
Web-based Attacks to Discover and Control Local IoT Devices

Gunes Acar∗, Danny Yuxing Huang∗, Frank Li†, Arvind Narayanan∗, Nick Feamster∗

∗Princeton University, †UC Berkeley

ABSTRACT
In this paper, we present two web-based attacks against local IoT de-
vices that any malicious web page or third-party script can perform,
even when the devices are behind NATs. In our attack scenario,
a victim visits the attacker’s website, which contains a malicious
script that communicates with IoT devices on the local network that
have open HTTP servers. We show how the malicious script can
circumvent the same-origin policy by exploiting error messages on
the HTML5 MediaError interface or by carrying out DNS rebinding
attacks. We demonstrate that the attacker can gather sensitive infor-
mation from the devices (e.g., unique device identifiers and precise
geolocation), track and profile the owners to serve ads, or control
the devices by playing arbitrary videos and rebooting. We propose
potential countermeasures to our attacks that users, browsers, DNS
providers, and IoT vendors can implement.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Security and privacy→Web protocol security; Browser
security;

KEYWORDS
Internet of Things, DNS rebinding, JavaScript, privacy
ACM Reference Format:
Gunes Acar∗, Danny Yuxing Huang∗, Frank Li†, Arvind Narayanan∗, Nick
Feamster∗. 2018. Web-based Attacks to Discover and Control Local IoT
Devices. In IoT S&P’18: ACM SIGCOMM 2018 Workshop on IoT Security and
Privacy , August 20, 2018, Budapest, Hungary. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3229565.3229568

1 INTRODUCTION
The rapid proliferation of IoT devices, from smart toys to smart ap-
pliances, enables a more connected and automated home. However,
we have recently witnessed a number of IoT privacy and security
fiascoes that have led to high-profile investigations, charges, and
settlements [1–4]. Beyond the security and privacy concerns of end
users, including children [5, 6], vulnerable IoT devices have been
leveraged against the Internet ecosystem at large. For example, the
2016 Mirai botnet compromised IoT devices to launch one of the
most devastating DDoS attacks the Internet had ever witnessed [7].

Attacks like that of the Mirai botnet are possible because many
IoT devices are publicly exposed on the Internet (e.g., due to port

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoT S&P’18, August 20, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5905-4/18/08. . . $15.00
https://doi.org/10.1145/3229565.3229568

forwarding). However, devices that are not Internet accessible (e.g.,
those behind NATs) are not safe either. In this paper, we present
two web-based attacks against IoT devices with HTTP servers on
the local area network (LAN). In our attack scenario, a victim on the
LAN visits a web page hosting malicious JavaScript (either directly
or loaded through a third-party). This script communicates with
the HTTP endpoints of the IoT devices on the LAN by carrying out
one or both of the following attacks1:

Attack 1○: Discovering local devices.We show that an attack
script can identify the presence of certain IoT devices on the LAN by
exploiting HTML5 MediaError interface error messages. Specifically,
the script uses the <audio> element to attempt to load a non-audio
resource from a given device’s web server. In Chrome and Firefox,
the resulting MediaError error message reveals if the resource exists.
With this technique, attackers can detect the presence of popular
devices, potentially profiling and tracking their owners.

Attack 2○: Accessing local devices. We demonstrate that an
attack script can fully access the HTTP endpoints of certain IoT
devices on the LAN via an age-old attack that circumvents the
same-origin policy, DNS rebinding [8]. We are the first to apply
this attack to the IoT realm, showing that attackers can obtain
sensitive information (e.g., MAC addresses and geolocations) from
devices and send commands to control the devices (e.g., rebooting
or playing arbitrary videos).

Any web publisher, advertiser, or third-party script embedded
on a visited page can deploy either or both of these attacks at
scale. We note these two attacks are independent of each other.
While Attack 1○ aids Attack 2○ by identifying devices of interest,
Attack 2○ is still feasible, albeit at a slower rate, without Attack 1○.
Neither attacks require a powerful adversary such as an ISP with
man-in-the-middle capabilities; nor do they involve compromising
routers or the lateral movement of malware within the network.

We observe that it may be difficult to curb these two attacks, as
the browser features that we exploit have legitimate use cases [9, 10].
Still, we propose mitigations that users, browsers, DNS providers,
and IoT vendors can implement.

In summary, this paper provides three primary contributions:
❖ We show that a web-based attacker can identify certain IoT

devices on the LAN by exploiting timing side channels and
HTML5 MediaError interface error messages, thereby
sidestepping the same-origin policy (SOP).

❖ We demonstrate how a web-based attacker can access and
control these devices. Additionally, we show what
information attackers can extract, via DNS rebinding attacks,
which also circumvent the SOP.

❖ We evaluate both attacks across seven IoT devices, four
browsers, and three operating systems. We identify the
limitations of these attacks and propose attack
countermeasures.

1We demo the attacks at: https://iot-inspector.princeton.edu/iot-sigcomm-18/

29

https://doi.org/10.1145/3229565.3229568
https://doi.org/10.1145/3229565.3229568
https://iot-inspector.princeton.edu/iot-sigcomm-18/

IoT S&P’18, August 20, 2018, Budapest, Hungary G. Acar et al.

2 RELATEDWORK

Network mapping and device discovery: As early as 2006, re-
searchers presented web-based attacks that target local network
devices. Lam et al. showed how an attacker can use malicious web
pages to propagate worms and scan internal devices for vulnera-
bilities [11]. Grossman presented a web-based attack to scan local
networks using onerror handlers of image resources [12]. Stamm et
al. used this attack to hijack the DNS servers of home routers [13].
This very attack was recently observed in the wild, used by the
DNSChanger exploit kit [14]. Several variants of the web-based
network or port scanners have been developed since then [15–21].
Compared to this prior work, our device discovery attack: (1) works
on HTTPS websites (i.e., circumvents mixed content protections);
(2) can be used to detect HTTP endpoints that do not contain images
(e.g., REST API endpoints); (3) works in parallel.

Gallagher proposed an improvement to web-based private net-
work mapping attacks by using WebSockets and WebWorkers to
circumvent network throttling by the browsers [22, 23]. Following
this work, we too use WebWorkers to avoid throttling.

