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ABSTRACT

Many distributed systems are subject to the Sybil attack, where an
adversary subverts system operation by emulating the behavior of
multiple distinct nodes. Most recent works addressing this problem
leverage social networks to establish trust relationships between
users. However, social networks are not appropriate in all systems.
They can be subverted by social engineering techniques, require
nodes to maintain and be aware of social network information, and
may require overly optimistic assumptions about the fast-mixing
nature of social links.
This paper explores an alternate approach. We present Sybil-

Control, a novel decentralized scheme for controlling the extent of
Sybil attacks. It is an admission and retainment control scheme
for nodes in a distributed system that requires them to periodically
solve computational puzzles. SybilControl consists of a distributed
protocol to allow nodes to collectively verify the computational
work of other nodes, and mechanisms to prevent the malicious
influence of misbehaving nodes that do not perform the compu-
tational work. We investigate the practical issues involved with
deploying SybilControl into existing DHTs, particularly with han-
dling churn. SybilControl is shown to provide strict bounds on
the size of Sybil attacks, given adversaries with finite resources.
We also show through simulations that the performance overhead
of enabling SybilControl is manageable using commonplace DHT
churn-handling techniques. This provides strong evidence that Sybil-
Control can be practically deployed.

Categories and Subject Descriptors
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tributed Systems—Distributed applications

General Terms

Design, Security

Keywords

Sybil Attack, Distributed Systems, Computational Puzzles

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’12, October 15, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1662-0/12/10 ...$15.00.

1. INTRODUCTION
Decentralized distributed systems, such as peer-to-peer networks,

are a basis for scalable computing. However, many systems are
particularly susceptible to the Sybil attack [16]. In this attack, an
adversary exploits the low cost of entry into a system by obtain-
ing multiple identities, thus taking the guise of many distinct nodes.
These Sybil nodes can then collude to launch further attacks, for ex-
ample by taking over resources and disrupting connectivity, to sub-
vert the system’s operation. Researchers have documented this vul-
nerability in real-world systems, including the Maze peer-to-peer
file-sharing system [23, 40] and Vanish [19, 39], a system for self-
destructing data that relies on a distributed hash table (DHT). Also,
Sybil attacks can be launched on the Tor network [14], where an
adversary inserts a large number of bad relays.

Addressing this vulnerability is important for establishing trust
on such systems. Recent research has focused on leveraging in-
formation from social networks to protect honest users, resulting
in several state-of-the-art approaches [9, 12, 22, 24, 25, 35, 38, 41].
The key observation in these approaches is that it is expensive for
a malicious adversary to establish social links with honest users,
and hence social network graphs can be used to detect and mitigate
Sybil attacks. If the number of social links between the adversary
and honest users is g, these defenses bound the number of Sybils to
a function of g. For example, SybilLimit [41] guarantees a bound of
O(g lg n) Sybil identities, where n is the number of honest nodes
in the system.

However, the reliance of these techniques on social networks has
disadvantages. The use of a social network is not appropriate in
many systems, as social relationships require nodes to be aware of
their social contacts and users to exert manual effort to set up and
maintain accurate relationships. Also, a recent study indicates that
social network-based approaches do not perform as well in real-
world systems [36]. These approaches are dependent on the as-
sumption that the number of connections between Sybil nodes and
honest nodes is small relative to the number of honest nodes in the
network. This assumption is not necessarily valid, as it requires
the social networks to be fast-mixing, meaning a random walk on
the graph approaches the stationary distribution relatively quickly.
Recent investigations [26] into the mixing times of real-world so-
cial networks have found that they may not be as fast as what the
approaches assumed. Furthermore, studies [6, 8, 36] indicate so-
cial networks are prone to social engineering attacks (for example,
some Facebook users agree to many friend requests regardless of
whether the other party is known to them). This can drastically in-
flate the number of relationships between Sybil and honest nodes.
These disadvantages lead to questions about the practicality of so-
cial network methods in real-world contexts.



To address this, we present SybilControl, a novel admission and
retainment control scheme that limits the extent of Sybil attacks.
If an adversary with finite resources must dedicate some resources
to support each node in a system, then it can only support a lim-
ited number of adversarial nodes. SybilControl enforces that nodes
dedicate computational resources to support their system identities.
Thus, we differ from social network approaches in both our assump-
tions and provided bounds. We assume a computationally-bounded
adversary, instead of making assumptions on the trust relationships
between nodes. Our bounds, as we will show, limit the proportion
of Sybils in the network to equal the proportion of resources the
adversary controls, instead of depending on the number of social
connections between Sybils and honest nodes. SybilControl does
not limit the adversary’s ability to position nodes in the network, as
other schemes to address this issue have been developed [32] and
can be used orthogonally with SybilControl.
SybilControl’s enforcement is conducted through two main com-

ponents: a distributed protocol to allow nodes to collectively verify
computational work of other nodes, and defense mechanisms that
protect honest nodes from the influences of misbehaving nodes that
do not perform computational work. In particular, a SybilControl-
enabled node can distribute challenges to its neighbors, and can ver-
ify that those neighbors recently used the challenges to solve com-
putational puzzles. Computational puzzles [18, 21] can be created
to require significant amounts of computation to solve but are easy
to verify. Challenges are propagated throughout the network in a
scalable fashion using aggregation, enabling nodes to verify other
nodes that are not their adjacent neighbors. To provide the prop-
erty that the number of identifiers owned by a user remains com-
mensurate with the computational power of the user, SybilControl
nodes periodically re-issue fresh challenges, forcing other nodes to
periodically solve new puzzles to remain in the system. Defense
mechanisms protect honest nodes from Sybils that do not perform
computational work, preventing those Sybils from subverting the
system.
SybilControl can be applied to a wide variety of distributed sys-

tems to allow for scalable trusted computing. To investigate perfor-
mance issues, we focus on distributed hash tables, or DHTs, and
deploy it in the context of the Chord DHT [34] for concreteness.
DHTs enable a number of scalable systems such as peer-to-peer
networks, distributed file systems, content distribution networks,
and decentralized recommendation systems, among others. Use of
SybilControl protocols can exacerbate the effects of churn, or the
dynamic arrival and departure of nodes in the network, in DHTs.
However, we evaluate a SybilControl-enabled version of Chord
through simulations, and find that when using common DHT churn-
handling techniques, the performance overhead of SybilControl is
minimized. Additionally, the security bounds provided by Sybil-
Control are analysed, showing a strict bound on the size of Sybil
attacks given an adversary with finite resources. This bound’s ef-
fectiveness is quantified through a basic cost analysis. These evalu-
ations provide strong evidence of SybilControl’s practicality.
The remainder of the paper is structured as follows: In Section 2,

we discuss background and related work in Sybil defense. In Sec-
tion 3, we provide an overview of our approach, followed by the
design details of SybilControl in Section 4. Section 5 documents
the deployment of SybilControl, specifically for DHTs. The secu-
rity and cost analysis, performance and practicality of SybilControl
is evaluated in Section 6, followed by concluding remarks in Sec-
tion 7.

2. BACKGROUND AND RELATEDWORK

2.1 Distributed Hash Tables
Distributed hash tables (DHTs), such as Chord [34], Pastry [31],

CAN [29], and Tapestry [43], are decentralized systems for stor-
ing key-value pairs where keys are numerical values within a cer-
tain range (the keyspace). The primary operation is the lookup:
given a key, a node in the system can efficiently retrieve the as-
sociated value. DHTs form the infrastructure for a variety of scal-
able systems such as peer-to-peer networks, distributed file systems,
anonymity networks, and decentralized file-sharing systems.

