K malicious webpages. Nearly 90% of the failures were due to DNS resolution errors (NAME_NOT_RESOLVED). The other
top errors included connection refusals (CONN_REFUSED) and resets (CONN_RESET), as well as HTTPS certificate misconfigurations
(e.g., CERT_CN_INVALID).

Throughout our crawl, before visiting a webpage, we first check
for network connectivity by pingingGoogle’s DNS server (8.8.8.8).
This ensures that we crawl a site only when the measurement in-
frastructure has Internet connectivity, and thus we can differentiate
between website load failures and network issues on our end.

Ethics. As we conduct a large-scale web measurement, we take
care to minimize the load induced on the websites we visited. For
each OS, we visit each site only once, and we start measurements
on each OS at different times. Thus, we visit each site up to three
times without concurrent visits, which should be a manageable
load for websites.

3.2 Data Characterization
Our final datasets consist of 11 TBs of telemetry data collected from
the following measurements:
(1) Tranco Top 100K domains (as of June 3, 2020) on all three OSes,

measured from July 24 to September 25, 2020.
(2) Tranco Top 100K domains (as of March 11, 2021) on Windows

and Linux3, measured from March 22 to May 1, 2021.
(3) ∼145K known malicious webpages on all three OSes, measured

from March 22 to May 1, 2021.
We observe a ∼75% overlap between the two Tranco top list

snapshots we used, indicating that the majority of top domains
in our dataset were measured twice half a year apart. In total, we
successfully loaded and gathered telemetry from ∼90% of domains
in both sets of Tranco top list measurements. This success rate is
commensurate with that observed by the creators of the Tranco
top list [45]. For the measurement of malicious webpages, we suc-
cessfully gathered telemetry from ∼70% of webpages. We further
manually investigated a random sample of webpages that were not
successfully crawled and confirmed that they remained inaccessible,
giving us confidence that our collected data should comprehensively
cover the accessible websites.

Table 1 shows our crawl success rate statistics, including the top
errors when failing to load a domain’s landing page. Nearly 90% of
errors in all three crawls were due to DNS name resolution failures.

3We encountered logistical issues preventing us from conducting the second Tranco
top list measurement on Mac OS X, related to our need to execute the crawl on a
bare-metal environment.

Manually examining a random sample of these DNS errors, we
observed that the domains indeed lacked name resolutions, but we
could identify subdomains (e.g., through search engines) for which
name resolutions existed. We note that in many cases, the domains
are CDNs or API endpoints. Recall that our periodic connectivity
test did not reveal any network outages on our end, indicating
that these errors did not arise due to network connectivity issues
with our measurement setup. We also explored the rank of the
domains that we failed to crawl and observed that they were evenly
distributed among the top 100K, indicating that the errors do not
skew towards high or low-ranked domains.

3.3 Limitations
The data collected in this study affords a large-scale evaluation
of website-generated network traffic. However, there are several
important limitations to our methodology.
• Our measurements are conducted using Google Chrome and
three desktop OSes, which are widely available and popular.
However, websites may behave differently on other browsers
and OSes (such as mobile OSes). Future work can extend our
method to evaluate these other platforms.

• We only fetch the landing pages of top domains, and our crawler
does not simulate user interactions with the webpages. As a
consequence, our data does not capture the behavior of internal
website pages, nor activity triggered by user actions. Thus, the
number of domains for which we identify local network activity
is a lower bound of the true number of websites exhibiting such
behavior. We leave a broader exploration of these dimensions for
future work.

• We monitor a webpage’s behavior for 20 seconds. This threshold
was determined based on an experiment we performed, as de-
scribed in Section 3.1, as well as prior research on user browsing
behavior [42]. Our subsequent analysis (in Section 4.2) suggests
that this threshold suffices in detecting the vast majority of web-
site localhost and LAN activity. However, we would fail to detect
such behavior on websites where the activity commences beyond
our 20 second threshold.

• Due to logistical constraints, our web crawl on Mac OS X was
conducted on Comcast’s residential network, whereas our Win-
dows and Linux web crawls were performed on Georgia Tech’s

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Domain Type
(Malicious Category) # Sites Data Sources

(% Contribution)

Crawl
Success Rate

Activity Detected (# Sites)
Localhost LAN

W L M W L M W L M
Malware 103541 Abuse.ch (99%), SURBL (1%) 61% 65% 65% 72 83 75 8 7 7
Abuse 24958 SURBL (100%) 95% 97% 93% 0 0 0 1 1 1

Phishing 16426 PhishTank (85%), SURBL (15%) 73% 76% 69% 25 41 9 0 0 0
Table 2: Summary of localhost and LAN requests found for malicious webpages. Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

network. In theory, crawl results could differ due to varying
network configurations or network-dependent (including a net-
work’s geolocation) website behavior. However, we did not iden-
tify significant network-based discrepancies in our web crawl
telemetry – neither during our manual investigations of websites
nor during our data analysis.

4 FINDINGS
Here, we analyze our datasets on network activity generated by
websites, to answer three research questions about the activity
destined to a visitor’s local network (i.e., localhost or LAN).

• RQ1:Which websites are generating local network traffic?
• RQ2:What are the characteristics of local network traffic?
• RQ3:Why are websites making local network requests?

For localhost activity, we detect requests generated by websites
that are destined for either the localhost domain or loopback IP ad-
dresses (i.e., 127.0.0.1 for IPv4 and ::1 for IPv6). To identify LAN
activity, we identify requests made by websites to IP addresses in
the IANA-reserved private IP address ranges for IPv4 and IPv6 [48].
We did not observe any localhost or LAN network traffic over IPv6
though, so subsequent discussion is exclusively for IPv4.

For landing pages of Tranco top 100K domains, we first present
the results from the dataset measured in 2020, and then compare
our findings to those from the 2021 top 100K measurements. As
mentioned in Section 3.2, domains in the Tranco snapshots used
for the two measurements overlap extensively, and many findings
remained consistent. Thus, for the 2021 top 100K measurements, we
focus on highlighting the changes observed. We additionally char-
acterize our observations about malicious webpages in comparison
to the top sites.

4.1 RQ1: Which Websites are Generating Local
Network Traffic?

During our first measurement of sites from the Tranco top 100K
in 2020, we found a total of 107 sites making localhost requests
(as listed in Tables 5 and 11) and 9 sites generating LAN requests
(as shown in Table 6), with no overlap between the two sets of
sites. These sites account for 0.12% of the ones successfully crawled,
indicating that local network activity on websites is not currently
widespread. However, such activity does occur on a non-trivial set
of websites.

Similarly, in our 2021 top 100K measurements, we observed 82
sites making localhost requests (as listed in Table 7) and 8 sites
generating LAN requests (as shown in Table 10), with again no
overlap between the two sets of sites. Out of the 82 sites generating

localhost requests, 19 sites were crawled in 2020 but were not ob-
served as generating such traffic, whereas 21 sites were not crawled
in 2020 (as their domains were not listed in the top 100K). The
remaining sites exhibited the same behavior in both measurements.
For the sites generating LAN requests, only one site was found
performing LAN requests in both 2020 and 2021, while the others
from 2020 stopped in 2021.

In our measurement of malicious webpages, we found a total
of 151 sites making localhost requests (as listed in Table 8), and 9
sites sending LAN requests (as shown in Table 9). A summary of
the malicious crawl statistics can be found in Table 2.

Behavior Across OSes. We observe that the set of websites gen-
erating localhost traffic is not uniform across OSes. As shown in
Figure 2a, during the 2020 top 100K crawl, we found 92 sites (86%)
generating localhost requests when on Windows, compared to 54
sites (50%) for both Linux and Mac. Note though that the set of 54
sites for Linux and Mac are not equivalent, with 5 sites generating
activity on Mac but not Linux, and 5 other sites active for Linux but
not Mac. Overall, only 41 sites (38%) behaved equivalently on all
three OSes. While few sites produced localhost traffic exclusively
onMac (5 sites) and Linux (2 sites), 48 sites (45%) did so onWindows
10, which suggests a degree of targeting towards Windows users
(explored further in Section 4.3).

In our 2021 top 100K measurements, we observed that behavior
on Windows and Linux was similar, with 47 sites behaving equiva-
lently on both OSes. For malicious webpages, as seen in Figure 2b,
we also find that localhost traffic is not observed uniformly across
OSes, although here, Linux elicited localhost behavior on more
webpages. Similarly, we found that LAN activity on websites is also
not consistent across OSes (although the population sizes are small
enough to prevent identifying clear OS skew).