Lee et al. [24] improved web-based LAN scanning attacks by
using AppCache mechanisms to identify the status of cross-origin
requests. Lee et al.’s attack takes about 76 seconds on OS X and 21
seconds on Windows, as it requires waiting for the HTTP connec-
tion to terminate. Compared to theirs, our attack is much faster,
uses a novel way to detect cross-origin request statuses, and does
not depend on a deprecated technology.
DNS rebinding attacks: DNS rebinding attacks were discovered
more than two decades ago [8]. Researchers exploredDNS rebinding
to circumvent firewalls, exfiltrate sensitive material from corpo-
rate intranets, and steal cryptocurrencies [25, 26]. Several freely
available libraries and services implement DNS rebinding [27, 28].

Browser vendors [29], firewalls [30], and DNS providers [31]
responded to DNS rebinding by attempting to implement defenses
that include DNS pinning and blocking of private IPs in DNS re-
sponses. Jackson et al. presented one of the notable studies on
defenses, conducting an extensive analysis of DNS rebinding and
its mitigations [25]. The authors also presented a software called
dnswall [32], which blocks DNS responses with private addresses
[25]. However, research has shown that those defenses are not
commonly deployed and a determined attacker can circumvent
them. For instance, FireDrill by Dai and Resig floods the browser’s
DNS cache to circumvent DNS pinning defenses [33]. Recently,
Young presented Jaqen, which combines the state-of-the-art DNS
rebinding attacks into a JavaScript library [34].

In this work, we explore the feasibility of launching DNS re-
binding attacks on today’s browsers and operating system, and the
damage these attacks can inflict against IoT devices.

3 PREPARING THE ATTACKS
The goal of the adversary in our model is to use JavaScript to
discover, access, and control local IoT devices runningHTTP servers
without authentication mechanisms. This requires the adversary to
issue HTTP requests (either GET or POST) to specific endpoints on the
web servers. Therefore, the attacker must acquire prior knowledge
of these endpoints before launching any attacks. The adversary
may take the following two steps to identify these endpoints.

IoT Device Attack

Amcrest HD Series IP Security Camera 1○
D-Link Wifi Camera 1○ 2○
Google Home 1○ 2○
Google Chromecast 1○ 2○
Samsung SmartCam HD Pro 1○ 2○
Samsung UHD Smart TV 1○ 2○
Belkin Wemo Smart Switch 1○ 2○

Table 1: IoT devices with open HTTP servers, and to which
attacks (1○ and/or 2○) they are vulnerable.

Step 1. Capturing packets from devices: An attacker can first
interact with devices of interest in a test environment, capture
the packets as a result of the interactions, and analyze the HTTP
endpoints. To simulate this step, we connected 15 IoT devices to
a Raspberry Pi wireless access point that also captured packets.2
In addition, we connected an Android phone to the same wireless
network, downloaded apps that corresponded to the IoT devices,
and used the apps to interact with the devices. We then analyzed
the captured packets offline to identify all local HTTP requests, i.e.,
requests between the phone and a device, and requests between
the devices. Of our 15 devices, we identified seven that had local
HTTP servers, listed in Table 1 (we did not detect HTTP endpoints
on the Amazon Echo, Geeni and LIFX light bulbs, Halo smoke
alarm, Hello Barbie toy, Samsung SmartThings Hub, and TP-Link
and Orvibo smart plugs). The servers listened on a range of ports,
all accepting unencrypted requests. We may have missed certain
HTTP endpoints, for instance, because our interactions failed to
cover all features of the device.
Step 2. Searching for other endpoints: To expand our coverage,
we sampled two of the discovered HTTP endpoints for each of
the seven devices, queried the paths on Google, and looked for
documentation of other endpoints that we had not yet discovered.
For example, we identified new endpoints in blog posts by other
security researchers who were analyzing similar devices [36]. We
verified these new endpoints by sending the same HTTP requests
to our own devices and ensuring no errors were flagged in the
responses.
Summary: In total, we collected 35 endpoints that accepted GET

requests and eight endpoints that accepted POST requests across
the seven devices. For the rest of the paper, we assume that an
adversary has knowledge of these endpoints before discovering or
accessing local IoT devices from the web.

4 ATTACK 1○: DISCOVER LOCAL DEVICES

Using the 35 HTTP endpoints from Section 3, an adversary can
launch Attack 1○. At a high level, the adversary hosts a malicious
JavaScript on a TLS-enabled web server and embeds the script on a
website or an ad. Using TLS here allows the JavaScript to be loaded
on both HTTP and HTTPS sites without triggering mixed-content
errors. While using her home network, a victim visits the page
with the malicious JavaScript, which automatically executes and
discovers certain IoT devices on the victim’s LAN. Discovering
a victim’s devices may potentially allow an adversary to launch
2CableLabs [35], a non-profit organization with ties to major cable network operators,
selected and donated these devices; their interest in these devices presumably reflects
the relative popularity among consumers.

30

Web-based Attacks to Discover and Control Local IoT Devices IoT S&P’18, August 20, 2018, Budapest, Hungary

further, device-specific attacks (e.g., Attack 2○), or to infer the
victim’s lifestyle if she owns certain specialty devices.

4.1 How the attack works
The malicious JavaScript takes the following steps to identify local
IoT devices:
(1) The script obtains the victim’s local IP address via the WebRTC

Session Description Protocol [37].
(2) The script sends a GET request via the Fetch API [38] to port

81 of every IP address in the local /24 subnet (e.g., https://192.
168.1.123:81/), while measuring the timing of each response. As
port 81 is rarely used, active devices are likely to immediately
respond with a TCP RST packet, while the TCP connection
times out for non-active IP addresses [17]. Using this timing
side channel, the script infers which IP addresses correspond
to active devices.

(3) To every active IP address, the script sends a request using the
HTML5 <audio> element for the 35 device-specific endpoints
that accept GET requests. Based on the resulting MediaError error
messages (as the endpoints do not host audio resources), the
script infers if the responding IP address is associated with one
of the seven known devices (Section 3), and if so, which device.