In a DHT, nodes are assigned unique numerical identifiers. A
keyspace partitioning scheme divides the ownership of the keyspace
amongst the nodes, and key-value pairs are stored at the node who
owns the key. For example, in Chord, node IDs are drawn from the
keyspace, and the partitioning is dependent on the node’s ID. If a
node has ID i and the node with the next higher ID has j, node j
owns the keyspace between i and j.

Nodes also maintain a set of neighbor links to other nodes, form-
ing an overlay network. The DHT lookup protocol utilizes this
overlay network to conduct lookups and routing. In Chord, a node
keeps track of O(lg n) other nodes (neighbors), where n is the
number of nodes in the system, in data structures called the suc-

cessor table and the finger table. A node’s successor table tracks
the nodes with the next lg n higher IDs (successors), and the finger
table tracks lg n strategically chosen nodes (fingers). This allows
the Chord lookup protocol to conduct a lookup in O(lg n) hops.
Because DHTs experience network churn, or the dynamic arrival
and departure of nodes in the network, churn-handling protocols
dynamically maintain neighbor relationships by discovering new
potential neighbors and periodically inspecting existing neighbor
links to determine liveness.

2.2 Sybil Defense Schemes
After the initial classification of the Sybil attack [16], several

centralized Sybil defense schemes [10, 30] were proposed that fo-
cused on using a central authority to certify nodes for admission
control and limit the number of Sybil identities. However, the cen-
tralized nature of these schemes conflict with many of the guiding
principles of distributed systems, and a central authority creates
trust issues, a single point of failure, and a possible performance
bottleneck.

In an alternate direction, several proposals have focused on de-
centralized schemes that work better in conjunction with distributed
systems. One approach [11] is to utilize the bootstrap graph of
DHTs. The idea is that a small number of malicious users would
introduce, or bootstrap, many Sybil nodes into the system. These
nodes would be highly connected in the bootstrap graph. However,
it is possible that honest nodes might also bootstrap many other
honest nodes, making it difficult to accurately distinguish honest
from malicious users. A distributed registration system was intro-
duced in [13] that regulated the number of identities a specific IP
address could obtain. However, it is possible for adversaries to
control multiple IP addresses through spoofing or prefix hijacking
attacks. Additionally, multiple honest users could share the same
IP address if they are behind a NAT, which makes this approach
less practical.

The most recent schemes have focused on exploiting social net-
work information. X-Vine [24], Gatekeeper [35], SybilDefender
[38], SybilLimit [41], SybilGuard [42], and Whanau [22] all pro-
vide protocols to defend against Sybil attacks based on random
walks over a social network. SybilInfer [12] uses Bayesian infer-
ence on information gathered from the social network to identify



Sybils. The LC Model approach [9] applies machine-learning algo-
rithms to social networks for Sybil detection. However, all of these
defenses assume that social networks are “fast-mixing”, which a
recent study [26] has shown is not true in real-world networks to
the extent these schemes assume. This leaves open questions about
the strengths of the security guarantees these mechanisms provide
and their true real-world effectiveness. Furthermore, use of social
networks may not be appropriate in all systems since nodes must
then be aware of their social contacts. Social relationships require
manual effort from users to instrument and correctly maintain.
The concept of using computational puzzles for Sybil defense is

not unique to SybilControl. A similar approach by Borisov [7] also
proposed challenge distribution and puzzle verification in overlay
networks, and inspired several techniques in our scheme. How-
ever, the design was slightly flawed, which we discuss in detail and
compare with SybilControl in Section 4.1.4. Additionally, the pro-
posal was purely conceptual, without any implementation, analysis
or evaluation of effectiveness. It did not investigate necessary modi-
fications to existing distributed protocols to maintain system perfor-
mance under the scheme. Node capacity heterogeneity, a common
argument against the practical use of computational puzzle, was
not dealt with. Most importantly, the scheme was not a complete
defense system. A resource-testing scheme can limit Sybil attacks
only if adversaries conduct the work. Obviously, this is not in their
best interest, and Borisov provides no discussions about enforce-
ment. The scheme did not prevent or penalize misbehaving nodes
who avoided computational work, and did not protect honest nodes
from these Sybils. SybilControl is a complete defense system that
addresses all these short-comings.

2.3 Computational Puzzles
Computational puzzles have been applied for security purposes

for quite some time. In addition to applications to Sybil attacks [7],
puzzles have been used to defend against denial-of-service attacks
[5, 15, 21, 28, 37] and email spam [5, 17, 18]. Computational puz-
zles are one-way cryptographic functions that require significant
computational resources to find a solution, but are simple to ver-
ify. The functions can be CPU-intensive or memory-bound [4, 17],
with parameters that can be modified to control puzzle difficulty.
Memory-bound functions may be especially appropriate in hetero-
geneous networks where variations in memory storage size may be
less than in CPU computing power. In this paper, we adopt the
puzzle proposed by Borisov [7] for concreteness, but other puzzles
should be appropriate as well.

3. OVERVIEW
The goal of SybilControl (or other Sybil defense schemes) is

not to completely prevent adversaries from joining the system, but
rather to place a limit on the number of additional Sybil nodes ad-
versaries can join. This prevents them from obtaining significant
influence over the system. SybilControl operates towards this goal
using the following insight: if a computational cost is incurred by
nodes before they are allowed to join the system, then adversaries
with finite resources will have an upper bound on the rate they can
acquire identities. Moreover, if nodes are required to periodically
repay this computational cost to retain their identities, then the num-
ber of identities that can be maintained by the adversary will be
limited.
To leverage this insight, SybilControl uses computational puz-

zles to control admission and retainment of nodes in a system. It
provides a distributed protocol that allows nodes to collectively ver-
ify that their neighbors are paying computational costs (through
solving puzzles). Then in this environment, it provides enforce-

ment mechanisms that eliminate the influence of misbehaving nodes
that do not solve puzzles. In this section, we describe the system
model that characterizes this environment (Section 3.1). Then, we
discuss how SybilControl addresses two key challenges in estab-
lishing this environment (Section 3.2 and 3.3).

3.1 System Model
In order to characterize the security properties of SybilControl,

we define a system model in a DHT context by listing our assump-
tions on the abilities and goals of different principals in our system.
We use this model when evaluating the security bounds of Sybil-
Control.

System-wide: We make the following assumptions about all
nodes in the system:

• Nodes may join or depart at any time. Departures may be
graceful, graceless, or a result of node failure.

• The network may or may not be synchronous.
• Nodes in the network may or may not be homogeneous in

computational capacities.
Adversary: We consider an adversary whose goal is to insert

as many Sybil nodes into the system as possible. We make the
following assumptions about the attacker:

• The adversary is computationally bounded. We do not con-
sider, nor provide any guarantees, for powerful adversaries
with unlimited computational capabilities.

• Since the adversary’s goal is to maximize the number of in-
serted Sybils, the adversary will devote the entirety of her
computational capabilities to increasing the number of Sybils
in the network.

• The adversary may have unlimited resources of different na-
ture. For example, the adversary may have access to unlim-
ited bandwidth or unlimited IP addresses (which would de-
feat IP address based defenses such as [13]).

• Sybils in the network may be colluding and byzantine. They
may or may not follow SybilControl or DHT protocols.