Website Rankings. We also investigate whether the population
of websites that make local requests is skewed based on site pop-
ularity. In Figure 3, we plot the CDFs of the ranks of the domains
whose landing pages were found to be actively generating traffic to
localhost in our 2020 top 100K measurements, across the three OSes.
We observe fairly linear CDF curves, indicating that our detected
domains are spread uniformly throughout the top 100K domains.
Notably, there are highly-ranked sites (with millions of users) that
display localhost behavior, such as those listed in Table 3. In our
2021 top 100K measurements, we see a similar distribution (as visi-
ble in Figure 9 in the Appendix). As listed in Tables 6 and 10, the
ranks of the domains whose landing pages were found making
requests to LAN destinations are also similarly distributed across
the top 100K, with the highest site ranked at 4381 in 2020 and 4847

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

2

Mac

5 48
0

38
41

(a) 2020 top 100K crawl

41

Mac

8 14
4

104
70

(b) Malicious webpages

Figure 2: For websites generating localhost traffic, we depict the overlap in localhost activity for sites across OSes.

0 20k 40k 60k 80k 100k

0

0.2

0.4

0.6

0.8

1 Windows
(total #: 92)
Linux
(total #: 54)
Mac
(total #: 54)

Tranco rank of domain

C
D

F

Figure 3: CDFs of the domain ranks for Tranco top 100K
landing pages generating localhost traffic, across OSes, for
our 2020 measurements.

in 2021. None of the domains belonging to malicious webpages
were found in the Tranco top 100K.

4.2 RQ2: What are the Characteristics of the
Local Network Traffic?

Here we consider what protocols and ports are used by websites
for requests to the local network, and when requests are generated.

Protocols and Ports. Figure 4a depicts the protocols and ports
used in the localhost requests we observed in our 2020 top 100K
measurements, across the three OSes. (Data on individual sites is
listed in Tables 5 and 11.) We observe that the majority (about
60%) of localhost requests on Windows were made using the Se-
cured WebSockets (WSS) protocol, to a set of 14 ports. The use of
WebSockets is interesting as it is not bound by the Same-Origin
Policy, potentially allowing bidirectional network communication.
In comparison, only a quarter of requests on Windows were sent
over HTTP, with an eighth sent over HTTPS (primarily to the de-
fault HTTP(S) ports). Linux and Mac exhibited the opposite pattern,
with 86% of requests sent over HTTP and HTTPS (primarily to the
default ports) for both OSes.

Rank (↓) Windows Rank (↓) Linux and Mac

104 ebay.com 243 hola.org
243 hola.org 5369 faceit.com
429 ebay.de 7699 zakupki.gov.ru*
536 ebay.co.uk 17826 rkn.gov.ru*
932 ebay.com.au 19243 cruze...sulvirtual.com.br*
1250 fidelity.com 21245 wowreality.info
1288 citi.com* 22729 smartcatdesign.net
1843 ebay.it 23218 cponline.pw*
2200 ebay.fr 24739 gamezone.com
2394 ebay.ca 26399 filemail.com

Table 3: Top 10 domains whose landing pages were making
localhost requests in our 2020 top 100K measurements (the
top domains for Linux and Mac are identical). Starred do-
mains were not observed generating such traffic in our 2021
top 100K measurements.

In the 2021 top 100K crawl, as well as the crawl of malicious
webpages (shown in Figure 8 of the Appendix and Figure 4b, respec-
tively), we see largely a subset of the ports and protocols observed
with the 2020 top 100K crawl. We see fewer ports and protocols
in our later measurements due to some changes in the types of
local network activity exhibited by websites, as examined further
in Section 4.3.

For LAN traffic, as shown in Tables 6 and 10, all requests from
top 100K sites (in both the 2020 and 2021 crawls) were made to
either HTTP or HTTPS, using the standard ports. This held true
for most malicious webpages (as seen in Table 9), except for one
site requesting HTTP on port 1080.

Request Timing. Figure 5a depicts the CDFs of the time between
when a landing page is successfully fetched and when we begin
observing localhost requests, across all OSes, for our 2020 top 100K
measurements. We observe that for Linux and Mac, over half of the
localhost requests are initiated within 5 seconds after the landing
page is fetched. For Windows, the median gap is 10 seconds. The
maximum delay is 14 seconds for Mac and 17 seconds for both Linux
and Windows. Similarly, Figure 5b shows the time delay between

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Windows
(664)

wss(490)

http(134)

ht
tp
s

(2
1)

w
s

(1
9)

3389
527

959
0059
0159
02

590359315939
5944
5950

6039

604
0

70
70

63
33
3

10
53
1

14
44
0

14
44
1

14
44
2

14
44
3

14
44
4

14
44
5

14
44
6

14
44
7

14
44
8

14
44
9

31
02
7

31
02
9

80

4444
4653
5555
7054
7055

9515
17556 6880

6881
6882

6883
6884

6885

6886

6887

6888

6889

8888

12071
460

1080

1194

1987

2375

2376

3128

3306

3479

5005

5320

5896

6878

8000

8899

9080

9092

9999

12072

17021

27021

35729

49972

50005

51505

53005

54505

56005

56666

35729
443

1931

8080

10531

14440

14441

14442

14443

14444

14445

14446

14447

14448

14449

31027

31029

36762

2687
26876

6463
6464
6465
6466
6467
6468
6469
6470
28337
50005
51505
53005
54505
56005
60202

Linux
(128)

http(89)

w
s(27)

ht
tp
s

(1
0)

w
ss (2
)

80

300
0688

068
8168

8268
8368
8468
8568
8668
87

68
88

68
89

8000
8888

12071
4601080

1194

19872080208120822375237631283306347942444337500550375242
5320
5601
5896
5938
6379
6878
8080
8332
8333
8530
8899
9000
9050

9080

9092

9150

9785

999
9

112
11

120
72

156
72

170
21

23
39
9

27
01
7

27
02
1

35
72
9

49
97
2

50
00
5

51
50
5

53
00
5

54
50
5

56
00
5

56
66
6

64
63

64
64

64
65

64
66

6467
6468
6469
6470
6471

6472
28337

50005
51505

53005

54505

56005

60202

443

35729
1931

8000
8080
38613

10531

Mac
(177)

ht
tp

(8
7)

http
s

(38
) w

s
(26)

wss(26)

80
3000
688

0688
1688

2688
368

8468
8568
8668
8768
8868
8980
0088
8890
00

12
07
1

17
02
146
0

10
80

1194
2080
2081
2082
2375
2376
3128

3306

3479

4244

4337

5005

5037

5242

532056015896593863796878808083328333853088999050908090929150978599991121115672233992701735729
49972
50005
51505
53005
54505
56005
56666

9000
35729
443
10531

1444
0

144
41

144
42

144
43

144
44

14
44
5

14
44
6

14
44
7

14
44
8

14
44
9

31
02
7

31
02
9

19
31

80
80

30
58
3

64
63

64
64

64
65

64
66

6467
6468
6469
6470
6471
6472
28337

50005
51505

53005
54505

56005
10531

14440

14441

14442

14443

14444

14445

14446

14447

14448

14449

31027
31029

(a) 2020 top 100K crawl

Windows
(366)

wss(252)

http(90)

ht
tp
s

(2
4)

3389
527

959
0059

0159
02

5903

593159395944
5950

6039

6040

70
70

63
33
3

80

8080

28317

36759

85
89

8090

8888

44056

44938

443

82

5140
8080
8443
35729
49622
62389

Linux
(154)

http(133)
https(21)

80

8080 858
9

8090
8888

17464
28317

59282

443

82

8080
8443
25958
26717
32429

Mac
(112)

http(84)

https(28)

80

80
80

28
31
7

85 88
88

443

82

8080

8443

22301
35729
53515

(b) Malicious webpages

Figure 4: Protocols and ports used for website requests to localhost, across OSes. The center of each diagram indicates the
OS and the total number of requests observed for websites on that OS. The first ring divides these requests by the network
protocol/scheme. The outer ring specifies the localhost port number requested.

when a landing page is fetched and when we begin observing
LAN requests, across OSes, for our 2020 top 100K measurements.
Here, the median delay for all three OSes is within 5 seconds. The
maximum delay is 5 seconds on Windows, 15 seconds on Mac, and
16 seconds on Linux. These delays reveal that in many cases, the
localhost and LAN traffic generate by websites do not immediately
manifest. Our observations remain roughly consistent over our 2021
top 100K crawl and our crawl of malicious webpages (as shown in
Figures 6 and 7 in the Appendix).

4.3 RQ3: Why are Websites Making Local
Network Requests?

To understand why websites may be generating local traffic, we first
manually investigate each website exhibiting local network activity
in our 2020 top 100K measurements, identifying which elements of
the webpages are originating the localhost and LAN requests in an
attempt to determine the underlying reason. We subsequently also
compare the observations with those from the 2021 top 100K crawl
as well as the crawl of malicious webpages.