Circumventing throttling with WebWorkers: For Step 2, if
the attacker’s script sends the GET requests (via Fetch) sequentially,
scanning the entire /24 subnet could take several minutes. Instead,
the attacker can take advantage of the asynchronous nature of
Fetch and issue the GET requests in parallel. However, the browser
may throttle these requests, such that requests to active devices
may be queued and delayed. These delays may pollute the timing
measurements as the attacker may incorrectly attribute the delays
to inactivity.

To mitigate this problem, the attacker’s script can use multiple
WebWorkers — effectively separate threads — for the Fetch requests.
As the browser throttles requests on a per-thread basis, this tech-
nique allows the script to send more requests in parallel [22]. As a
further optimization, the script can cancel a Fetch request whose
execution time has exceeded a certain threshold (we discuss choos-
ing the threshold in Section 4.2), thus minimizing the waiting time
for requests with long timeouts.
Circumventing SOPwith <audio>: For each of the 35 GET requests
in Step 3, the attacker uses the <audio>3 element’s error messages
to infer the return code, effectively sidestepping the SOP.4 In par-
ticular, none of the 35 GET requests would normally return audio
files. Whether the endpoint exists or not, loading it as the src value
to an <audio> element will throw a MediaError with specific er-
ror messages. For example, if a particular HTTP endpoint exists,
<audio> would generate a MEDIA_ERR_SRC_NOT_SUPPORTED error with
the “DEMUXER_ERROR_COULD_NOT_OPEN: FFmpegDemuxer: open context

failed” error message on Chrome. On Firefox, the error code is the
same but the error message is “Failed to init decoder.” In compari-
son, <audio> element throws a “MEDIA_ELEMENT_ERROR Format error”
3In addition to <audio>, an adversary can use the <video> element to achieve the
same outcome on Chrome and Firefox. Although we have not exhaustively tested
every single API in the HTML5 specifications, an attacker can potentially sidestep the
SOP in a similar way using other features in the current or future implementations of
HTML5.
4Using <audio> also allows us to circumvent mixed content restrictions. Browsers
do not allow sending AJAX requests with HTTP schemes on HTTPS sites. However,
loading media resources over HTTP is still allowed by Chrome, Firefox and Safari .

OS Chrome Firefox

Ubuntu 16.04 6.0 7.0
macOS 10.13 4.0 7.0
Windows 10 5.4 6.0

Table 2: To evaluate the first attack, we show the number
of devices (out of 7 devices) discovered using <audio> error
messages, averaged over 5 attack attempts per OS/browser
pair. The attack does not work on Safari or Edge.

and “Message: 404: Not Found” error message for a non-existent
HTTP endpoint on Chrome and Firefox respectively.

While the <audio> error messages allow an adversary to subvert
the SOP, these messages help developers debug or determine errors
at runtime. For example, the error messages were introduced to Fire-
fox when multiple developers failed to understand why 2% of Fire-
fox users were getting an error when playing YouTube videos [9].
Similarly, Chromium developers’ failures to understand certain me-
dia errors prompted the introduction of the error messages into
Chromium and Chrome [10]. In contrast, Safari and Edge do not
expose a detailed error message, and we have no knowledge of the
reason. As a result, this attack does not work on either browsers.
Reducing false positives with random paths: Some devices,
such as the Belkin Wemo Switch, respond to any HTTP GET re-
quests with the 200 OK code. If the attacker requests a non-existent
endpoint on the Wemo Switch, the <audio> element will generate
an error message that suggests that the endpoint exists, thus result-
ing in a false positive. To mitigate this problem, for every active IP
address, the attack can use <audio> to request a randomly generated
path between Steps 2 and 3. Thereafter, the attacker can exclude a
device for which the error message indicates the existence of the
random path.

4.2 Evaluating the severity of the attack
Presumably, one of the adversary’s objectives is to maximize the
number of devices identified, while minimizing the duration of the
attack (as the victim may navigate away from the attack page, thus
terminating the attacker’s script). As such, we evaluated the attack
with the following two metrics.
Number of devices identified: To determine how many of the
seven devices (Table 1) the attacker could identify, we loaded the
attack script on different operating systems (i.e., Ubuntu 16.04, ma-
cOS 10.13, and Windows 10) and browsers (i.e., Chrome 65.0.3325,
Firefox 59.0.1, Safari 11.0.3, and Microsoft Edge 41.16299.15). For
each OS/browser pair, we executed the script in the browser se-
quentially for five iterations. For each page load, we counted the
number of devices correctly identified. Between each page load, we
disabled and re-enabled the wireless interface; otherwise, on macOS
any subsequent Fetch requests to non-active IP addresses may time
out quickly and become conflated with active IP addresses. Across
the five page loads, we computed the average number of devices
correctly identified, as shown in Table 2.

The attack script correctly identified all seven devices if a victim
loaded it in Firefox on Ubuntu and macOS. In Firefox on Win-
dows 10, the script consistently failed to identify the Samsung
SmartCam in each of the five page loads, as the port 81 Fetch re-
quests timed out and thus the camera’s IP address was identified as
inactive. Manually sending an HTTP GET request via cURL showed
that, in fact, the device was active.

31

https://192.168.1.123:81/
https://192.168.1.123:81/

IoT S&P’18, August 20, 2018, Budapest, Hungary G. Acar et al.

In Chrome, the attack script failed to identify the D-Link camera
in all 15 page loads across the three operating systems. We observed
that the camera responded with 200 OK to GET requests from the
<audio> element to random paths5; thus, the attack script considered
the device as a false positive and removed it. On Ubuntu, the script
identified the remaining six devices. However, it could not reliably
identify the Samsung SmartCam and the Wemo Switch on macOS
and Windows, as the Fetch requests timed out on these two devices.

On Safari, all the Fetch requests timed out, so the attack script
considered all IP addresses as inactive. In contrast, the script could
use Fetch to correctly identify the active IP addresses on Edge, but
the Edge browser did not expose detailed <audio> error messages.
Thus, the attack script was unable to identify any devices on Edge.