Honest users: The other nodes in the system belong to honest
users, who aim to participate correctly in the system to obtain DHT
services. We assume the following behavior for honest users:

• Honest users follow SybilControl and DHT protocols, and
do not attempt to perform any attacks or collude maliciously.

• Honest users are also computationally bounded, and may or
may not be limited in other resources.

• Honest users will devote exactly enough resources to support
one node in the system, unless directed to do otherwise by
SybilControl. Dependent on the computational capabilities
of different users, some honest users may have spare compu-
tational capabilities.

Note that by assuming honest users might have spare computa-
tional power, we can leverage heterogeneity (as discussed in de-
tail in Section 4.2.3). Honest users can use spare computation to
support additional nodes. With the addition of more nodes, the in-
fluence of existing Sybils is deflated. Most importantly, these addi-
tional nodes are honest, and will behave as we outlined above. Note
the adversary already devotes all capabilities to supporting Sybils,
and cannot benefit further.

3.2 Collectively Verifying a Node
In a distributed system, we lack a centralized authority to ver-

ify puzzle solutions of new arrivals. To address this, SybilControl
allows decentralized groups of nodes to collectively verify the com-
putational work done by their neighbors. Then in this environment,
before a node A trusts communication with another node B, A



(a) (b) (c)

Figure 1: Overview of SybilControl. (a) Node A maintains a puzzle solution sA−old and its associated challenge cA−old. Node A

receives challenges c from other nodes B1, B2, and B3, which (b) are used along with node A’s old challenge to periodically compute

a new challenge cA−new. (c) Node A periodically generates a fresh puzzle solution based on its new challenge.

requires B to prove that it recently solved a puzzle. If B is a mali-
cious Sybil node and chooses not to solve the puzzles, it will not be
able to provide proof of work. Defense mechanisms in SybilCon-
trol protect honest nodes like A from using B, essentially making
B non-functional in the system and preventing it from doing harm.
This forces adversaries to use only puzzle-solving Sybils, of which
they can support a limited number.
To establish recurring proof of work, SybilControl uses a dis-

tributed collective verification scheme, where nodes periodically
challenge each other to solve new puzzles. Following this scheme,
if a group of nodes B1, B2, and B3 collectively desire to commu-
nicate with another node A, they each periodically create, record,
and send new challenges toA, as in Figure 1(a). A also periodically
creates a new challenge using the latest received challenges, as in
Figure 1(b), and uses that new challenge to solve a new puzzle, as
shown in Figure 1(c). When any one of the nodes requests a service
from A, for example B1, A responds with the service as well as in-
formation from the latest puzzle it solved. If B1 still has recorded
the original challenge used in the puzzle, B1 can verify A’s puz-
zle solution. The duration for which B1 records challenges can
put a bound on how recent A’s solution is, validating its timeliness.
If all nodes in the network formed a single group and collectively
challenged each other, then all pairs of nodes can perform direct
verification.

3.3 Verifying Across Multiple Hops
Performing direct verification between all pairs of nodes in the

network can be prohibitively expensive. While it may scale to sys-
tems that communicate in a full mesh (e.g., one-hop overlay net-
works), many systems restrict the number of neighbors a node is
allowed to communicate with for scaling purposes (e.g., in DHTs
like Chord, nodes maintain regular communication relationships
with only a logarithmic number of adjacent neighbors). To support
these systems, SybilControl provides multi-hop verification.
To do this, nodes in SybilControl only exchange challenges with

their neighbors. Neighbor relationships may be selected arbitrarily,
or in a manner based on the instrumented distributed system (e.g.,
when applying SybilControl to the Chord DHT, challenges may be
exchanged only with a node’s fingers and successors). Each node,
as in Figure 1(b), then performs a cryptographic aggregation step
to combine the challenges received by its neighbors, and uses this
aggregation as input to construct its own challenges to be sent to
its neighbors. This process repeats, allowing a node’s challenge to
be distributed throughout the network through aggregations. Sybil-
Control provides a multi-hop verification process, allowing a node

to check whether its challenge is indirectly incorporated by a re-
mote node. This allows indirect proof of work to be established
between a node and non-neighbors.

4. SYBILCONTROL DESIGN
In this section, we discuss the details of SybilControl’s design.

SybilControl limits the extent of Sybil attacks by enforcing that
nodes perform periodic computational work to remain in the sys-
tem. This is achieved using two parts: a collective verification
scheme and protection mechanisms. The collective verification
scheme establishes an environment where nodes can collectively
verify the computational work of other nodes. The protection mech-
anisms utilize this verification environment to allow honest nodes
to protect themselves from Sybil nodes. These mechanisms elimi-
nate the threat of Sybil nodes that do not solve puzzles. This forces
adversaries to use only verifiable Sybils, of which they can support
a limited number. Section 4.1 describes the collective verification
scheme, while Section 4.2 details the protection mechanisms.

4.1 Collective Verification Scheme
The collective verification scheme of SybilControl allows nodes

to challenge one another to solve computational puzzles and to col-
lectively verify the completion of the work. This creates an environ-
ment where honest nodes can detect and avoid contact with misbe-
having nodes that do not perform work. Section 4.1.1 discusses the
distribution of puzzle challenges, while Section 4.1.2 illustrates the
process of solving puzzles and directly verifying neighbors. Multi-
hop verification is used to verify non-neighbor nodes, as described
in Section 4.1.3.

4.1.1 Distributing Challenges

SybilControl-enabled nodes must efficiently distribute numer-
ical challenges to other nodes. Since in most distributed systems,
nodes regularly ping their neighbors to ensure availability, these
ping messages provide a convenient medium for carrying challenges.
We assume use of a modified ping message that additionally in-
cludes the challenge. This results in challenge distribution only
directly to neighbors, an efficient method which scales with the un-
derlying system and requires little overhead.

The difficulty with this method is propagating a challenge through-
out the network while communicating with only neighbors. To
overcome this, a node’s new challenge is computed periodically
as a cryptographic aggregation of received challenges, as in Figure
1(b). Let node A be the neighbor of m nodes B1,...,Bm, and the



latest challenges A has received are cB1
,...,cBm . When computing

a new challenge, A generates a new random number rA. Then:

cAnew=H(B1||cB1
||...||Bm||cBm ||rA||cAold

)

where || represents concatenation and H() can be a secure hash
function such as SHA-2 [27]. Due to the one-way nature of a secure
hash function, a node cannot modify r to create a predetermined
challenge based on received challenges. Since new challenges are
constructed using a cryptographic aggregation of received challenges,
challenges are indirectly propagated throughout the network with-
out direct all-to-all distribution. When A distributes cAnew , A’s
neighbors will receive a challenge that indirectly includes the chal-
lenges of B1,...,Bm.
Each time a new challenge is computed, the data associated with

its construction must be maintained for a period of time. This state
record RcAnew

allows future verification of a puzzle that uses the
new challenge. When cAnew is computed, RcAnew

consists of
cAnew , cAold

, rA, and a table mapping Bi to cBi for i in [1,m].
RcAnew

must be maintained as long as the challenge remains a
viable candidate for puzzle verification at other nodes. Say each
node sends a ping every p seconds (not necessarily in-sync), net-
work latency is no greater than p, and the network has diameter
d. It takes at most 2pd seconds for a challenge to indirectly prop-
agate across the network. In most N node overlay networks such
as Chord [34], d = O(lgN). Now, if node A just received a chal-
lenge from node B, it will receive another challenge within 2p sec-
onds. IfA doesn’t start a new puzzle within 2p, the challenge it just
received will not be used. Thus, the maximum time for a used chal-
lenge to propagate the network is 2pd + 2p. If a puzzle is solved
every s seconds, a specific challenge may be needed for 2s: s sec-
onds for solving a puzzle with that challenge and s seconds before
a new puzzle is solved (with a different challenge). Finally, the veri-
fication protocol may take up to 2pd before verifying a node across
the diameter (discussed later in Section 4.1.3). Therefore, records
should be stored for 2s + 4pd + 2p seconds. Note that this time
period bounds the time a challenge may influence puzzle solutions.
If a puzzle solution S is reused, nodes across the network will no
longer store the challenges that influenced S, and will not verify S.