Through our exploration of the 107 websites found making lo-
calhost requests in our 2020 top 100K measurements, we identify
four main classes of behavior: 1) 36 websites were scanning local-
host ports for fraud detection, 2) 10 websites were conducting bot
detection, 3) 12 websites were found communicating with native
applications, and 4) 44 websites requested localhost resources likely

due to developer error. For the 5 remaining websites, we could not
ascertain the cause of the localhost requests (discussed further in
Appendix C). The characterization of these domains is listed in
Tables 5 and 11.

Among the 9 LAN-requesting websites in our 2020 top 100K
measurements, listed in Table 6, we believe that 6 websites were
doing so due to developer error. For the remaining three (which
all requested the HTTP root directory), we were unable to clearly
identify an underlying reason (also discussed in Appendix C).

We observe a strict subset of these classes of local network be-
havior for our 2021 top 100K crawl and the crawl of malicious
webpages. Thus in this section, as we discuss each behavior class,
we first discuss results from our 2020 top 100K crawl and then draw
comparisons between the different datasets.

4.3.1 Fraud Detection. As shown in Table 5, for the first set of rows
where the localhost network activity reason is Fraud Detection, we
encountered 36 websites in our 2020 top 100K crawl that make
the same set of WebSocket Secure (WSS) requests to 14 distinct
localhost ports, all using the same URL path and operating only on
Windows 10.

We determine that these websites were deploying a fraud detec-
tion script from LexisNexis called ThreatMetrix [40], which claims
to help the websites distinguish between trusted transactions and
fraudulent behavior. On each of these websites, we identified that
all of the localhost requests were made by a dynamically-generated

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Mac
Linux
Windows

Time (in seconds)

C
D

F

(a) Requests to localhost

0 5 10 15 20

0.2

0.4

0.6

0.8

1

Mac
Linux
Windows

Time (in seconds)

C
D

F

(b) Requests to LAN addresses

Figure 5: CDFs of the time delays between when a landing page is fetched and when we observed the first local network request,
across OSes, for our 2020 top 100K measurements.

Port (↓) Service/App Use Case

3389 Windows Remote Desktop Fraud Detection
4444 Malware: CrackDown, Prosiak,

Swift Remote Bot Detection4653 Malware: Cero
5555 Malware: ServeMe
5279 Unknown

Fraud
Detection

5900-03 Remote Framebuffer (e.g., VNC)
5931 AMMYY Remote Control
5939 TeamViewer
5944 Unknown (likely VNC)
5950 Cisco Remote Expert Manager
6039-40 X Window System
63333 Tripp Lite PowerAlert UPS
7054-55 QuickTime Streaming Server Bot Detection
7070 AnyDesk Remote Desktop Fraud Detection
9515 Malware: W32.Loxbot.A Bot Detection17556 Microsoft Edge WebDriver

Table 4: Common services or malware that operate on the
localhost ports scanned for fraud and bot detection purposes.

JavaScript blob object. We observe that these blobs are generated by
an external JavaScript resource loaded from either a subdomain (e.g.,
regstat.betfair.com for betfair.com) or similar-appearing do-
main (e.g., ebay-us.com for ebay.com). The JavaScript blobs collect
telemetry from the localhost WSS requests, and upload the results
back (in an encrypted format) to the external JavaScript-hosting
site (e.g., ebay-us.com). Conducting WHOIS lookups on these do-
mains and their IP addresses, we find that these domains all belong
to the ThreatMetrix Inc. organization. As advertised on their web-
site [40], ThreatMetrix provides their customers with protection
against fraud using network-based heuristics. This purpose aligns
with our observation that all but one (i.e., commoncause.org) of
the sites deploying ThreatMetrix are e-commerce websites.

We observe that the localhost ports scanned by ThreatMetrix are
primarily the standard ports for various remote desktop software
for Windows, as shown in Table 4. We map ports to applications
based on information from IANA’s Service Name and Transport
Protocol Port Number Registry [35] and SANS Internet Storm Cen-
ter’s TCP/UDP Port Activity Database [12]. We hypothesize that
ThreatMetrix is attempting to determine if the website visitor’s host
machine (focusing specifically on Windows hosts) may be under
remote control, potentially correlating with fraudulent activity. As
the ThreatMetrix script uses the WebSocket protocol for initiating
requests, which is not bound by the Same-Origin Policy and thus
permits reading data from the request responses, the script may
also be gathering more extensive information about the network
services active on each port (e.g., server version and configuration).

We briefly note that as our measurement method only exam-
ines website landing pages, ThreatMetrix may be more broadly
deployed on the internal pages of other websites. Indeed, a recent
blog post [5] identified several websites using ThreatMetrix specifi-
cally on login pages. We leave the exploration of internal website
pages to future work. In comparison to our study, which conducts a
large-scale comprehensive and systematic investigation of website
localhost and LAN activity, the blog post’s investigation was an
ad-hoc and manual one that considered a few websites suspected
to be using ThreatMetrix. The set of landing pages we identified as
using ThreatMetrix is a superset of those found in the blog post.

In our 2021 top 100K measurements, we continue to observe this
class of behavior for popular websites. We do note changes in the
websites deploying ThreatMetrix though (as indicated in Tables 5
and 7), as some websites stopped (e.g., citibank.com) while some
other previously crawled sites began exhibiting its fraud detection
localhost traffic (e.g., cibc.com). Interestingly, we also recorded
a set of phishing sites making localhost requests matching with
ThreatMetrix’s behavior (as seen in Table 8). While investigating
these phishing pages, we identify that they impersonate legitimate
websites using ThreatMetrix. We believe that the attackers have
cloned the web interface code of the legitimate impersonated web-
sites (e.g., customer-ebay.com cloning ebay.com), inadvertently
also copying over the ThreatMetrix JavaScript library (resulting in

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓)

Domain Protocol Ports Paths OS

W L M

Fraud
Detection

105-
45156

ebay.{at, ca, ch, co.uk, com, com.au,
com.my, com.sg, de, es, fr, ie, in, it, nl,

ph, pl, us}

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/

✓

1251 fidelity.com ✓
1289-
7907 citi{.com, bank.com, bankonline.com}* ✓

5680 marktplaats.nl* ✓
7441 betfair.com ✓
13119-
57251 tiaa{.org, -cref.org}* ✓

13901 2dehands.be* ✓
25990 santanderbank.com ✓
29104 ameriprise.com ✓
34251 commoncause.org* ✓
45228 ctfs.com* ✓
50853 2ememain.be* ✓
90641 highlow.net ✓
97182 metagenics.com ✓

Bot
Detection

8608 sbi.co.in*

http

4444,
4653,
5555,

7054-55,
9515,
17556

/

✓
25881 cnes.fr* ✓
27491 din.de* ✓
32114 csob.cz* ✓
48803 anaf.ro* ✓
55267 data.gov.in* ✓
55852 allegiantair.com* ✓
58948 tmdn.org* ✓
65955 beuth.de* ✓
99638 bank.sbi* ✓

Native
Application

5370 faceit.com ws 28337 / ✓ ✓ ✓
23219 cponline.pw (-) ws 6463-72 /?v=1 ✓ ✓ ✓
29301-
77550

samsungcard{.com, .co.kr} wss 10531, 31027, 31029 / ✓ ✓ ✓
https 14440-9 /?code=*&dummy=* ✓ ✓ ✓

36141 gamehouse.com* http 12071-72, 17021,
27021

/v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

47690 games.lol ws 60202 /check ✓ ✓
57008 zylom.com

http

12071, 17021 /v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

74089 iwin.com 2080-82 /version?_=* ✓ ✓
77134 screenleap.com (-) 5320 /status, /*/up ✓ ✓ ✓
88902 acestream.me (-) 6878 /webui/api/service ✓ ✓ ✓
91904 trustdice.win 50005, 51505, 53005,

54505, 56005
/, /socket.io ✓ ✓ ✓

98789 runeline.com (-) ws 6463-72 /?v=1 ✓ ✓ ✓

Unknown

244 hola.org

http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,

3306, 3479, 4244, 5037, 5242, 5601,

5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672,

23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓
78456 usaonlineclassifieds.com* ws 2687, 26876 / ✓
84569 usnetads.com* ✓

Table 5: Summary of website localhost requests found during the 2020 top 100K crawl. Operating Systems are Windows (W),
Linux (L) and Mac (M). Domains marked with an asterisk (*) did not make localhost requests during the 2021 top 100K crawl.