Based on these findings, Firefox and Chrome were the only two
browsers that the current version of the attack worked on. However,
an attacker could potentially fine-tune the attack parameters for
other browsers and OSes and fall back to alternative attacks (
and onerror based) where possible.
Duration of attack: For each Fetch request that the attack script
sent, we measured the time it took to fail with an error (as Fetchwas
requesting a non-existent resource). We found that requests to IP
addresses with active devices took 141 ms on average to fail with an
error (i.e., due to TCP RSTs). In comparison, requests to the inactive
IP addresses took approximately 3s, 21s and 76s to fail (i.e., due
to timeouts) on Ubuntu, Windows and macOS respectively. These
timeout values are consistent with Lee et al.’s earlier study [24].
Such variations in timeouts are likely due to how different operating
systems handle TCP timeouts.

An attacker with knowledge of these timings can optimize Fetch
requests by cancelling those that takemore than 141ms (e.g., setting
the threshold at 2 seconds).
4.3 Limitations of the attack
One key limitation to this attack is that the adversary can only
target IoT devices with local HTTP servers. Eight of the 15 devices
we studied did not satisfy this criteria, and thus were resistant to
attack. Furthermore, the attacker needs to have prior knowledge
of device-specific HTTP endpoints – for instance, by first buying
these devices and interacting with them (similar to Section 3).

This attack has two sources of errors. First, even with this prior
knowledge, an attacker may not always correctly identify a certain
device. Devices produced by the same manufacturer but branded
differently may not be distinguishable. For example, the Google
Home and the Chromecast have a matching HTTP endpoint. Even
if the <audio> error message suggests that this endpoint exists, an
attacker can only infer that the device is likely a Google product, not
if it is a Google Home or Chromecast (although other endpoints can
help with distinguishing). Another source of error is false negatives.
For example, we use WebWorkers in Step 2 of the attack to mitigate
browser throttling, but it cannot completely eliminate throttling
effects. As such, Fetch requests to IP addresses with active devices
may time out, causing the attacker to fail to identify those devices.

4.4 Countermeasures for the attack
What home users can do: In Step 1 of the attack, the malicious
script obtains the local IP address via WebRTC SDP. A home user

5The D-Link camera did not respond with 200 OK to Firefox; we speculate that this
variation is due to minor differences in HTTP headers sent by Chrome and Firefox.

can prevent this by toggling a preference in their browser (e.g.,
media.peerconnection.enabled on Firefox), although an adversary
can try to iterate over the *.1 addresses of the private IP ranges and
discover an active device (which is typically the local router).

In Step 2 of the attack, the malicious script assumes that the
IoT devices are on the same /24 subnet as the victim’s computer. A
home user can take advantage of this assumption and reconfigure
the DHCP on their home routers to give out IP addresses in the /16
subnet, for instance.
What browsers can do: Privacy-focused browsers (or browser
extensions) can limit the access to private IP ranges from web pages
with public domain names. This restriction can prevent scanning
of the LAN from the web, while still allowing access to web pages
served from the LAN (e.g., home router interfaces).
What IoT vendors can do: IoT vendors could configure devices
with HTTP servers to respond to any HTTP GET request with the
200 OK code. This technique would make fingerprinting the device
by its HTTP endpoints infeasible, although potentially at the cost
of more difficult debugging and development.

5 ATTACK 2○: ACCESS LOCAL DEVICES

While Attack 1○ can identify the presence or absence of specific
HTTP endpoints, it cannot read any returned data due to the SOP.
However, an attacker can circumvent the SOP with DNS rebind-
ing [8], as we will discuss in this section. We show that this attack
allows an adversary to extract private information (e.g., serial num-
bers, user names, or geolocations) from local devices or even control
these devices (e.g., rebooting or playing arbitrary videos).

5.1 How the attack works
Traditionally, attackers have used DNS rebinding to target local
routers, printers, firewalls, and corporate intranet servers [25]. IoT
exacerbates the impact of this attack, as it significantly increases
the number of potentially targeted devices, many of which connect
to physical processes or manage sensitive user data.

At a high level, an attacker executes DNS rebinding by operating
a web server at a domain (call it domain.tld) with a remote IP
address X and serving a malicious JavaScript from that domain.
The attacker also controls the domain’s authoritative name server,
such that resolving domain.tld initially will return the IP address
X , while subsequent resolutions will return a local IP address — i.e.,
“rebinding” the domain to the new local IP address. The rebinding to
a local destination allows the attack script (loaded from the attack
domain) to access local HTTP endpoints without triggering browser
cross-origin errors. Specifically, the attack proceeds as follows:
(1) A victim visits http://domain.tld/ for the first time. During the

DNS lookup for the domain, the authoritative name server
resolves the domain to X with a short TTL (e.g., one second).
The victim loads and executes the malicious JavaScript hosted
at the domain.

(2) The JavaScript requests another existing resource at the attacker-
controlled domain, e.g., http://domain.tld/evil-test.

(3) The local DNS caches at the victimmay or may not have evicted
domain.tld. If not, domain.tld still resolves toX , and the request
for http://domain.tld/evil-test would still return 200 OK. In this
case, the JavaScript waits a few seconds before re-attempting
Step (2).

32

http://domain.tld/
http://domain.tld/evil-test
http://domain.tld/evil-test

Web-based Attacks to Discover and Control Local IoT Devices IoT S&P’18, August 20, 2018, Budapest, Hungary

Capabilities C D H S T W

Get Software Version or Model ✓ ✓ ✓ ✓ ✓ ✓

Get Current SSID ✓ ✓ ✓ ✓ ✓

Get Nearby SSIDs ✓ ✓ ✓ ✓

Get Device Unique Identifier ✓ ✓ ✓ ✓ ✓ ✓

Get Owner’s Username ✓

Change State ✓ ✓ ✓ ✓

Table 3: What Attack 2○ could do to IoT devices: Google
[C]hromecast, [D]-Link Camera, Google [H]ome, Samsung
[S]martCam, Samsung [T]V, and [W]emo Switch.

(4) If domain.tld has expired in the local DNS caches, the victim
will query the attacker’s authoritative name server and resolve
domain.tld again.