4.1.2 Solving Puzzles and Directly Verifying
Neighbors

For concreteness, here we describe the computational puzzle
proposed by Borisov [7], but any computational puzzle from prior
works (Section 2.3) should be appropriate. A node A’s puzzle solu-
tion S is a value such that:

H(A||cA||S) = h

where H() is again a secure hash function (SHA-2 [27]) and h is
a number with zeros as the last p bits. Solving this puzzle requires
O(2p) hash computations using random guesses for S, while ver-
ification requires a single hash evaluation. Varying p, a system
parameter, can control the difficulty of puzzles. Note that since cA
is dependent on received challenges, S cannot be precomputed.
A SybilControl-enabled node periodically (every s seconds) solves

a new puzzle using the node’s latest computed challenge. Thus,
puzzle solutions depend on received challenges. The challenge
used should be computed from newly received (direct and indirect)
challenges. Since it takes at most 2pd seconds (see Section 4.1.1)
for a challenge to indirectly propagate across a network, a reason-
able value for s is at least 2pd seconds. Note s has a lower bound
because the slowest user must be capable of solving a puzzle in s

seconds, and p should be set accordingly.

Whenever a nodeA solves a puzzle, it records the puzzle state P .
P consists of the puzzle solution SP , the used challenge cAP

, and
the challenge’s state record RcAP

. To provide puzzle verification,
nodes provide P . Note only the latest puzzle state is necessary
because even nodes across the diameter of the network will still
have on record the challenges that indirectly influenced cAP

(see
Section 4.1.1). If a puzzle solution is reused, this no longer holds
true, and nodes across the network will no longer verify P .

To directly verify a neighbor B, A requests B’s puzzle state PB .
A can validate the freshness of the PB by confirming that RcBP

contains a challenge from A still on record. This guarantees that
P was generated within the last 2s + 4pd + 2p seconds. Then
A can use the remaining data in PB to compute and verify SPB

.
More specifically, A can use the challenge records in RcBP

to re-
compute/confirm cBP

, then rehash to check SPB
. If any step in the

validation fails, A can assume B is misbehaving and avoid further
communication with it, inhibiting B’s negative influence.

4.1.3 Verifying Non-Neighbors along a Path

Neighbors-only challenge distribution prevents non-neighbor
direct verification. However, non-neighbors can still be indirectly
verified through multi-hop verification. During multi-hop verifica-
tion, validation is conducted iteratively along a path starting at a
neighbor, as such:

As described in Section 4.1.2, node A directly verifies neighbor
B by requesting and validating PB . However, when verifying a
path, A requests B to also (in addition to PB) send its on-record
challenges (say ciB ,...,c

j
B) and their state records (Rci

B
,...,R

c
j
B

). This

allows A to verify the correctness of any particular challenge cxB in
ciB ,...,c

j
B . A can confirm the challenge fromA stored inRcx

B
is still

on A’s record, and recompute cxB using challenge records in Rcx
B

to ensure it matches. Using this method, A verifies the correctness
of most, although possibly not the tail-end (oldest few challenges),
of ciB ,...,c

j
B .

Now, A temporarily stores the verified portion of ciB ,...,c
j
B for

the next hop’s verification. The following node C in the path is a
neighbor ofB, andC’s puzzles and challenges are computed based
on challenges received from B. A can now request and verify C’s
puzzle state and challenge records (as described above in this sec-
tion) using the verified B records, instead of A’s own records. If
C is verified, A can again verify a portion of C’s records, then re-
places its temporary records for B with the verified portion of C’s
records. In this manner, A can iteratively continue to verify nodes
along a path, providing indirect verification to any node in the net-
work. Assuming one-way latencies no larger than p, the most time
this process can take is 2pd. Additional proof of correctness is pro-
vided in Appendix B.

4.1.4 Comparison with Borisov’s Scheme

SybilControl was inspired by many aspects of Borisov’s scheme
[7], but was designed differently primarily due to a protocol flaw.
Borisov’s scheme also distributes challenges along ping messages.
However, it makes the clear assumption that every challenge sent
will directly be incorporated in another node’s new challenge. When
factoring in network latencies on these pings, this assumption no
longer necessarily holds.

In Borisov’s scheme and SybilControl, a state is recorded every
time a node A computes a new challenge (which is every ping mes-
sage). This state contains the latest challenges received. However,
it is possible (due to varying latencies) that a node B received two
challenges fromA in the time period between computing new chal-
lenges. In this scenario, the prior of the two challenges will be lost.



At a high level, Borisov’s verification scheme operates by having
A verify other nodes using a particular challenge cxA, chosen using
temporal heuristics. Since in certain scenarios, cxA may have been
lost, nodes may fail verification, leading to false positive detection
of a misbehaving node. SybilControl avoids this “lost challenge"
problem using a different verification protocol that doesn’t operate
using a specific challenge, but rather a range of possible challenges.
Borisov did not comment on the nature of the network with re-

gards to synchronization. However, note that if the network is com-
pletely synchronized, this problem would no longer occur, since a
new ping/challenge would not be sent until a node received all new
challenges. Enforcing synchronization in such a system could be
difficult and possibly impractical though. SybilControl does not
depend on a synchronized network.

4.2 Protection Mechanisms
Section 4.1 describes a scheme that creates an environment where

nodes can verify computational work of other nodes. However, to
limit the influence of Sybils, this work must be enforced. This sec-
tion discusses mechanisms that protect honest nodes from the in-
fluence of misbehaving Sybils, essentially enforcing the adversary
performs computational work, thus limiting the attack strength. An
adversary can use one of three strategies to perform a Sybil attack.
The first strategy for a Sybil attack is to use consistently unverifi-

able Sybil nodes. These Sybils never perform computational work,
allowing an adversary to support a large scale attack. Section 4.2.1
details complete protection from this attack strategy, regardless of
the scale of attack. The second attack method is using initially ver-
ifiable Sybil nodes, which bypass the defense in Section 4.2.1. Af-
ter incorporation into the network, these Sybils halt computational
work so an adversary can attempt to join and support even more
malicious nodes. Section 4.2.2 provides simple mechanisms that
control the influence from such an attack. The mechanisms de-
scribed in these two sections inhibit the influence of unverifiable
nodes, which would force adversaries to use consistently verifiable
Sybils, achieving our enforcement of computational cost. Use of
such Sybils is the final form of a Sybil attack. These Sybils cor-
rectly follow the collective verification scheme, making them in-
distinguishable from honest nodes, but may misbehave otherwise.
However, an adversary with limited resources can only support a
restricted number of verifiable Sybils, reducing their malicious in-
fluence. Section 4.2.3 provides a mechanism that leverages node
capability heterogeneity for further minimizing the impact of this
attack form.