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

Rank
(↓)

Domain Protocol Local IP
Address

Port Paths OS

W L M

4381 gsis.gr http 10.193.31.212 80 /system/files/2020-06/*.png ✓ ✓ ✓
19523 farsroid.com 10.10.34.35 / ✓
35262 saddleback.edu https 10.156.2.50 443 /*.ico ✓
46972 skalvibytte.no

http

10.0.0.200

80

/wordpress/wp-
content/uploads/2020/04/*{.jpg,.mp4}

✓ ✓ ✓

56325 unib.ac.id 192.168.64.160 /wp-content/uploads/2019/10/*.jpg ✓ ✓ ✓
61554 adnsolutions.com 10.0.20.16 /wp-content/uploads/2018/11/*.jpg ✓
65302 tra97fn35n5brvxki5-

sj8x5x34k2t4d67j883fgt.xyz
10.10.34.35 / ✓

73062 zoom.lk https 192.168.0.208 443 /wp_011_test_demos/wp-
content/uploads/2017/05/*.jpg

✓

91632 1-movies.ir http 10.10.34.35 80 / ✓ ✓ ✓

Table 6: Summary of website LAN requests found during the 2020 top 100Kmeasurements. Operating Systems (OS) areWindows
(W), Linux (L) and Mac (M).

the phishing page generating localhost requests). Prior work has
documented similar cloning behavior for phishing websites [55].

4.3.2 Bot Detection. From the Bot Detection section of Table 5, we
see that 10 sites in our 2020 top 100K measurements made HTTP
requests to the same set of 7 ports on localhost, using the same URL
path and only on Windows 10.

We identify that this activity is initiated by BIG-IP ASM Bot
Defense, a bot detection service developed by F5 Inc. [21]. On each
site, the localhost requests are initiated by a JS script hosted at the
relative path /TSPD, which is the standard path used by BIG-IP ASM
Bot Defense [20, 60]. Note here that this bot defense uses HTTP,
as opposed to WSS as done by ThreatMetrix (from Section 4.3.1).
Despite the application of the Same-Origin Policy to these HTTP
requests, this bot defense presumably is able to deduce whether or
not a localhost port is active. The JS script is heavily obfuscated, but
we hypothesize that this inference is based on a timing side-channel.
A request to an active localhost port returns quickly (even if the
response cannot be read), while a request to an inactive port will
time out.

Investigating further, we discover that 4 out of the 7 ports scanned
are notably used by well-known malware (as shown in Table 4).
The other ports are for Microsoft Edge WebDriver, used for browser
automation, and the QuickTime Streaming Server, which histor-
ically has been heavily exploited [10]. This set of ports suggests
that BIG-IP ASM Bot Defense potentially searches for (i) indicators
of host compromise, and (ii) the presence of browser automation.

We find that BIG-IP ASM documentation indicates that this prod-
uct enables user fingerprinting [19]. The F5 Inc. website also claims
that they provide their customers, including government agencies,
with protection against botnets using network-based heuristics [18].
Aligned with this description, the sites that we observed deploying
this bot detection script belonged to government-related entities
(e.g., central banks and websites hosting government data).

Interestingly, we do not observe sites making bot detection re-
quests during our 2021 top 100K crawl as well as the crawl of
malicious webpages. Upon inspecting the websites that originally
generated such requests in the 2020 top 100K crawl, we do confirm

that these websites no longer host the BIG-IP ASM Bot Defense JS
script (although we are uncertain of the impetus for this change).

4.3.3 Native Applications. In our 2020 top 100K crawl, we identified
12 websites that were communicating with native applications
associated with the website itself, as listed underNative Applications
in Table 5. Except for one site, all of these sites behaved uniformly
across OSes. These websites, as detailed in Appendix A, are e-
commerce4, gaming, online communication, and media sites.

Given the close relationship between the website and the native
app (e.g., a gaming website contacting its associated gaming client),
we assume benign intent here, although we note that the website
may be detecting if a visitor has already installed the associated
application, and adjusting its behavior (e.g., advertising) accordingly.
Additionally, this class of localhost communication highlights a
legitimate use case that should be preserved if attempting to defend
against malicious forms of web-based localhost traffic.

In addition to these 12 websites, we found another 14 websites in
our 2021 top 100K measurements similarly attempting to communi-
cate with their native apps (as listed in Table 7). Only one website
was found no longer making these localhost requests in our second
crawl. For malicious webpages, we identified one similar case with
elilaifs.cn. Inspecting the webpage indicates that it imports the
JS library of Thunder [62], a download manager, which attempts to
communicate with its native application.

4.3.4 Developer Errors. Beyond the intentional locally-bound traf-
fic that websites make, we find that a large class of local resource
requests likely arise due to developer error. For our 2020 top 100K
measurements, we believe this situation occurred on 44 (out of 107)
websites requesting localhost resources and 6 (out of 9) sites re-
questing LAN resources, indicating that it is relatively widespread
among our observed sites. Table 11 in the Appendix and Table 6
characterize these websites in detail.

In these cases, we observe localhost and LAN requests for vari-
ous files (e.g., images, videos, JavaScript libraries) that were likely
hosted at a local server during web development. For example, a

4The e-commerce sites communicate with a client-side security application.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank (↓) Domain Protocol Ports Paths OS
W L

Fraud
Detection

2912 cibc.com

wss

3389, 5279,
5900-03,

5931, 5939,
5944, 5950,
6039-40,

63333, 7070

/

✓
8173 betfair.com (+) ✓
10679 highlow.com ✓
28370 moneybookers.com ✓
31170 ebay.com.hk ✓
64012 marks.com ✓

Native
Application

592 iqiyi.com

http 16422-23 /get_client_ver?*

✓ ✓
7664 qy.net ✓ ✓
10966 qiyi.com ✓ ✓
12350 iqiyipic.com ✓ ✓
15581 ppstream.com ✓ ✓
34989 ppsimg.com (+) ✓ ✓
44280 soliqservis.uz (+) wss 64443 /service/cryptapi ✓ ✓
75083 nfstar.net (+)

http 28317,
36759 /get_thunder_version/

✓ ✓
80108 9ekk.com (+) ✓ ✓
87274 somode.com (+) ✓ ✓
82814 mcgeeandco.com (+) https 4000 /socket.io/? ✓ ✓
86605 71.am (+) http 16422-23 /get_client_ver?* ✓ ✓
94270 didox.uz (+) wss 64443 /service/cryptapi ✓ ✓
96284 gnway.com (+) ws 38681-87 / ✓

Developer
Errors

5154 phonearena.com

http

1500 /floor-domains ✓ ✓
5331 madmimi.com 5555 /2.1.2/sockjs.min.js ✓

14951 nursingworld.org
80

∼4af7b9/globalassets/
images/*.jpg ✓

21280 ums.ac.id /ums-baru/wp-content/* ✓ ✓
25940 zee.co.ao (+) /industrialwp/wp-content/* ✓ ✓
37323 raovatnailsalon.com (+) https 443 /raovatnailsalon/wp-content/* ✓ ✓
42107 panduit.com http 4502 /apps/panduit/clientlibs/*.js ✓
45497 internetworld.de https 443 / ✓ ✓
47861 mcknights.com 9988 /livereload.js ✓
50650 san-servis.com

http 80
/vina/vina_febris/images/* ✓ ✓

54756 postfallsonthego.com (+) /magazon/magazon-wp/
wp-content/uploads/* ✓ ✓

55755 wealthcareportal.com (+) /NonExistentImage48762.gif ✓ ✓
55477 lited.com 110066 /getversionjpg?hash=* ✓
68872 workpermit.com https 6081 /news-ticker.json ✓ ✓
75989 ethiopianreporterjobs.co (+) 443 /wp-content/uploads/* ✓ ✓
77974 macroaxis.com (+)

http
8080 /img/icons/search.png ✓ ✓

83256 adfontesmedia.com (+) 8888
/adfontesmedia/wp-content/

uploads/* ✓ ✓

84378 charityvillage.com (+) /core/js/api/web-rules ✓ ✓
90632 showfx.ro (+) https 443 /wordpress/x-street/wp-content/* ✓ ✓
98402 xaydungtrangtrinoithat.com (+) /wp-content/uploads/* ✓ ✓

Table 7: Summary of new website localhost requests seen in the 2021 top 100K crawl. (+) represents a domain that was not
present in the 2020 top 100K list snapshot (and thus was not previously crawled). Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

number of websites request a URL path that contains /wp-content
/uploads/, suggesting that the requested resource is a file uploaded
to the local WordPress installation. Upon manual investigation, we
do not find any evidence suggesting intentional localhost or LAN
communication across these websites, and we believe that these
resource requests are unintentional and remnants of when the web-
sites were being developed and tested. Appendix B explores the
different occurrences across websites in more detail.