(5) This time, the name server returns a local IP address, Y . (From
Attack 1○, the attacker could have learned that Y is associ-
ated with a known IoT device for this victim.6) As the do-
main has been rebound to a new IP address, any request for
http://domain.tld/evil-test now returns a 404 error. At this point,
DNS rebinding is complete. The attack script can now send
HTTP requests directly to HTTP endpoints on the device at IP
address Y , and read responses, allowing the attacker to extract
information from or send commands to the device.
To perform DNS rebinding, an attacker can use Jaqen [34], an

open-source DNS rebinding attack server that automatically man-
ages and optimizes the name server and web server responses to
perform DNS rebinding attacks.

5.2 Which devices were vulnerable
We implemented and executed an attack script that used DNS
rebinding to access the devices from Table 1.7 On Ubuntu and
Windows, this attack completed within 2 to 4 seconds across all
browsers, while the completion time was between 9 and 13 seconds
across the different browsers on macOS, possibly due to longer
DNS caching on macOS. In the following, we enumerate the salient
data that the attack script was able to extract from the devices via
GET requests, along with the control commands that it could issue
using POST requests. We summarize our findings in Table 3.
Google Home: An attacker could extract device configurations
and other information using GET requests, including: software or
firmware build versions, which attackers could use to identify out-
dated devices with known vulnerabilities; the SSID and BSSID of
the wireless network the device was using, which could also be
used for fingerprinting and geolocation; the night mode settings,
which could reveal user sleep schedules; alarms and timers set on
the device, which could also leak user schedules; and the device’s
unique identifier.

Using HTTP POST requests, the attacker could initiate a wireless
network scan by the Google Home and retrieve the SSID, BSSID,
and signal strength for each detected network. This scan could
provide a unique fingerprint for the local network, and potentially
could reveal the precise physical location of the device [39]. The
attacker could also trigger a reboot of the Google Home with an
6Without Attack 1○, an attacker would have to try all the 35 known GET requests
until one of them returns 200 OK. While Attack 1○ is not absolutely needed, it does
speed up Attack 2○.
7Omitted from this evaluation was the Amcrest Camera, which had only one known
HTTP endpoint that returned an icon image. We chose not to attack this device because
the endpoint did not return any unique identifiers or sensitive information.

HTTP POST request. Our device took over 30 seconds to reboot, so
this capability could be used to launch a denial-of-service attack
on Google Homes or damage the reputation of Google products.
Google Chromecast: Attackers could exploit the Google Chrome-
cast similarly to the Google Home. The same information could
be extracted from using HTTP GET requests except for night mode
parameters and alarms/timers, which were not supported by the
Chromecast.

Like the Google Home, miscreants could use HTTP POST requests
to extract local WiFi network information from the Chromecast,
and reboot the device. In addition, attackers could send a POST

request to trigger the Chromecast to play any YouTube video, simply
specifying the YouTube video ID. This capability could be leveraged
to conduct view fraud, gaining a large number of views for attacker
videos and generating ad revenue.
Samsung Smart TV: The HTTP GET interfaces exposed infor-
mation about the device, such as: device model details, useful for
identifying outdated or vulnerable devices; a unique device ID, mak-
ing the TV fingerprintable; and the BSSID of the wireless network
the device was using, also helpful for fingerprinting and geoloca-
tion. Furthermore, the device also exposed UPnP endpoints that
accepted HTTP POST requests. We found that an attacker could
trigger the TV to play any audio or video file at a given URL.
Wemo Switch: The Wemo Switch provided an HTTP endpoint
that revealed the device model, its MAC address, a unique device
identifier, the firmware version, and its current on/off state. This
information could be useful for fingerprinting the device, tracking
switch usage, and identifying outdated vulnerable devices.

Like the Samsung Smart TV, the Wemo Switch also supported
UPnP via HTTP POST requests that allowed for further data extrac-
tion and full control of the device. An attacker could extract the
schedules set for the device and identify all local wireless network
SSIDs, data useful for user tracking or profiling. With UPnP com-
mands, attackers could also turn on and off the switch, change its
schedule, change the WiFi settings, and trigger a firmware update.
Samsung SmartCam: We identified 5 HTTP endpoints that ex-
pected GET requests, but none for HTTP POST requests. These GET

requests returned the camera model, the serial number (for which
Samsung provided an API that returned the username of the device),
the current network’s SSID, and the SSIDs of networks nearby.
D-Link Camera: The D-Link camera provided 6 HTTP endpoints
for GET requests, but none for POST requests. One endpoint returned
the device model, the build version, the MAC address, and the
local router’s IP address — all useful information for fingerprinting
devices and identifying vulnerable models.

The other endpoints for GET requests required authentication. If
an attacker could guess the password (as the username remained
“admin”), they could directly access the live stream video and sound
from the camera. However, the camera setup process prompted the
user to change the device password, and browsers displayed login
prompts, which would alert the user to suspicious behavior.

5.3 Which OSes and browsers were vulnerable
The feasibility of the attack differed depending on the operating
system (Windows 10, Ubuntu 16.04, macOS 10.13) and the browser
(Chrome 65.0.3325, Firefox 59.0.1, Safari 11.0.3, and Microsoft Edge
41.16299.15). We observed that an attacker could successfully issue
GET requests on all six devices in Chrome across all three OSes,

33

http://domain.tld/evil-test

IoT S&P’18, August 20, 2018, Budapest, Hungary G. Acar et al.

OS Request Chrome Firefox Safari

Ubuntu GET C D H S T W C D H S T W N/A
POST C H T W C H T W N/A

macOS GET C D H S T W C D H S T W C D H S T W
POST C H T W C H T W C H T W

Windows GET C D H S T W C D H S T W N/A
POST C H T W C H T W N/A

Table 4: Which operating systems and browsers were vul-
nerable to Attack 2○ against the following devices: Google
[C]hromecast, [D]-Link Camera, Google [H]ome, Samsung
[S]martCam, Samsung [T]V, and [W]emo Switch. An unfor-
matted letter indicates that the attack was successful on all
known HTTP endpoints on a given device; an underline in-
dicates unsuccessful attacks on all of the HTTP endpoints;
and italics indicates that some of the endpoints were vulner-
able to our attack. We omit listing Microsoft Edge as all at-
tacks failed on it.

while in Firefox an attacker could potentially achieve the highest
success rate for POST requests. We summarize the findings in Table 4.
Chrome: On all OSes, DNS rebinding succeeded for all targeted
HTTP GET and POST endpoints. All HTTP GET requests succeeded in
retrieving device data. Of our four devices with HTTP POST inter-
faces, an attacker could control the Wemo Switch and the Samsung
Smart TV. The Google Home and Chromecast disallowed our attack
HTTP POST requests as it appeared these devices denied requests
that contained “Mozilla” in the user-agent header, and Chrome
did not permit JavaScript to modify the user-agent header value.
We suspect this user-agent filtering was a measure against web
browsers accessing the HTTP interface.8 In Section 5.4, we propose
that the Origin header and other forbidden header names [41] are
more suitable for filtering browser-originated requests.
Firefox: Firefox allowed scripts to overwrite user-agent headers.
Thus we could bypass user-agent based filtering by the Google
Home and Chromecast to send POST requests.