4.2.1 Protecting against Consistently Unverifiable Sybils

With the collective verification scheme, nodes can establish
trust in verifiable neighbors. However, to manage a node’s neigh-
bor relationships, churn-handling protocols encounter unverifiable
new nodes. If these protocols immediately establish newly encoun-
tered nodes as neighbors, a large number of consistently unverifi-
able Sybils could hijack neighbor relationships.
To remedy this adversarial situation, SybilControl-enable nodes

use a delayed-addingmechanism, where nodes only establish neigh-
bor relationships upon verification. Thus, a Sybil that never solves a
puzzle will never be considered a neighbor of any honest nodes, and
will have no influence. With the delayed-adding mechanism, nodes
newly discovered through churn-handling are temporarily managed
in an untrusted list. Challenges are distributed to both established
neighbors and nodes in the untrusted list. After the time to solve
two puzzles, the untrusted node must be verifiable if behaving cor-
rectly, so a direct verification is conducted. Only if verification

succeeds does that node move out of the untrusted list to become
an established neighbor.

The untrusted list is bounded in size to O(# of neighbors) to
prevent a memory exhaustion attack. Let churn-handling protocols
inspect a particular neighbor relationship every f seconds, and s

be the puzzle time. At most ⌈ 2s
f
⌉ potential new neighbors can be

discovered for a particular relationship before one is checked for
verification and removed from the untrusted list. Thus, the constant
factor is ⌈ 2s

f
⌉.

The delayed-adding mechanism provides complete protection from
consistently unverifiable Sybil nodes in that those nodes will never
hijack neighbor relationships. It does introduce a 2s time delay cost
in establishing a neighbor. However, the newly discovered honest
nodes are not immediately verifiable anyways, and should not be
considered viable neighbors. Churn-handling protocols often rely
on distributing information about neighbor relationships, meaning
newly discovered nodes would not be included in churn-handling
until verification. This can degrade churn-handling performance,
which may not be acceptable to systems sensitive to churn.

To maintain efficient protocol performance, churn-handling pro-
tocols are modified to include nodes in the untrusted list. If churn-
handling protocols are utilizing information about the i-th neighbor,
and there is a node in the untrusted list that is next to replace that
neighbor relationship, then the protocols distribute information on
the untrusted node. This allows churn-handling to maintain fast
convergence times by operating as if the newly discovered node
was immediately established as a neighbor. Note that this does not
reduce the protection of the delayed-adding mechanism, as a con-
sistently unverifiable node will remain only in the untrusted lists of
nodes during churn-handling. Therefore, consistently unverifiable
Sybil nodes simply cannot obtain positions to maliciously influence
the system. This mechanism now controls the admission rate of
new nodes by requiring each to solve puzzles before establishing a
position.

4.2.2 Protecting against Initially Verifiable Sybils

The mechanism in Section 4.2.1 removes the threat of consis-
tently unverifiable Sybils. However, a malicious node can bypass
the defense by initially performing work only until it is no longer in
the untrusted list, and has become an established neighbor. The ad-
versary, now no longer paying a computational cost, may attempt
to join more nodes. This vulnerability arises because nodes are
validated in the collective verification scheme only upon contact,
which may be infrequent.

To provide nodes with protection from this attack, two mecha-
nisms are introduced. The first mechanism is the backup neighbors
list. When churn-handling with the delayed-adding mechanism re-
places an old neighbor relationship with a new neighbor, the old
neighbor is still maintained in the backup neighbors list if it is cur-
rently safe. A node can be determined safe by simply conducting a
direct verification. This backup list serves as a level of redundancy
should the primary neighbors become overrun with initially verifi-
able Sybils. Eventually, these Sybil will be detected and removed
from the primary neighbors, which can be repopulated using both
churn-handling and backup neighbors. Note that challenges must
still be sent to nodes in the backup list because they may be uti-
lized should a primary neighbor fail. The cost of this mechanism
is a two-fold increase in the amount of memory used to maintain
neighbor links and in ping messages.

To ensure that a node’s neighbors do not go unverified for long
periods of time, the second defense mechanism is simple: periodic
neighbor verification. Neighbor and backup neighbors can be pe-



riodically verified, much like neighbor relationships being periodi-
cally updated with churn-handling protocols. If any neighbors fail
verification, they can be replaced with a new node through churn-
handling or the backup list. Thus, adversaries can enter only a lim-
ited number of initially verifiable Sybils, since Sybils no longer
performing work will be soon removed from all neighbor relation-
ships and become uninfluential. This mechanism now controls re-
tainment of nodes in the system by requiring nodes to consistently
compute puzzles.
Ideally, neighbor relationships would be verified every puzzle

time s, to ensure all neighbors are consistently performing work.
However, the main purpose of periodic neighbor verification is to
ensure that at least a subset of a node’s neighbors is still fully ver-
ifiable and can be used for system operations. Then, verifying a
fraction of neighbors every s seconds can still be effective if the
portion is large enough such that the node can still function if the
non-verified portion is compromised. We leave it to specific appli-
cations to determine the most appropriate frequency of this periodic
table verification.
If an adversary has large amounts of computational resources,

it could support enough initially verifiable Sybils to fill up both
the primary and backup neighbor list of some nodes. SybilControl
cannot prevent this from occurring and does not offer guaranteed
protection. However, use of additional backup lists can provide
more protection, at the cost of additional memory storage. Fur-
thermore, Section 4.2.3 discusses a mechanism that can reduce the
initial influence of these initially verifiable Sybils, which may fur-
ther reduce this threat.

4.2.3 Leveraging Heterogeneity to Protect Against
Consistently Verifiable Sybils

The final strategy of a Sybil attacker is to support consistently
verifiable Sybil nodes. These nodes are indistinguishable from hon-
est nodes because they follow the collective verification scheme
correctly, but may misbehave otherwise. While SybilControl can-
not prevent these “invisible” Sybils from doing any harm, it can
provide a mechanism that reduces the total influence these Sybils
may have. The mechanism is virtual node usage, which leverages
heterogeneity in node computational capacities.
Computational puzzle schemes tend to suffer from the hetero-

geneity of node capacities in a system. However, this heterogeneity
is leveraged by SybilControl for improved Sybil protection. Puz-
zles must require a maximum amount of computational resources
that should be manageable by nodes with less capacity. However,
many honest nodes will have significantly more computational power
than that maximum. Virtual node usage is a mechanism where hon-
est users are allowed to optionally control extra virtual nodes if
they have the resources to support them. With more honest nodes,
a larger fraction of the network is controlled by honest users, and
Sybil attacks would have less influence.
To provide some intuition as to the benefits of using virtual nodes,

assume we have an n node DHT network. On average, each node
controls 1

n
of the keyspace. If an adversary’s resources can sup-

port a maximum of m Sybil nodes in the system, the adversary
can control on average m

n+m
of the keyspace. If the average hon-

est user has enough computational resources to maintain work for
q nodes, then by allowing users to support q virtual nodes, the m-
node Sybil attack will now only influence an average of m

q∗n+m
of

the keyspace, which can be a significantly smaller portion. This il-
lustrates that use of virtual nodes can protect more of the keyspace
and reduce the influence of Sybil nodes. In addition, the number

of these Sybils should already be limited by the collective verifica-
tion scheme and the mechanisms in Section 4.2.1 and 4.2.2, which
prevent unverified nodes from being a significant threat.

Note that it is inconsequential that we cannot distinguish honest
frommalicious users when assigning virtual nodes. Distributed sys-
tems vulnerable to the Sybil attack already have a low or no cost
of entry, and allowing malicious users to host virtual nodes will not
significantly reduce the cost of inserting Sybils. Attackers will de-
vote full computational capacity regardless (as specified in Section
3.1) to supporting a maximal number of Sybils, whether through
virtual nodes or other entry methods. Enabling virtual nodes sim-
ply allows honest users the ability to insert extra nodes to diminish
Sybil influence.