Similar cases were found in both the 2021 top 100K crawl (as
shown in Tables 7 and 10) and our crawl of malicious webpages
(Tables 8 and 9). Formalicious pages, we believe that either attackers
made such developer errors on their own attack sites, or more likely,
the attackers compromised benign websites exhibiting these errors.
In total, we attribute more than 90% of the localhost activity on
malicious webpages to this behavior class.

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

While presumably benign, these local network requests indicate
that some functionality on the site is incorrect, as the webpage
attempts to load a resource that does not actually exist. We also note
that the requests can reveal aspects of the site development process,
such as a particular vulnerability testing JavaScript framework used
by rkn.gov.ru. Ultimately, these requests reflect a class of web
developer errors that can impact the functionality of websites but
should be easy to identify and remedy, such as through searching
for localhost or private IP address requests in the website code base
or examining the requests made when loading the website.

5 DISCUSSION
Here, we synthesize our results and their implications on web
security and privacy.

5.1 Website Anti-Abuse
From our measurements, we discovered that a number of sites
leverageweb-based localhost scanning to defend themselves against
abuse. These sites are primarily e-commerce and government-related
ones and include highly-ranked sites for organizations such as
eBay and Fidelity Investments. However, the websites do not con-
duct the abuse detection themselves, but rather (as uncovered
in Sections 4.3.1 and 4.3.2) they rely on third-party services (i.e.,
ThreatMetrix and BIG-IP ASM). A 2018 ThreatMetrix brochure [33]
claimed to protect $170 billion worth of e-commerce transactions
in a year, preventing $19.5 billion in fraud. They advertised an ex-
tensive database of 1.4 billion unique online identities collected
from their clients operating in the e-commerce space. Given the
prevalence of online abuse across various platforms beyond just
e-commerce, such as on social media and communication sites, we
may observe an expansion of web-based localhost scanning for
anti-abuse on other sites.

Our analysis in Sections 4.3.1 and 4.3.2 identified that these anti-
abuse measures focus on detecting indicators of host compromise
or remote control. We are unable to assess the reliability of these
signals for anti-abuse. However, we hypothesize that attackers
could evade this detection with relative ease by modifying the ports
they operate on. For example, attackers could configure a remote
control server on a bot to run on a non-standard port, and malware
could dynamically adjust the ports it listens on. This evolution
would likely result in an arms race that seems tilted in the attacker’s
favor due to information imbalance. As any web-based localhost
scanning activity would be visible to website visitors as well as
attackers, attackers can directly observe and counter the anti-abuse
strategies deployed. In contrast, attackers lack direct visibility into
the operations of server-side anti-abuse mechanisms. Thus, we
question whether web-based localhost scanning for fraud and bot
detection will remain viable long-term.

5.2 Web Tracking
We did not uncover explicit evidence of user tracking through
web-based localhost or LAN scanning, a positive finding regard-
ing web privacy. However, we did observe clear host profiling as
part of fraud and bot detection, which can naturally be extended
for user fingerprinting and tracking (as demonstrated by existing

proof-of-concept techniques [8, 38]). Similar to other web finger-
printing methods that have been used in practice, such as detecting
the browser extensions installed [56], web trackers could distin-
guish users based on their localhost network services and LAN
devices. Prior work [7] revealed how websites often deploy surrep-
titious methods for web tracking. With ongoing efforts to curtail
the amount of data that websites can obtain on users, including
Google’s Privacy Sandbox project [46], web trackers may be forced
to resort to novel tracking mechanisms such as those based on local
network scanning.

Further incentivizing this new tracking strategy is the increas-
ing amount of information that can be derived from web-based
localhost and LAN scanning. On user machines, numerous modern
native applications (such as those discussed in Section 4.3.3) host
localhost network services, and their diversity and popularity have
grown (particularly gaming and video conferencing clients during
the COVID-19 pandemic [16, 57]). Similarly, user home networks
contain growing numbers of devices [36], particularly IoT devices
with exposed network interfaces that can be readily detected [8].
Thus, web-based local scanning should provide significant amounts
of information about users, which also serve as high entropy fea-
tures for fingerprinting and tracking them. We discuss defending
against such website behavior next.

5.3 Defending Against Malicious Web-Based
Local Traffic

We did not discover any websites generating malicious attack traffic
to localhost or LAN network services, as hypothesized by prior
work [8, 38, 52]. Nonetheless, browsers should ideally protect users
from both malicious attacks and web tracking based on locally-
bound network traffic.

The browser security community has already begun working on
mitigating the unintentional exposure of local network resources to
browsers. In March 2021, the Web Platform Incubator Community
Group (WICG) [59] proposed modifications to the Fetch API [14],
where resources loaded from a public IP space are allowed to fetch
resources from private/local IP spaces only if: 1) the public resource
was loaded over a secure channel (i.e., https or wss), and 2) a
CORS preflight request to the local network origin is successful [49].
These CORS preflight requests should include the Access-Control-
Request-Private-Network=true header, and browsers should only
permit access to the local network resource if the same header is in
the responses.

We believe this proposal is a promising step in the right direc-
tion, as such an opt-in model for access to a user’s local network
resources would support legitimate use cases (e.g., native applica-
tion communication), while barring other unintentional exposure.
However, the real-world security and privacy impact of such a pro-
posal depends on its implementation and adoption, by both browser
vendors and local network services (e.g., native applications). In the
interim, before broad adoption by local network services and native
applications, browsers could alert the user before initiating locally-
bound requests, similar to existing browser permission prompts for
other access requests. This human-in-the-loop approach could help
prevent unauthorized local communication.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

We hope that our findings from this study help inform and drive
the further development of potential defenses against malicious
web-based local traffic.

5.4 Developer Errors
A large number of websites were found making local network re-
quests likely due to developer errors. As discussed in Section 4.3.4,
these requests reflect broken functionality on the sites as well as
potential information leakage on the web development and testing
process. Therefore, we recommend that web developers check for
such local network behavior through either analyzing the website
code base or examining network traffic generated by the website
during testing. We note that while assessing a website during test-
ing, different user-agents should be evaluated, as we observed dif-
ferent behavior across OSes even for developer errors (likely due to
the error occurring in OS-specific portions of the website code). We
expect that these errors should be easy to remedy, as the request
destinations can be updated to the correct public servers, or the
traffic-generating code can be removed altogether.

6 CONCLUSION
In this study, we conducted a large-scale empirical investigation of
if, how, and whymodern websites interact with network services on
a browser’s localhost and LAN. Crawling both the landing pages of
the Tranco top 100K domains [45] as well as 145K malware, phish-
ing, and abuse websites, using Google Chrome on three popular
desktop OSes (Windows, Linux, and Mac), we uncovered hundreds
of websites generating requests to internal network destinations,
including highly-ranked sites within the top 10K. We found that
local network activity was not uniform across OSes, with the most
activity exhibited on Windows. We also observed extensive use of
WebSockets for locally-destined connections, which notably is not
bound by the Same-Origin Policy.

By investigating the detected top websites in detail, we identi-
fied four common causes for the local traffic: fraud detection, bot
detection, native application communication, and developer errors.
Notably, the fraud and bot detection techniques conducted host
profiling. While we did not uncover explicit user tracking, the adap-
tation of these host profiling techniques for such purposes may be
on the horizon. Defending against such malicious web-based local
traffic will require preserving the legitimate use case of native ap-
plication communication. Meanwhile, the class of developer errors
that we exposed affects website functionality but should be easy
for web developers to discover and remedy.

For malicious websites, we did not detect internal network at-
tacks. Rather, 90% ofmaliciouswebpages with local network activity
exhibited local traffic matching the developer errors observed on
top websites, suggesting that either attackers make the same mis-
takes when implementing their attack websites, or perhaps more
likely, the attackers compromised benign websites exhibiting these
errors. We also found an interesting case of phishing webpages
cloning the web interfaces of legitimate websites that generate
local traffic for fraud detection, thus inadvertently inheriting the
same local network behavior.

Ultimately, our work establishes empirical grounding on the in-
tentional and unintentional localhost and LAN network activities

of real-world websites. Future work can expand upon our initial
investigation. As discussed in Section 3.3, our examination of web-
sites only considered the landing page, but we expect that internal
pages, such as those for account creation or login, may also generate
localhost and LAN network traffic. Additionally, our measurement
method (as detailed in Section 3) focused on a desktop environment.
Subsequent studies can build upon our work by evaluating websites
on mobile platforms and inspecting website internal pages. Our
study also uncovered host profiling purportedly for fraud and bot
detection. These techniques can be studied in more depth to char-
acterize their effectiveness in practice and assess the potential risk
that they are adapted for user tracking purposes. Finally, browser
mechanisms can be developed to detect and prohibit malicious local
network requests from websites while preserving legitimate use
cases, thus better protecting user security and privacy on the web.