On Windows 10, DNS rebinding and all subsequent HTTP GET

and POST requests were successfully executed. Thus, an attacker
could conduct the full range of attacks discussed in Section 5.2.

On Ubuntu and macOS, the DNS rebinding failed for some HTTP
endpoints. In these cases, we observed that the attack domain was
successfully rebound to a local IP address, but only for a single
network connection. We have not determined the cause of this odd
behavior, and we speculate it is due to a limitation in Jaqen.

On Ubuntu, this DNS rebinding issue prevented attackers from
accessing any HTTP endpoints on the Samsung Smart TV, the
Samsung SmartCam, the D-Link Camera, and theWemo Switch. For
all HTTP endpoints on other devices, adversaries could successfully
make HTTP GET and POST requests to conduct the attacks.

On macOS, the rebinding issue for Firefox was less extensive,
affecting 1 of 9 Samsung Smart TV endpoints, 2 of 5 D-Link Camera
endpoints, and the single Wemo Switch endpoint. The HTTP GET

requests were successful on all other endpoints, and all of the HTTP
POST requests were correctly executed (except on theWemo Switch).
The HTTP POST endpoints on the Samsung Smart TV were not
affected by the DNS rebinding failure.

8All modern browsers include “Mozilla” in their user-agent string for historical com-
patibility reasons [40].

Safari: For Safari onmacOS, all HTTP GET attacks worked correctly,
but attackers could not trigger actions on the Google Home and
Chromecast, as Safari also disallowed user-agent modifications.
Like on Chrome, an attacker could control the Wemo Switch and
the Samsung Smart TV through HTTP POST requests.
Microsoft Edge: For Edge on Windows 10, DNS rebinding failed
in all cases, so an adversary could not execute any of the attacks. It
appeared that Edge had built-in DNS rebinding protection, although
we did not find confirmed documentation of this defense.

5.4 Countermeasures for the attack
What home users can do: Users can install dnsmasq, a local DNS
forwarder that protects against DNS rebinding by dropping RFC
1918 addresses from DNS replies, similar to dnswall [42]. Alterna-
tively, users can use OpenWRT routers, which use dnsmasq under
the hood [43] to drop private IPs in DNS replies.
What browser vendors can do: Prior attempts to mitigate DNS
rebinding in browsers not only broke some web services [29], but
led to new security vulnerabilities [44]. Some browser vendors seem
to have adopted the view that it is infeasible to completely mitigate
this attack in the browser [45, 46]. We believe a browser-based
defense remains as an open research problem.
What IoT manufacturers can do: Vendors can validate the Host
headers of incoming requests (which none of our six devices did)
and only allow requests that contain the device’s IP address or
mDNS name in the Host header. Moreover, we propose that for-
bidden header names such as the Origin header, which cannot be
overwritten by web scripts, can be used to filter out requests that
originate from arbitrary web pages and browsers [41, 47].
WhatDNS providers can do: DNS providers can use dnswall [25]
or similar software to filter out private IPs from DNS replies. We
checked eight popular DNS providers and found that none of the
following ISPs and DNS providers filtered out private IPs from
their replies: ATT, Comcast, Verizon Fios, Google DNS, Cox, Time
Warner, Orange (Spain), and VyprVPN.

6 RESPONSIBLE DISCLOSURE
We reported vulnerabilities discovered throughout our research
to respective browser (Mozilla [48] and Chromium [49]) and IoT
vendors (Google, Samsung, D-Link, Belkin). The Chromium project
awarded a bug bounty for our disclosure.

7 CONCLUSION
In this paper, we have shown that a web script can detect the
presence of IoT devices that have local HTTP interfaces, and that it
can access the devices using DNS rebinding. Malicious web pages
or third-party ads can perform these two attacks, possibly without
user awareness. As we did not identify well-known defenses from
major browsers, DNS providers, and IoT vendors, the attacks are
likely to present major security and privacy concerns to IoT users.

ACKNOWLEDGMENTS
This work was partially supported by NSF awards CNS-1526353,
CNS-1539902, CNS-1535796, and CNS-1237265, the William and
Flora Hewlett Foundation, a Google Faculty Research Award, and
the Princeton University Center for Information Technology Policy
Internet of Things Consortium.

34

Web-based Attacks to Discover and Control Local IoT Devices IoT S&P’18, August 20, 2018, Budapest, Hungary

REFERENCES
[1] Federal Trade Commission. FTC Charges D-Link Put Consumers’ Privacy

at Risk Due to the Inadequate Security of Its Computer Routers and Cam-
eras. https://www.ftc.gov/news-events/press-releases/2017/01/ftc-charges-d
-link-put-consumers-privacy-risk-due-inadequate, 2017.

[2] Federal Trade Commission. ASUS Settles FTC Charges That Insecure Home
Routers and "Cloud" Services Put Consumers’ Privacy At Risk. https://www.
ftc.gov/news-events/press-releases/2016/02/asus-settles-ftc-charges-insecure
-home-routers-cloud-services-put, 2016.

[3] Federal Trade Commission. Electronic Toy Maker VTech Settles FTC Alle-
gations That it Violated Children’s Privacy Law and the FTC Act. https://
www.ftc.gov/news-events/press-releases/2018/01/electronic-toy-maker-vtech
-settles-ftc-allegations-it-violated, 2018.

[4] VIZIO to Pay $2.2 Million to FTC, State of New Jersey to Settle Charges
It Collected Viewing Histories on 11 Million Smart Televisions without
Users’ Consent. https://www.ftc.gov/news-events/press-releases/2017/02/
vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it, 2017.