5. A SYBILCONTROL-ENABLED DHT
SybilControl creates a unique environment since nodes may or

may not be verifiable. This can exacerbate the effect of churn in
distributed systems. In this section, we discuss practical issues as-
sociated with the deployment of SybilControl. Our focus is on en-
suring distributed systems maintain reasonable performance with
SybilControl enabled. To provide concrete examples of techniques,
we describe SybilControl in the context of DHTs. Many distributed
systems, such as distributed file systems, distributed databases, and
peer-to-peer networks, rely on a DHT as an underlying structure
for storage or routing. While we describe this section in the context
of DHTs for clarity, the general principles should be applicable to
most other distributed systems.

In Section 5.1, we discuss issues introduced by deploying Sybil-
Control. Our focus is reusing common techniques for improving
DHT performance, which many existing implementations are likely
to have. The techniques for a practical SybilControl-enabled DHT
involve resilient lookup protocols described in Section 5.2, and
replication mechanisms described in Section 5.3.

5.1 Issues with Deploying SybilControl
In a SybilControl-enabled system, nodes may not immediately

trust certain other nodes, such as newly joined nodes or un-established
neighbors. SybilControl uses the delayed-adding mechanism, de-
tailed in Section 4.2.1, to handle these untrusted nodes and include
them in churn-handling protocols. While information about these
changing neighbor relationships are propagated throughout the net-
work, they do not manifest into new viable neighbors until the un-
trusted nodes provide proof of computational work, which requires
some time for puzzle completion. This delay between when a new
relationship is discovered and when it becomes viable can result in
increased sensitivity to churn in SybilControl-enabled systems.

For example, in a DHT such as Chord, a newly joined node A

immediately gains control over a portion of the keyspace that previ-
ously was supported by its immediate successorB. In a SybilControl-
enabled DHT, the delayed-adding mechanism ofB prevents it from
immediately transferring control toA as it has not been established
as a verifiable neighbor yet. This is desirable for Sybil defense
since the newly joined node could be an unverified Sybil. How-
ever, B could fail before A becomes verifiable, and all data at B
may be lost, including those that would have been transferred to
A. This possible scenario, among many others, is created by the
SybilControl environment, and must be handled to avoid system
performance degradation.

5.2 Resilient Lookup Protocols
The primary DHT operation is the lookup for a key, where a node

determines the path to the objects or nodes associated with that
key. To prevent lookup performance degradation, a SybilControl-
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Figure 2: Maximum size of a Sybil attack given the amount of

resources an adversary controls, as a multiple of the quanta.

enabled DHT can use resilient lookup protocols. These resilient
lookups not only improve lookup performance with SybilControl,
but are generally used to provide resilience against Sybil attacks.
Many DHTs already support resilient lookups, so use of this tech-
nique does not require extensive modifications to existing DHTs.
Resilient lookups involve backtracking and redundant lookups.

Since SybilControl requires iterative path verification, multi-hop
lookups in SybilControl systems must be iterative. With backtrack-
ing lookups, the lookup initiator maintains a history of contacted
nodes, and backtracks when encountering a failed or unverified
node. This results in lookups resilient to node failures or unre-
sponsive Sybils. Lookup query messages can additionally carry
the list of contacted nodes, including failed nodes. This provides a
heuristic for nodes responding to lookup queries to ignore already-
contacted nodes when determining the next hop in the lookup path.
DHT lookups are designed to provide the best next-hop suggestion,
and revisiting nodes would result in less-than-optimal cycles.
With redundant lookups, multiple backtracking lookups are con-

ducted for the same key while sharing a common list of contacted
nodes. This results in multiple unique lookup paths. In the face of
Sybil attacks or failed nodes, redundant lookups are more resilient
because they fail only if all lookups contact Sybil or failed nodes,
which is less likely with a larger number of redundant lookups.

5.3 Replications
In DHTs, the failure of a node maintaining some data can result

in the loss of that data. A standard idea to improving DHT robust-
ness, which applies also when enabling SybilControl, is to replicate,
by storing additional copies of that data. With object-storage DHTs,
where nodes maintain some data or files such as in a distributed file
system, several replications can be supported by different nodes.
Even if one node fails or is misbehaving, several other replicas are
accessible. In routing DHTs, nodes hold pointers or addresses to
other nodes to be used for routing. With replications, several nodes
maintain the same pointers or addresses. Similar work has been
done with the i3 Internet Indirection Infrastructure system [33].
Replications can be maintained locally with respect to identifiers.

With local replications, a node and several consecutive predeces-
sors and/or successors can maintain redundant copies. It is less
likely that these nodes will all simultaneously fail or be subverted
by an adversary. However, the system is most robust if non-local
nodes also support redundant copies. This prevents a targeted at-
tack to a specific portion of the keyspace to result in lost access to
all data. The details of this are more specific to the underlying sys-
tem, and are beyond the scope of our discussion.

6. EVALUATION
In this section, we analyse the security bounds provided by Sybil-

Control, and evaluate the performance of a SybilControl-enabled
DHT to determine the performance overhead of SybilControl. This
investigation is to determine the practicality of incorporating Sybil-
Control in real-world distributed systems. We investigated the DHT
system performance using our own discrete event simulator of the
Chord DHT.We chose Chord for its simplicity and scalability. Since
SybilControl nodes only send messages to direct neighbors, it scales
along with Chord. The simulator directly implements standard
Chord protocols as well as the protocols and mechanisms described
in Section 4 and Section 5.

6.1 Security Bounds Analysis
SybilControl is designed to ensure that all nodes, even if mali-

cious, pay a recurring computational cost. A properly configured
SybilControl would use a computational puzzle whose cost is af-
fordable to the minimal resource node in the network. In this sec-
tion, this minimal cost level will be referred to as a quanta of com-
putational resource. Using the model described in Section 3.1, this
section analyses the bounds SybilControl enforces on the extent of
Sybil attacks, and quantifies their effectiveness through a simple
cost analysis.

Let pr be the fraction of adversary-controlled resources once the
adversary joins the network, and pi be the maximum fraction of
Sybil identities in the system the adversary can support. There are
two situations to consider: whether the network nodes are homoge-
neous or heterogeneous with respect to computational resources.

6.1.1 Homogeneous Networks

Assume that a system has n honest users’ devices connected,
having uniform computational resources, such that each device has
access to x amount. In this case, the quanta can be set to x, so each
device supports one honest user node. The following properties
hold for SybilControl, showing the proportion of Sybils in the net-
work is limited to the proportion of adversary-controlled resources.

Property 1: There exists a tight upper bound on the maximum

size of a Sybil attack launched by an adversary with finite resource

amount T .

With a quanta of x, the adversary must utilize x resources per
Sybil node. Thus, the maximum size of a launched Sybil attack is
tightly upper bounded by ⌊T

x
⌋. This upper bound is a step function,

as shown in Figure 2.
Property 2: Assuming a finite resource adversary, pi = pr .

The total resource amount of honest devices is nx. Let the finite
resource adversary control T amounts of resources. Without loss
of generality, let T be an integer multiple of x. If T is not an
integer multiple, the “remainder" resources T mod x would simply
go unused. Now, pr = T

nx+T
. From Property 1, the maximum

Sybil attack size is s = T
x
, and pi =

s
n+s

. Thus, pi =
T/x

T/x+n
=

T
T+nx

= pr .