REFERENCES
[1] 2020. BlueJeans. https://bluejeans.com/.
[2] 2020. Discord. https://discord.com/.
[3] 2020. ZOOM US. https://zoom.us/.
[4] 2021. PhishTank. http://phishtank.org/.
[5] Lawrence Abrams. 2020. List of well-known web sites that port scan their

visitors. https://www.bleepingcomputer.com/news/security/list-of-well-known-
web-sites-that-port-scan-their-visitors/.

[6] Abuse.ch. 2021. URLhaus. https://urlhaus.abuse.ch/.
[7] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking
mechanisms in the wild. In ACM Conference on Computer and Communications
Security (CCS).

[8] Gunes Acar, Danny Yuxing Huang, Frank Li, Arvind Narayanan, and Nick Feam-
ster. 2018. Web-based attacks to discover and control local IoT devices. In Work-
shop on IoT Security and Privacy.

[9] Matthew Bryant. 2015. sonar.js: A Framework for Identifying and Launch-
ing Exploits against Internal Network Hosts. https://github.com/
mandatoryprogrammer/sonar.js.

[10] Christopher Budd. 2016. Urgent Call to Action: Uninstall QuickTime forWindows
Today. https://blog.trendmicro.com/urgent-call-action-uninstall-quicktime-
windows-today/.

[11] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content security
problems? Evaluating the effectiveness of content security policy in the wild. In
ACM Conference on Computer and Communications Security (CCS).

[12] SANS Internet Storm Center. 2012. Service Name and Transport Protocol Port
Number Registry. https://isc.sans.edu/port.html.

[13] Hancom Secure Co. 2020. AnySign for PC. https://hsecure.co.kr.
[14] MDN Web Docs. 2021. Fetch API. https://developer.mozilla.org/en-US/docs/

Web/API/Fetch_API.
[15] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site

measurement and analysis. In ACM Conference on Computer and Communications
Security (CCS).

[16] Adam Epstein. 2020. The pandemic has turned everyone into gamers. https:
//qz.com/1904276/everyone-is-playing-video-games-during-the-pandemic/.

[17] Matt Menke Eric Roman. 2012. NetLog: Chrome’s network logging system. https:
//www.chromium.org/developers/design-documents/network-stack/netlog.

[18] F5. 2017. F5 iApps: Moving Application Delivery Beyond the Net-
work. https://www.f5.com/services/resources/white-papers/f5-iapps-moving-
application-delivery-beyond-the-network.

[19] F5. 2019. K19556739: Overview of BIG-IP ASM client fingerprinting. https:
//support.f5.com/csp/article/K19556739.

[20] F5. 2020. K33440533: The BIG-IP ASM Bot Defense may erroneously subject
clients and web servers to Open Redirection attacks. https://support.f5.com/csp/
article/K33440533.

[21] F5. 2020. K42323285: Overview of the unified Bot Defense profile. https:
//support.f5.com/csp/article/K42323285.

[22] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. 2017. Measuring HTTPS adoption on the web. In USENIX
Security Symposium.

[23] Tom Gallagher. 2016. Port Scanning and WebSockets. https://datatracker.ietf.
org/meeting/96/materials/slides-96-saag-1/.

[24] Tom Gallagher. 2016. Security Enhancement for WebSockets to Prevent
Private Network Mapping. https://tools.ietf.org/html/draft-gallagher-
hybiwebsocketenhancement-00.

https://bluejeans.com/
https://discord.com/
https://zoom.us/
http://phishtank.org/
https://www.bleepingcomputer.com/news/security/list-of-well-known-web-sites-that-port-scan-their-visitors/
https://www.bleepingcomputer.com/news/security/list-of-well-known-web-sites-that-port-scan-their-visitors/
https://urlhaus.abuse.ch/
https://github.com/mandatoryprogrammer/sonar.js
https://github.com/mandatoryprogrammer/sonar.js
https://blog.trendmicro.com/urgent-call-action-uninstall-quicktime-windows-today/
https://blog.trendmicro.com/urgent-call-action-uninstall-quicktime-windows-today/
https://isc.sans.edu/port.html
https://hsecure.co.kr
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://qz.com/1904276/everyone-is-playing-video-games-during-the-pandemic/
https://qz.com/1904276/everyone-is-playing-video-games-during-the-pandemic/
https://www.chromium.org/developers/design-documents/network-stack/netlog
https://www.chromium.org/developers/design-documents/network-stack/netlog
https://www.f5.com/services/resources/white-papers/f5-iapps-moving-application-delivery-beyond-the-network
https://www.f5.com/services/resources/white-papers/f5-iapps-moving-application-delivery-beyond-the-network
https://support.f5.com/csp/article/K19556739
https://support.f5.com/csp/article/K19556739
https://support.f5.com/csp/article/K33440533
https://support.f5.com/csp/article/K33440533
https://support.f5.com/csp/article/K42323285
https://support.f5.com/csp/article/K42323285
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1/
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1/
https://tools.ietf.org/html/draft-gallagher-hybiwebsocketenhancement-00
https://tools.ietf.org/html/draft-gallagher-hybiwebsocketenhancement-00

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

[25] GitHub. 2020. LiveReload.js. https://github.com/livereload/livereload-js.
[26] GitHub. 2020. OWASP-Xenotix-XSS-Exploit-Framework. https://github.com/

ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework.
[27] GitHub. 2020. SockJS-node, a Node.js server for WebSocket emulation. https:

//github.com/sockjs/sockjs-node.
[28] GitHub. 2020. XSS Rays. https://github.com/beefproject/beef/wiki/Xss-Rays.
[29] GitHub. 2021. Puppeteer. https://github.com/puppeteer/puppeteer.
[30] GitHub. 2021. Selenium. https://github.com/SeleniumHQ/selenium.
[31] Google. 2021. Safe Browsing. https://safebrowsing.google.com/.
[32] Jeremiah Grossman and T Niedzialkowski. 2006. Hacking Intranet Websites from

the Outside: JavaScript Malware Just Got a Lot More Dangerous. In Blackhat
USA.

[33] RELX Group. 2018. Risk & Business Analytics teach-in. https:
//www.relx.com/~/media/Files/R/RELX-Group/documents/presentations/risk-
teach-in-8Nov18.pdf.

[34] Taylor Hornby. 2015. Port Scanning Local Network From a Web Browser. https:
//defuse.ca/in-browser-port-scanning.htm.

[35] Internet Assigned Numbers Authority (IANA). 2012. Service Name and Transport
Protocol Port Number Registry. https://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml.

[36] Deepak Kumar, Kelly Shen, BentonCase, Deepali Garg, Galina Alperovich, Dmitry
Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. 2019. All things considered:
an analysis of IoT devices on home networks. In USENIX Security Symposium.

[37] Attack & Defense Lab. 2010. Port Scanning with HTML5 and JS-Recon. http:
//blog.andlabs.org/2010/12/port-scanning-with-html5-and-js-recon.html.

[38] VT Lam, Spiros Antonatos, Periklis Akritidis, and Kostas G Anagnostakis. 2006.
Puppetnets: misusing web browsers as a distributed attack infrastructure. In
ACM Conference on Computer and Communications Security (CCS).

[39] Sangho Lee, Hyungsub Kim, and Jong Kim. 2015. Identifying Cross-origin Re-
source Status Using Application Cache. In The Network and Distributed System
Security Symposium (NDSS).

[40] LexisNexis. 2020. ThreatMetrix. https://risk.lexisnexis.com/products/
threatmetrix.

[41] myria.de. 2007. JavaScript LAN Scanner. https://www.myria.de/lan-scan/index.
php.

[42] Jakob Nielsen. 2011. How Long Do Users Stay on Web Pages? https://www.
nngroup.com/articles/how-long-do-users-stay-on-web-pages/.

[43] nProtect. 2020. nProtect Online Security. https://nos.nprotect.com/.
[44] Peppersoft. 2017. Local Network Scanner with JavaScript. http://peppersoft.net/

local-network-scanner-javascript/.
[45] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-

czyński, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. In The Network and Distributed System Security
Symposium (NDSS).

[46] The Chromium Projects. 2020. The Privacy Sandbox. https://www.chromium.
org/Home/chromium-privacy/privacy-sandbox.

[47] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Reethika Ramesh, Will Scott, and
Roya Ensafi. 2020. Measuring the Deployment of Network Censorship Filters at
Global Scale. In The Network and Distributed System Security Symposium (NDSS).

[48] Yakov Rekhter, B Moskowitz, Daniel Karrenberg, GJ de Groot, and Eliot Lear.
1996. Rfc1918: Address allocation for Private Internets. https://datatracker.ietf.
org/doc/html/rfc1918.