[5] Emily McReynolds, Sarah Hubbard, Timothy Lau, Aditya Saraf, Maya Cakmak,
and Franziska Roesner. Toys that Listen: A Study of Parents, Children, and
Internet-Connected Toys. In ACM Conference on Human Factors in Computing
Systems (CHI), 2017.

[6] German Parents Told to Destroy Cayla Dolls over Hacking Fears. http://www.
bbc.com/news/world-europe-39002142, 2017.

[7] Wikipedia. 2016 Dyn cyberattack. https://en.wikipedia.org/wiki/2016_Dyn_
cyberattack, 2016.

[8] Drew Dean, Edward W Felten, and Dan S Wallach. Java Security: From HotJava
to Netscape and Beyond. In IEEE Symposium on Security and Privacy (S&P), 1996.

[9] Mozilla. High rate of MEDIA_ERR_SRC_NOT_SUPPORTED error being thrown.
https://bugzilla.mozilla.org/show_bug.cgi?id=1417869#c3, 2017.

[10] Chromium. Better logging for cause of media playback failure. https://bugs.
chromium.org/p/chromium/issues/detail?id=492845, 2015.

[11] VT Lam, Spyros Antonatos, Periklis Akritidis, and Kostas G Anagnostakis. Pup-
petnets: Misusing Web Browsers as a Distributed Attack Infrastructure. In ACM
Conference on Computer and Communications Security (CCS), 2006.

[12] Jeremiah Grossman and T Niedzialkowski. Hacking Intranet Websites from the
Outside: JavaScript Malware Just Got a Lot More Dangerous. Blackhat USA, 2006.

[13] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson. Drive-By Pharming. In
International Conference on Information and Communications Security (ICICS),
2007.

[14] Proofpoint. Home Routers Under Attack via Malvertising on Windows, Android
Devices. https://www.proofpoint.com/us/threat-insight/post/home-routers-
under-attack-malvertising-windows-android-devices, 2015.

[15] beefproject. XSS Rays. https://github.com/beefproject/beef/wiki/Xss-Rays, 2012.
[16] JS-Recon. Port Scanning with HTML5 and JS-Recon . http://blog.andlabs.org/

2010/12/port-scanning-with-html5-and-js-recon.html, 2010.
[17] Taylor Hornby. Port Scanning Local Network From a Web Browser. https:

//defuse.ca/in-browser-port-scanning.htm, 2015.
[18] Peppersoft. Local Network Scanner with JavaScript. http://peppersoft.net/

local-network-scanner-javascript/, 2017.
[19] JavaScript LAN scanner. https://www.myria.de/lan-scan/index.php, 2007.
[20] Joe Vennix. lan-js: Probe LAN devices from a web browser. https://github.com/

joevennix/lan-js, 2015.
[21] Matthew Bryant. sonar.js: A Framework for Identifying and Launching Exploits

against Internal Network Hosts. https://github.com/mandatoryprogrammer/
sonar.js, 2015.

[22] Tom Gallagher. Port Scanning and WebSockets. https://datatracker.ietf.org/
meeting/96/materials/slides-96-saag-1/, 2016.

[23] Tom Gallagher. Security Enhancement for WebSockets to Prevent Private
Network Mapping. https://tools.ietf.org/html/draft-gallagher-hybiwebsocket
enhancement-00, 2016.

[24] Sangho Lee, Hyungsub Kim, and Jong Kim. Identifying Cross-origin Resource
Status Using Application Cache. In Network and Distributed System Security
Symposium (NDSS), 2015.

[25] Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, and Dan Boneh.
Protecting Browsers from DNS Rebinding Attacks. ACM Transactions on the Web
(TWEB), 3(1):2, 2009.

[26] Jazzy. How Your Ethereum Can Be Stolen Through DNS Rebinding.
https://ret2got.wordpress.com/2018/01/19/how-your-ethereum-can-be-stolen
-using-dns-rebinding, 2018.

[27] Rebind. https://tools.kali.org/sniffingspoofing/rebind, 2014.
[28] Taviso Ormandy. rbndr. https://github.com/taviso/rbndr, 2017.
[29] Bug 149943 - Use "DNS pinning" to Prevent Princeton-like Exploits. https://

bugzilla.mozilla.org/show_bug.cgi?id=149943, 2002.
[30] pfSense. DNS Rebinding Protections. https://doc.pfsense.org/index.php/DNS_

Rebinding_Protections, 2011.
[31] Cisco. Finally, a Real Solution to DNS Rebinding Attacks. https://umbrella.cisco.

com/blog/2008/04/14/finally-a-real-solution-to-dns-rebinding-attacks/, 2008.
[32] Andrew Bortz. google-dnswall. https://github.com/abortz/google-dnswall/, 2015.
[33] Yunxing Dai and Ryan Resig. FireDrill: Interactive DNS Rebinding. In USENIX

Workshop on Offensive Technologies (WOOT), 2013.

[34] Luke Young. Open Sourcing Jaqen, A Tool For Developing DNS Rebinding
PoCs | LinkedIn Engineering. https://engineering.linkedin.com/blog/2017/07/
open-sourcing-jaqen--a-tool-for-developing-dns-rebinding-pocs, 2017.

[35] CableLabs. https://www.cablelabs.com/, 2018.
[36] Google Home Local API. https://rithvikvibhu.github.io/GHLocalApi/, 2018.
[37] Suhas Nandakumar and Cullen Jennings. SDP for the WebRTC. https://tools.ietf.

org/html/draft-nandakumar-rtcweb-sdp-00, 2012.
[38] Mozilla. Fetch API. https://developer.mozilla.org/en-US/docs/Web/API/Fetch_

API, 2018.
[39] WiGLE.net. WiGLE: Wireless Network Mapping. https://wigle.net/, 2018.
[40] Pawel Piejko. List of User Agent strings. https://deviceatlas.com/blog/

list-of-user-agent-strings, 2018.
[41] Mozilla. Forbidden Header Name. https://developer.mozilla.org/en-US/docs/

Glossary/Forbidden_header_name, 2017.
[42] Simon Kelley. Man page of dnsmasq. http://www.thekelleys.org.uk/dnsmasq/

docs/dnsmasq-man.html, 2018.
[43] OpenWrt. DNS and DHCP Configuration. https://wiki.openwrt.org/doc/uci/

dhcp#common_options, 2018.
[44] Bug 174590 - DNS "Pinning" behavior leads to security hole. https://bugzilla.

mozilla.org/show_bug.cgi?id=174590, 2002.
[45] Bug 689835 - DNS rebinding attack using cached resources. https://bugzilla.

mozilla.org/show_bug.cgi?id=689835#c9, 2011.
[46] Bug 274464 - Security: DNS cache can be flooded, which leads to DNS rebinding,

circumvents same origin policy. https://bugs.chromium.org/p/chromium/issues/
detail?id=274464#c10, 2013.