6.1.2 Heterogeneous Networks

Assume now that the n honest devices connected to a system
have heterogeneous amounts of computational resources. Let there
be D type of devices, d0, d1, ..., dD−1, ordered in increasing com-
putational capacity. The quanta should be set to the resource amount
of d0, the least capable device. Let ni be the number of di de-
vices in the system, such that

∑
0≤i<D ni = n. Let ai be the
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resource amount of device di, as a multiple of x, so a0 = 1 and
ai ≥ 1. Then the system’s total amount of honest resources is
R = x

∑
0≤i<D niai. Note that Property 1 of Section 6.1.1 still

holds. The following properties hold for SybilControl, showing the
proportion of Sybil nodes is bounded with relations to the propor-
tion of adversary-controlled resources.

Property 3: Assuming no virtual node usage, pi is bounded,

given a finite resource adversary. However, pi > pr .

Assume the adversary has T resources, and without loss of gen-
erality, that T is an integer multiple of x. From Property 1, the max-

imum Sybil attack size is s = T
x
. Thus pi = s

n+s
= T/x

n+T/x
=

T
nx+T

. Also, pr = T
R+T

. Since the network is heterogeneous,
there is some ai > 1. Then, R > nx, and pi > pr .
Property 4: Assuming maximum virtual node usage, pi = pr .

Again, pr = T
R+T

and the number of Sybil nodes supported is

s = T
x
. With maximum use of virtual nodes, all system resources

are used, so the total number of honest nodes supported by the n

honest devices is v = R
x
. Then, pi =

s
v+s

= T/x
R/x+T/x

= T
R+T

=
pr .
Property 5: T

R+T
≤ pi ≤ T

nx+T
, depending on the degree of

virtual node usage.

This follows from the analysis provided for Property 3 and 4. If
no virtual nodes are used, the fraction is T

nx+T
. As more virtual

nodes are used, this fraction decreases, down to T
R+T

when the
maximum number of virtual nodes are used. Essentially, virtual
nodes eliminate adversarial advantage due to a small value for the
quanta, and result in a per computation fair share of identities. Fig-
ure 3 depicts the relationship between adversarial resources and ad-
versarial nodes in a homogeneous and hypothetical heterogeneous
network.
The more heterogeneous the system, the larger the values of ai

are. Therefore, the difference between nx (where every ai = 1)
and R increases, and the given range increases. Thus, the effect
of using virtual nodes will increase as the system becomes more
heterogeneous. A simulation of the benefits of virtual nodes in
a SybilControl-enabled DHT is demonstrated in Appendix A. It
shows that use of virtual nodes does improve the performance of
DHTs under Sybil attacks by reducing the influence of Sybil nodes.
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6.1.3 Preliminary Cost Analysis

SybilControl’s upper bound is dependent on the percentage of
computational resources the adversary controls. To provide some
intuition as to the effectiveness of this bound, this section provides a
simple cost analysis of Sybil attacks in a SybilControl environment.

One method of obtaining computational resources is through the
Amazon Elastic Cloud Computer (EC2) web service [1]. EC2 power
is measured in compute units (CU), which Amazon defines as “the
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor." [2] The most cost effective service instance is the
cluster computer eight extra large instance, which provides 88 CUs
for $2.40 per hour [3].

In our example scenario, we assume a system totalling one mil-
lion CUs. In Figure 4, the cost of a Sybil attack is depicted, as a
function of the percentage of computational resources controlled by
the adversary and length of time of the attack. For large attacks con-
trolling 20% of the resources, every attack-hour costs $6,818.18. A
one day attack would cost $163,636.36. In many situations, this
high monetary cost may prevent adversaries from launching large
and lengthy attacks. Note that honest users do not need extra com-
puting power, so would not incur similar financial costs. Also, if
the total system resources differ by a certain order of magnitude,
then the costs will differ likewise. This provides evidence that ad-
versaries may remain limited in controlled computational power to
avoid incurring too large of a cost, which allows SybilControl to
provide an effective bound.

While there are other ways to obtain computational resources,
they also typically require payment for services, and would exhibit
similar increasing financial costs for adversaries. For example, an
adversary could rent a botnet to host Sybil nodes. The rental cost
is likely cheaper than the Amazon EC2 estimates, but we leave an
in-depth cost analysis for future works. We should note that in
the botnet case, unrestricted use of the computational capacity of
a compromised machine might raise users’ suspicions. To avoid
this, adversaries may have to use only a portion of a compromised
machine’s resources. To achieve the same amount of resources to
support Sybils, adversaries would then need more machines, which
would increase the financial cost.

6.2 Performance Overhead of SybilControl
Deployment

This section investigates the performance overhead of enabling
SybilControl in the Chord DHT. To allow for consistent compar-
isons, all simulations followed the same network dynamics. Ini-
tially, the network consisted of 1000 verifiable nodes. Nodes sent
ping messages carrying challenges every 5 seconds. We used a
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Figure 5: Lookup performance of regular Chord and SybilControl using different number of replications versus f , the frequency of

churn-handling. (a) shows average lookup success rates, while (b) graphs the lookup hops.

puzzle time of 20 seconds, which is based off our suggestion for
a puzzle time larger than pd in Section 4.1.1. We modelled churn
similarly to other studies [20], with a pareto distribution for mean
session time and an exponential distribution for mean downtime.
Since the same studies indicate that the mean session time is typi-
cally more than 60 minutes, we used 60 minutes as our distribution
means. Chord uses two churn-handling protocols: fix-fingers and
stabilize. In the original Chord evaluation [34], the frequency f of
each protocol execution was in a range between every 15 seconds
to every 45 seconds. We used values of f also within that range.
Each simulation was run for 10,000 seconds before measurements,
to avoid cold-start effects.
The primary operation in Chord is a lookup, so we evaluated

lookup performance metrics for Chord with and without SybilCon-
trol enabled. Each alive node in the network attempted 10 resilient
lookups for random keys. We measured the success rate of at-
tempted lookups and the number of hops in a successful lookup’s
path, which we define as the number of nodes contacted, includ-
ing failed nodes. To accurately measure only performance over-
head, the network excluded any misbehaving nodes. f , Chord’s
fix-finger and stabilize time interval, was varied between every 15,
30, and 45 seconds. Since a smaller f implies more frequent churn-
handling, we expected that f is negatively correlated with lookup
performance.
Since SybilControl creates an environment that may exacerbate

churn, it was our initial hypothesis that the Chord lookup perfor-
mance could degrade. However, incorporating the techniques in
Section 5 should address these issues and improve performance. In
particular, using multiple replications in SybilControl was expected
to help improve performance. With more replicas, SybilControl
lookups should be more likely to succeed in finding an alive, verifi-
able node that holds a copy. SybilControl and regular Chord were
evaluated using 0, 1, and 2 replication.
Figure 5 shows the lookup performance measurements for both

regular and SybilControl-enabled Chord using varying number of
replications. Figure 5(a) plots the success rate of lookups versus
f . Without replications, regular Chord outperformed SybilControl
as expected, with lookup success rate about 1% higher for regu-
lar Chord. In many systems, this 1% difference in lookup success
rate may not be an issue, providing some evidence already that
SybilControl could be practically incorporated. However, when the
lookup performance degradation is unacceptable, using even one
extra replication can significantly improve performance. With one
replication, SybilControl resulted in a higher success rather than
no-replication Chord. At two replications, average lookup success

rate was consistently near 100%. The lookup success rate of Sybil-
Control was only slightly worse than regular Chord given the same
positive number of replications. The differences were a fraction of
a percent, and indicate that SybilControl’s performance overhead
can be small on lookup success rate.