[49] Titouan Rigoudy and Mike West. 2021. Private Network Access - Draft Commu-
nity Group Report. https://wicg.github.io/private-network-access/.

[50] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex Security Policy? A Longitudinal Analysis of Deployed Con-
tent Security Policies.. In The Network and Distributed System Security Symposium
(NDSS).

[51] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser
Feature Usage on the Modern Web. In ACM Internet Measurement Conference
(IMC).

[52] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson. 2007. Drive-by pharming. In
International Conference on Information and Communications Security. Springer.

[53] Emily Stark, Ryan Sleevi, Rijad Muminovic, Devon O’Brien, Eran Messeri, Adri-
enne Porter Felt, Brendan McMillion, and Parisa Tabriz. 2019. Does certificate
transparency break the web? Measuring adoption and error rate. In IEEE Sympo-
sium on Security and Privacy (S&P).

[54] SURBL. 2021. URI reputation data. http://www.surbl.org/lists.
[55] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik

Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, Daniel Margolis,
Vern Paxson, and Elie Bursztein. 2017. Data Breaches, Phishing, or Malware?
Understanding the Risks of Stolen Credentials. In ACM Conference on Computer
and Communications Security (CCS).

[56] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupe. 2019. Everyone is Different: Client-side Diversification for Defending
Against Extension Fingerprinting. In USENIX Security Symposium.

[57] Charlotte Trueman. 2020. Pandemic leads to surge in video conferencing app
downloads. https://www.computerworld.com/article/3535800/pandemic-leads-

to-surge-in-video-conferencing-app-downloads.html.
[58] Joe Vennix. 2015. lan-js: Probe LAN devices from a web browser. https:

//github.com/joevennix/lan-js.
[59] W3. 2021. The Web Platform Incubator Community Group (WICG). https:

//www.w3.org/community/wicg/.
[60] JohnWagnon. 2017. Proactive Bot Defense Using BIG-IP ASM. https://devcentral.

f5.com/s/articles/proactive-bot-defense-using-big-ip-asm-25685.
[61] MDN WebDocs. 2021. Navigator.webdriver. https://developer.mozilla.org/en-

US/docs/Web/API/Navigator/webdriver.
[62] Wikipedia. 2021. Xunlei. https://en.wikipedia.org/wiki/Xunlei.

A LOCALHOST COMMUNICATIONWITH
NATIVE APPLICATIONS

Belowwe detail the localhost communications that websites initiate
with native applications, as discussed in Section 4.3.3.
• E-commerce: samsungcard.co.kr redirects to samsungcard.com,
an e-commerce website. We found that samsungcard.com looks
for the presence of INCA Internet’s nProtect Online Security [43],
an endpoint security solution which claims to protect user trans-
actions with financial services against fraud, and communicates
with a digital signature software called AnySign [13]. Our teleme-
try observed samsungcard.com requesting localhost ports 14440-
9 over HTTP via a JS file that specified “nProtect Online Security”
in its header, and requests to other ports over WebSockets, via a
different JS file with “AnySign for PC” in its header.
We note that while the end goal of this localhost communication
is presumably similar to the fraud detection goals of ThreatMetrix
(in Section 4.3.1), the localhost communication is used to interact
with a native application which performs the fraud detection,
rather than the communication being done as part of the fraud
detection method (as with ThreatMetrix).

• Gaming: faceit.com, gamehouse.com, games.lol, zylom.com,
and trustdice.win are gaming websites that conduct localhost
communication to detect their native gaming clients. faceit.com
and games.lol use the WebSockets protocol, whereas the others
communicate using HTTP.

• Communication: cponline.pw and runeline.com redirect to
channel invitation pages for Discord, an IM/VoIP application [2].
These webpages initiate localhost communication with Discord’s
native client. Similarly, screenleap.com makes localhost re-
quests to its own screen sharing product. Given the recent exten-
sive use of video conferencing software clients such as Zoom [3]
and BlueJeans [1], we expect that we are missing other communi-
cation websites performing localhost requests, as their activities
are not exhibited on landing pages.

• Media: acestream.me initiates localhost communication with
the Ace Stream client, a live-streaming media platform.

B LOCALHOST AND LAN COMMUNICATION
DUE TO DEVELOPER ERROR

As discussed in Section 4.3.4, a large class of localhost and LAN com-
munication arises from the likely remnants of website development
and testing, suggesting a developer error. Table 11 characterizes
the individual websites that we believe exhibit this situation for
localhost resources, and Table 6 does likewise for websites fetching
LAN resources. Here, we also discuss these cases in more detail.
• Accessing files hosted on a local file server : As seen in the first
set of rows in Table 11 for localhost requests and Table 6 for

https://github.com/livereload/livereload-js
https://github.com/ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework
https://github.com/ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework
https://github.com/sockjs/sockjs-node
https://github.com/sockjs/sockjs-node
https://github.com/beefproject/beef/wiki/Xss-Rays
https://github.com/puppeteer/puppeteer
https://github.com/SeleniumHQ/selenium
https://safebrowsing.google.com/
https://www.relx.com/~/media/Files/R/RELX-Group/documents/presentations/risk-teach-in-8Nov18.pdf
https://www.relx.com/~/media/Files/R/RELX-Group/documents/presentations/risk-teach-in-8Nov18.pdf
https://www.relx.com/~/media/Files/R/RELX-Group/documents/presentations/risk-teach-in-8Nov18.pdf
https://defuse.ca/in-browser-port-scanning.htm
https://defuse.ca/in-browser-port-scanning.htm
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://blog.andlabs.org/2010/12/port-scanning-with-html5-and-js-recon.html
http://blog.andlabs.org/2010/12/port-scanning-with-html5-and-js-recon.html
https://risk.lexisnexis.com/products/threatmetrix
https://risk.lexisnexis.com/products/threatmetrix
https://www.myria.de/lan-scan/index.php
https://www.myria.de/lan-scan/index.php
https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
https://nos.nprotect.com/
http://peppersoft.net/local-network-scanner-javascript/
http://peppersoft.net/local-network-scanner-javascript/
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
https://wicg.github.io/private-network-access/
http://www.surbl.org/lists
https://www.computerworld.com/article/3535800/pandemic-leads-to-surge-in-video-conferencing-app-downloads.html
https://www.computerworld.com/article/3535800/pandemic-leads-to-surge-in-video-conferencing-app-downloads.html
https://github.com/joevennix/lan-js
https://github.com/joevennix/lan-js
https://www.w3.org/community/wicg/
https://www.w3.org/community/wicg/
https://devcentral.f5.com/s/articles/proactive-bot-defense-using-big-ip-asm-25685
https://devcentral.f5.com/s/articles/proactive-bot-defense-using-big-ip-asm-25685
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/webdriver
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/webdriver
https://en.wikipedia.org/wiki/Xunlei

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

LAN requests, we find that 57% (25/44) and 67% (6/9) of websites
exhibiting developer errors request files (e.g., images) from a
server on localhost or LAN, respectively, all using HTTP(S).
Interestingly, there are cases where this behavior differs across
OSes.
We hypothesize that these discrepancies arise in part because
websites may present themselves differently for different OSes
(for example, based on the user-agent string), and certain website
elements that generate the unintentional resource fetch are not
included when on certain OSes.

• Penetration testing: rkn.gov.ru fetches the JavaScript file xook.js,
a file used as part of OWASP’s Xenotix Exploit Framework, which
web developers use for vulnerability detection and penetration
testing [26].

• LiveReload.js: Several websites fetch the file livereload.js, which
is for the LiveReload.js tool that helps web developers dynami-
cally monitor changes during web development [25].

• Redirect: romadecade.org and fincaraiz.com.co redirect to
http://127.0.0.1/. We are uncertain of the reason.

• SocksJS-Node:We observe fivewebsites initiating localhost HTTP(S)
requests where the URL path is /sockjs-node/info. This path
is associated with SockJS-node, which is the Node.js server-side
component of the SockJS JavaScript library [27]. This library
provides a WebSocket-like communication interface between a
server and a browser even for legacy browsers without Web-
Socket support. Thus, we believe that the website developers
were using SockJS during development and testing, which in-
volved deploying a localhost SockJS-node server, and this artifact
remained in the published website. Interestingly, this activity
was observed only when on a Mac.

• Other local services: We observe 7 websites initiating localhost
HTTP(S) requests likely for interacting with local network ser-
vices during website development and testing. For example, za-
kupki.gov.ru updates user activity state at a localhost service.