[47] Issue #37: ‘user-agent’ header control - whatwg/fetch. https://github.com/
whatwg/fetch/issues/37, 2018.

[48] Bug 1450853 - MediaError Message Property Leaks Cross-Origin Response Status.
https://bugzilla.mozilla.org/show_bug.cgi?id=1450853, 2018.

[49] Bug 828265 - MediaError Message Property Leaks Cross-Origin Response Status.
https://bugs.chromium.org/p/chromium/issues/detail?id=828265, 2018.

35

https://www.ftc.gov/news-events/press-releases/2017/01/ftc-charges-d
-link-put-consumers-privacy-risk-due-inadequate
https://www.ftc.gov/news-events/press-releases/2016/02/asus-settles-ftc-charges-insecure
https://www.ftc.gov/news-events/press-releases/2016/02/asus-settles-ftc-charges-insecure
-home-routers-cloud-services-put
https://www.ftc.gov/news-events/press-releases/2018/01/electronic-toy-maker-vtech
https://www.ftc.gov/news-events/press-releases/2018/01/electronic-toy-maker-vtech
-settles-ftc-allegations-it-violated
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
http://www.bbc.com/news/world-europe-39002142
http://www.bbc.com/news/world-europe-39002142
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://bugzilla.mozilla.org/show_bug.cgi?id=1417869#c3
https://bugs.chromium.org/p/chromium/issues/detail?id=492845
https://bugs.chromium.org/p/chromium/issues/detail?id=492845
https://www.proofpoint.com/us/threat-insight/post/home-routers-
under-attack-malvertising-windows-android-devices
https://github.com/beefproject/beef/wiki/Xss-Rays
http://blog.andlabs.org/2010/12/port-scanning-with-html5-and-js-recon.html
http://blog.andlabs.org/2010/12/port-scanning-with-html5-and-js-recon.html
https://defuse.ca/in-browser-port-scanning.htm
https://defuse.ca/in-browser-port-scanning.htm
http://peppersoft.net/local-network-scanner-javascript/
http://peppersoft.net/local-network-scanner-javascript/
https://www.myria.de/lan-scan/index.php
https://github.com/joevennix/lan-js
https://github.com/joevennix/lan-js
https://github.com/mandatoryprogrammer/sonar.js
https://github.com/mandatoryprogrammer/sonar.js
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1/
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1/
https://tools.ietf.org/html/draft-gallagher-hybiwebsocket
enhancement-00
https://ret2got.wordpress.com/2018/01/19/how-your-ethereum-can-be-stolen
-using-dns-rebinding
https://tools.kali.org/sniffingspoofing/rebind
https://github.com/taviso/rbndr
https://bugzilla.mozilla.org/show_bug.cgi?id=149943
https://bugzilla.mozilla.org/show_bug.cgi?id=149943
https://doc.pfsense.org/index.php/DNS_Rebinding_Protections
https://doc.pfsense.org/index.php/DNS_Rebinding_Protections
https://umbrella.cisco.com/blog/2008/04/14/finally-a-real-solution-to-dns-rebinding-attacks/
https://umbrella.cisco.com/blog/2008/04/14/finally-a-real-solution-to-dns-rebinding-attacks/
https://github.com/abortz/google-dnswall/
https://engineering.linkedin.com/blog/2017/07/open-sourcing-jaqen--a-tool-for-developing-dns-rebinding-pocs
https://engineering.linkedin.com/blog/2017/07/open-sourcing-jaqen--a-tool-for-developing-dns-rebinding-pocs
https://www.cablelabs.com/
https://rithvikvibhu.github.io/GHLocalApi/
https://tools.ietf.org/html/draft-nandakumar-rtcweb-sdp-00
https://tools.ietf.org/html/draft-nandakumar-rtcweb-sdp-00
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://wigle.net/
https://deviceatlas.com/blog/list-of-user-agent-strings
https://deviceatlas.com/blog/list-of-user-agent-strings
https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name
https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name
http://www.thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html
http://www.thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html
https://wiki.openwrt.org/doc/uci/dhcp#common_options
https://wiki.openwrt.org/doc/uci/dhcp#common_options
https://bugzilla.mozilla.org/show_bug.cgi?id=174590
https://bugzilla.mozilla.org/show_bug.cgi?id=174590
https://bugzilla.mozilla.org/show_bug.cgi?id=689835#c9
https://bugzilla.mozilla.org/show_bug.cgi?id=689835#c9
https://bugs.chromium.org/p/chromium/issues/detail?id=274464#c10
https://bugs.chromium.org/p/chromium/issues/detail?id=274464#c10
https://github.com/whatwg/fetch/issues/37
https://github.com/whatwg/fetch/issues/37
https://bugzilla.mozilla.org/show_bug.cgi?id=1450853
https://bugs.chromium.org/p/chromium/issues/detail?id=828265

	Abstract
	1 Introduction
	2 Related Work
	3 Preparing the Attacks
	4 Attack 1⃝: Discover Local Devices
	4.1 How the attack works
	4.2 Evaluating the severity of the attack
	4.3 Limitations of the attack
	4.4 Countermeasures for the attack

	5 Attack 2⃝: Access Local Devices
	5.1 How the attack works
	5.2 Which devices were vulnerable
	5.3 Which OSes and browsers were vulnerable
	5.4 Countermeasures for the attack

	6 Responsible disclosure
	7 Conclusion
	References