Figure 5(b) plots the lookup hops versus f . Again, no-replication
SybilControl performed worse than no-replication regular Chord,
typically by approximately 0.3 hops. However, once one replica-
tion was introduced, SybilControl lookups roughly matched regular
Chord lookups in hop count, varying by less than 0.1 hops. Addi-
tional replications gave diminishing improvements for both Sybil-
Control and regular Chord. This provides evidence that SybilCon-
trol doesn’t significantly impact lookup hop counts.

The effect of varying f can be quite drastic. With larger f ,
lookup success rates for no-replication Chord and no-replication
SybilControl declined by as much as 2%, while average hop count
increased by as much as 0.3 hops. One-replication Chord and Sybil-
Control seemed to also be affected to a lesser degree. Lookup suc-
cess rate with two replications seemed unaffected by f , although
the hop count exhibited similar behavior as with one-replication.
For certain systems extremely sensitive to lookup success rate, it
may be necessary to frequently run churn-handling protocols, min-
imizing f .

These results indicate that SybilControl does slightly degrade
Chord lookup performance, as expected. However, by incorporat-
ing replications, a fairly common Chord churn-handling technique,
SybilControl can provide reasonable performance on par with reg-
ular Chord. This indicates that SybilControl can be practically in-
corporated in many distributed systems.

7. CONCLUSION
This paper presented SybilControl, a novel, decentralized scheme

for controlling the extent of Sybil attacks. SybilControl consists of
a distributed protocol to allow nodes to collectively verify computa-
tional work of their neighbors and defense mechanisms to enforce
that nodes conduct computational work to stay functional in the
system. Thus, adversaries with finite amounts of computational
resources will be only able to support a limited number of Sybil
nodes. A security analysis showed that SybilControl provides tight
bounds on the maximum Sybil attack size given adversaries with fi-
nite resources. The cost of obtaining this bound may be financially
costly to many adversaries, which indicates the potential effective-
ness of the bound. To demonstrate the practicality of SybilControl,
it was deployed in the context of DHTs with the aid of existing



DHT functionalities. The performance overhead when enabling
SybilControl was shown to be manageable by using commonplace
DHT churn-handling techniques.
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APPENDIX

A. BENEFITS OF VIRTUAL NODES
Recall that SybilControl only limits the number of Sybils that

join the system, and does not provide much further protection against
admitted puzzle-solving Sybils. However, by allowing honest nodes
to support extra, virtual nodes, the influence of existing Sybils can
be reduced (Section 4.2.3). With more virtual nodes, each Sybil
node should claim a smaller portion of the keyspace, limiting the
total influence of an adversary. In this section, we demonstrate the
benefits of virtual nodes through simulations.

For our evaluations, we assume the adversary has a certain frac-
tion of the computational resources, up to 20%. Note that since
adversaries often do not control such large amounts of resources,
some of these scenarios may not be commonplace in real-world
systems. We allow the adversary to support a maximal number of
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Figure 6: Lookup success rates of SybilControl without virtual nodes and SybilControl where honest users support an average of 2

virtual nodes, while varying the fraction of computational resources the adversary controls.
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Figure 7: Lookup hop counts of SybilControl without virtual nodes and SybilControl where honest users support an average of 2

virtual nodes, while varying the fraction of computational resources the adversary controls.

Sybils, and compare SybilControl’s performance with and without
honest nodes supporting virtual nodes. We assume the distribution
of honest user devices is a third smartphones, a third laptops, and
a third desktops. We assume for simplicity that a laptop has twice
the computational capabilities of a smartphone, and a desktop has
three times the computational capacity of a smartphone. This al-
lows honest users to support an average of 2 virtual nodes. We do
not draw comparisons with regular Chord because it was not de-
signed to withstand Sybil attacks. An adversary could support an
unlimited number of Sybils in regular Chord, completely crippling
the system.
We use the same performance metrics as described in Section

6.2. The frequency of churn-handling is set at every 30 seconds
for all simulations. For this evaluation, we focus on lookup suc-
cess, instead of integrity. We assume Sybil nodes drop all lookup
queries, indicating lookup failure. Other works can be incorporated
with SybilControl to improve lookup integrity. For resilient lookup
protocols, nodes first perform one lookup with a time-to-live of
30 hops, and upon failure, perform two simultaneous redundant
lookups. Again, we tested SybilControl using 0, 1, and 2 replica-
tions.
Figure 6 depicts the lookup success rate of SybilControl under

Sybil attack, where the average honest user supports 2 virtual nodes.
In each graph, a different number of replications was used. As pre-
dicted, use of virtual nodes improved lookup success in general.
However, virtual nodes were most effective when using fewer repli-
cations. When an adversary controlled 20% of computational re-
sources, use of virtual nodes improved no-replication SybilControl
lookup success rate by about 10%, while two-replication SybilCon-
trol only improved by less than 1%. This is explainable since using
large number of replications already improves success rate to near
100%, so there is little room for improvements from virtual nodes.

Figure 7 depicts the number of nodes contacted during Sybil-
Control lookups using virtual nodes and under Sybil attack. As
seen with lookup success rate, virtual nodes helped improve per-
formance. It resulted in decreases in the number of nodes con-
tacted, and the benefits were most apparent with fewer replications.
With no-replication SybilControl, virtual node usage decreased the
lookup hop count by about 3 nodes when 20% of computational

resources was adversary-controlled. Under the same attack, two-
replication SybilControl saw only a decrease of 0.4 hops, which
is approximately a 10% improvement. An interesting observation
is that virtual nodes do not seem to provide much benefit under
smaller Sybil attacks, where the adversary controls only a small
fraction of the computational resources. This is because the use of
virtual nodes decreases the influence of each Sybil node slightly,
and with few Sybil nodes, the total improvement is less noticeable.

These results show that virtual nodes do indeed reduce the in-
fluence of Sybil attacks. This signals that virtual node usage is a
practical aspect to incorporate in SybilControl, along with replica-
tions and resilient lookups.

B. MULTI-HOP VERIFICATION

CORRECTNESS
This section provides a sketch proof of the correctness of multi-

hop verification. Let s be the puzzle time, p be the ping time, and
one-way latencies be less than p. Challenge records are recorded
for 2s + 4pd + 2p (Section 4.1.1). During multi-hop verification
(Section 4.1.3), a node A can verify all but possibly the tail-end
(oldest few) of neighbor B’s sent challenges.

This tail-end loss is not an issue. B must use a challenge re-
ceived from A no later than 2p after A sent the challenge. Thus,
if A’s oldest challenge was sent at time t, that challenge can verify
a challenge from B that was created no later than t + 2p. So the
largest size of B’s tail-end is a timeframe of 2p. With a network
diameter of d, the largest size of the tail-end at a node across the
network is 2pd. The verification protocol requires another 2pd be-
fore reaching the node across the diameter, making the total tail-end
size no larger than 4pd. A can still verify the remaining challenges
from the most recent 2s+4pd+2p− 4pd > 2s timeframe. Since
this timeframe is larger than 2s, this distant node’s latest puzzle so-
lution must have been solved using one of the verifiable challenges,
and thus, A can verify even across the network. This does assume
the verification path is acyclic, a reasonable assumption.