C UNKNOWN CASES
We did not identify plausible explanations for the 5 websites listed
under Unknown in Table 5. There were 3 websites (farsroid.com,
tra...fgt.xyz and 1-movies.ir) generating LAN traffic that we
could not confidently classify. These sites return a 403 Forbidden
page with an iframe element sourced at http://10.10.34.35:80.
Recently, Raman et al. [47] observed such iframe sources occurring
during website censorship in Iran. We note that farsroid.com and
1-movies.ir resolve to Iranian IP addresses, but tra...fgt.xyz

did not. We suspect that the observe behavior is related to censor-
ship, although we remain uncertain of the exact situation, and are
unclear why this particular LAN address is used.

Windows
(512)

wss(409)

http
(73)

ht
tp
s

(2
0)

w
s

(1
0)

3389

5279

5900
590159025903

5931

5939

5944

5950

6039

6040
63333 7070

64443
7000
9993

80

16422
8888

16423
28317

36759
6880

6881
6882

6883
6884

6885

6886

6887

6888

6889

8080
1080

1194

1500

2080

2081

2082

2375

2376

3000

3128

3306

4502

5555

8000

9080

11066

12071

17021

50005

51505

53005

54505

56005

56666

443
4000

6081
8000

14440

14441

14442

14443

14444

14445
14446
14447
14448
14449
35729
28337
38681
38684
38687
50005
51505
53005
54505
56005
60202

Linux
(118)

http(89)

https
(21)

w
s

(6
)

w
ss (2
)

80

16422

16423

88
88

28
31
7

30
00

6880
6881

6882

6883

68846885688668876888688980801080
1194
1500
2080
2081
2082
2375
2376
3128
3306
3479
4244
5037

5242

5601

5938

637
9

800
0

833
2

833
3

853
0

90
00

90
50

90
80

91
50

97
85

11
21
1

12
07
1

15
67
2

17
02
1

23
39
9

27
01
7

50
00
5

51
50
5

53
00
5

54
50
5

56
00
5 56666

443 4000
6081
8000

9988
14440

14441
14442

14443

14444

14445

14446

14447

14448

14449

35729

28337

50005

51505

53005

54505
56005

64443

Figure 8: Protocols and ports used for website requests to
localhost, across OSes, for the 2021 top 100K crawl. The cen-
ter of each diagram indicates the OS and the total number
of requests observed for websites on that OS.The first ring
divides these requests by the network protocol/scheme. The
outer ring specifies the localhost port number requested.

0 20k 40k 60k 80k 100k

0

0.2

0.4

0.6

0.8

1 Windows
(total #: 82)
Linux
(total #: 48)

Tranco rank of domain

C
D

F

Figure 9: CDFs of the domain ranks for Tranco top 100K
landing pages generating localhost traffic, across OSes, for
our 2021 measurements.

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Linux
Windows

Time (in seconds)

C
D

F

(a) Requests to localhost

0 5 10 15 20

0.2

0.4

0.6

0.8

1

Linux
Windows

Time (in seconds)

C
D

F

(b) Requests to LAN addresses

Figure 6: CDFs of the time delays between when a landing page is fetched and when we observed the first local network request,
across OSes, for our 2021 top 100K measurements.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Linux
Windows
Mac

Time (in seconds)

C
D

F

(a) Requests to localhost

0 5 10 15 20

0.2

0.4

0.6

0.8

1

Mac
Linux
Windows

Time (in seconds)

C
D

F

(b) Requests to LAN addresses

Figure 7: CDFs of the time delays between when a landing page is fetched and when we observed the first local network request,
across OSes, for our malicious webpages measurements.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Malicious
Category Domains Protocol Ports Paths OS

W L M

Malware

(79 domains, omitted for brevity) http(s) 80/443 /*/wp-content/* ✓ ✓ ✓
acffiorentina.ru http 8080 /socket.io/socket.io.js ✓ ✓ ✓

elilaifs.cn 28317, 36759 /get_thunder_version ✓ ✓ ✓
boatattorney.com https 35729 /livereload.js ✓ ✓

jdih.purworejokab.go.id

http 80

/website-bphn-bk/* ✓ ✓ ✓
metolegal.com /metolegal/wp-includes/js/* ✓ ✓ ✓

ppdb.smp1sbw.sch.id /ppdbv3/ro-error/* ✓
scopesports.net /scope/xpertspanel/* ✓
tonyhealy.co.za / ✓ ✓ ✓
oceanos.com.co /wp-oceanos/* ✓ ✓ ✓

Abuse autorizador5.com.br, classyfashionbd.com,
coralive.org, saudiwallcovering.com http(s) 80/443 /*/wp-content/* ✓ ✓ ✓

Phishing

ebaybuy.com.buying-item-guest.com,
100-25-26-254.cprapid.com,

advancedlearningdynamics.com,
smarturl.it, customer-ebay.com,

{www.}citibank.gulajawajahe.my.id,
o2-billing.org, samarasecrets.com,
sic-week.000webhostapp.com,

signin01.kauf-eday.de, hotelmontiazzurri.com,
mahdistock.com, adesignsovast.com

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/ ✓

ag4.gartenbau-olching.de,
grp02.id.rakutan-co-jpr.buzz

http 80

/
✓ ✓

ag4.gartenbau-olching.de ✓
rakuten.* (8 domains),

www.ip.rakuten.1ex.info,
rakuteni.co.jp.ai12.info,

www.ip.rakuten.rbimomro.icu

✓

elmagra.net /dashboard-v1/* ✓ ✓
etoro-invest.org /StudentForum//* ✓ ✓ ✓

amazon.co.jp.* (12 domains) /robots.txt ✓
survivalhabits.com 44056 /NonExistentImage33090.gif ✓ ✓

evolution-postepay.com https 5140 /NonExistentImage19258.gif ✓ ✓
postepaynuovo.com 62389 /NonExistentImage55353.gif ✓ ✓ ✓
sbloccareposte.com http 44938 /NonExistentImage37362.gif ✓
verificapostepay.com https 49622 /NonExistentImage20705.gif ✓ ✓

aladdinstar.com 8443 /images/*.png ✓ ✓ ✓

Table 8: Summary of localhost requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li

Malicious
Category Domain Protocol Local IP Address Port Paths OS

W L M

Malware

test.laitspa.it

http

10.2.70.15 80 /*.css ✓ ✓ ✓
wangzonghang.cn 192.168.0.226 1080 /wp-content/themes/* ✓ ✓
{www.}crasar.org 192.168.1.8 80 /crasar/wp-content/themes/* ✓ ✓ ✓
mihanpajooh.com 10.10.34.35 / ✓ ✓

ahs.si https 192.168.33.10 443 /wp-content/uploads/2019/12/*.png ✓ ✓
fixusgroup.com 172.26.6.230 /wp-content/uploads/2020/02/*.png ✓ ✓ ✓

zoom.lk http 192.168.0.208 80
/wp_011_test_demos/

wp-content/uploads/2017/05/*.jpg ✓ ✓ ✓

Abuse 001tel.com 172.16.205.110 /usershare/*.js ✓ ✓ ✓

Table 9: Summary of LAN requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).

Rank (↓) Domain Protocol Local IP Address Port Paths OS
W L

4847 blogsky.com http 10.10.34.34 80 / ✓ ✓
23723 jollibeedelivery.qa 192.168.8.241 5000 /MyPhone/c2cinfo ✓ ✓
47356 unib.ac.id

https

192.168.64.160 443 /wp-content/uploads/2019/10/*.jpg ✓
61472 bahrain.bh 192.168.110.72 /matomo/*.js ✓ ✓
69494 auda.org.au 10.50.1.242 8450 /libraries/slick/slick/*.gif ✓ ✓
73274 mre.gov.br 192.168.33.187 443 /modules/mod_acontece/assets/* ✓
95595 haiwaihai.cn http 172.16.0.4 1117 /UpLoadFile/20160801/*.jpg ✓ ✓
96554 techshout.com https 192.168.0.120 443 /wp_011_gadgets/wp-content/uploads/* ✓ ✓

Table 10: Summary of LAN requests found in our 2021 top 100K measurements. OSes are Windows (W) and Linux (L).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓)

Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 /
✓ ✓ ✓

63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web-based LAN Attacks
	2.2 Measurements of Website Security and Privacy Behavior

	3 Method
	3.1 Data Collection
	3.2 Data Characterization
	3.3 Limitations

	4 Findings
	4.1 RQ1: Which Websites are Generating Local Network Traffic?
	4.2 RQ2: What are the Characteristics of the Local Network Traffic?
	4.3 RQ3: Why are Websites Making Local Network Requests?

	5 Discussion
	5.1 Website Anti-Abuse
	5.2 Web Tracking
	5.3 Defending Against Malicious Web-Based Local Traffic
	5.4 Developer Errors

	6 Conclusion
	References
	A Localhost Communication with Native Applications
	B Localhost and LAN Communication due to Developer Error
	C Unknown Cases

