
Exploring Privacy Preservation in Outsourced K-Nearest
Neighbors with Multiple Data Owners

Frank Li† Richard Shin† Vern Paxson†∗
†University of California, Berkeley ∗International Computer Science Institute

{frankli, ricshin, vern}@cs.berkeley.edu

ABSTRACT
The k-nearest neighbors (k-NN) algorithm is a popular and
effective classification algorithm. Due to its large storage
and computational requirements, it is suitable for cloud out-
sourcing. However, k-NN is often run on sensitive data such
as medical records, user images, or personal information. It
is important to protect the privacy of data in an outsourced
k-NN system.

Prior works have all assumed the data owners (who sub-
mit data to the outsourced k-NN system) are a single trusted
party. However, we observe that in many practical scenar-
ios, there may be multiple mutually distrusting data owners.
In this work, we present the first framing and exploration
of privacy preservation in an outsourced k-NN system with
multiple data owners. We consider the various threat mod-
els introduced by this modification. We discover that under
a particularly practical threat model that covers numerous
scenarios, there exists a set of adaptive attacks that breach
the data privacy of any exact k-NN system. The vulnerabil-
ity is a result of the mathematical properties of k-NN and its
output. Thus, we propose a privacy-preserving alternative
system supporting kernel density estimation using a Gaus-
sian kernel, a classification algorithm from the same family
as k-NN. In many applications, this similar algorithm serves
as a good substitute for k-NN. We additionally investigate
solutions for other threat models, often through extensions
on prior single data owner systems.

Keywords
Privacy-Preserving; Nearest Neighbors; k-NN; Kernel Den-
sity Estimation; Outsourced Cloud Computation

1. INTRODUCTION
The k-nearest neighbors (k-NN) classification algorithm

has been widely and effectively used for machine learning
applications. Wu et al. categorized it as one of the top 10
most influential data mining algorithms [24]. K-NN identi-
fies the k points nearest to a query point in a given data set,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCSW’15, October 16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3825-7/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808425.2808430 .

and classifies the query based on the classifications of the
neighboring points. The intuition is that nearby points are
of similar classes. K-NN classification benefits from running
over large data sets and its computation can be expensive.
These characteristics make it suitable to outsource the clas-
sification computation to the cloud. However, k-NN data is
often sensitive in nature. For example, k-NN can be applied
to medical patient records, census information, and facial
images. It is critical to protect the privacy of such data
when outsourcing computation.

The outsourced k-NN model focuses on providing classifi-
cation, rather than training. Hence, it is assumed that the
algorithm parameters have been adequately chosen through
initial investigation. Prior work on preserving privacy in
such a model uses computation over encrypted data [23, 31,
8, 25]. These works have all assumed a single trusted data
owner who encrypts her data before sending it to a cloud
party. Then queriers can submit encrypted queries to the
system for k-NN classification. In this setting, we would
like to keep data private from the cloud party and queriers,
and keep queries private from the cloud party and the data
owner. In some existing works, the queriers share the se-
cret (often symmetric) data encryption keys. In others, the
querier interacts with the data owner to derive the encryp-
tion for a query without revealing it.

From these existing models, we make a simple observa-
tion with non-trivial consequences: the data owner may not
be completely trusted. In all previous models, trust in the
data owner is natural since only the owner’s data privacy
is at risk. However, this assumption does not hold in some
practical scenarios:

• Multiple mutually-distrusting parties wish to aggre-
gate their data for k-NN outsourcing, without reveal-
ing data to each other. Since k-NN can perform sig-
nificantly better on more data, all parties can benefit
from improved accuracy through sharing. As an ex-
ample, hospitals might contribute medical data for a
k-NN disease classification study or a service available
to doctors. However, they do not want to release their
patient data in the clear to each other or a cloud ser-
vice provider. In some cases, these data owners may
act adversarially if that allows them to learn the other
owners’ data.

• The k-NN outsourced system allows anyone to be a
data owner and/or querier. This is a generalization
of the previous scenario, and a privacy-preserving so-
lution allows data owner individuals to contribute or
participate in a system directly without trusting any



other parties with plaintext data. Some potential ap-
plications include sensor information, personal images,
and location data.

These scenarios involve data aggregated from multiple
owners, hence we term this the multi-data owner outsourced
model. In this paper, we provide the first framing and ex-
ploration of privacy preservation under this practical model.
Since these multi-data owner systems have not yet been used
in practice (perhaps because no prior works address privacy
preservation), we enumerate and investigate variants of a
privacy threat model. However, we focus on one variant
that we argue is particularly practical and covers a number
of interesting cases. Under this model, we discover a set of
adaptive privacy-breaching attacks based purely on the na-
ture of how k-NN works, regardless of any system protocol
and encryption designs.

To counter these privacy attacks, we propose using ker-
nel density estimation with a Gaussian kernel instead of k-
NN. This is an alternative algorithm from the same class as
k-NN (which we can consider as kernel density estimation
with a uniform kernel). While this algorithm and k-NN are
not equivalent, we demonstrate that in many applications
the Gaussian kernel should provide similar accuracy. We
construct a privacy-preserving scheme to support such an
algorithm using partially homomorphic encryption and gar-
bled circuits, although at a computational and network cost
linear to the size of the data set. Do note that k-NN itself is
computationally linear. While this system may not yet be
practical for large data sets, it is both proof of the existence
of a theoretically secure alternative as well as an first step
to guide future improvements.

In summary, our contributions are:

• We provide the first framework for the k-NN multi-
data owner outsourced model.

• We explore privacy preservation of k-NN under various
threat models. However, we focus on one threat model
we argue is both practical and covers several realistic
scenarios. We discover a set of privacy-breaching at-
tacks under such a model.

• We propose using kernel density estimation with a
Gaussian kernel in place of k-NN. We describe a privacy-
preserving construction of such a system, using par-
tially homomorphic encryption and garbled circuits.

2. BACKGROUND

2.1 Nearest Neighbors
K-nearest neighbors (k-NN) is a simple yet powerful non-

parametric classification algorithm that operates on the in-
tuition that neighboring data points are similar and likely
share the same classification. It runs on a training set of
data points with known classifications: D = {(x1, y1), · · · ,
(xn, yn)}, where xi is the i-th data point and the label
yi ∈ {1, · · · , C} indicates which of the C classes xi belongs
to. For a query point x, k-NN determines its classification la-
bel y as the most common label amongst the k closest points
to x in D. Closeness is defined under some distance metric
(such as Manhattan or Euclidean distance for real-valued
vectors). Since all of k-NN’s computation is at classification
time, instead of training time, k-NN is an example of a lazy
learning method.

In the case of 1-NN (k = 1), as the number of train-
ing data points approaches infinity, the classification error
of k-NN becomes bounded above by twice the Bayes error
(which is the theoretical lower bound on classification er-
ror for any ideal classification algorithm). In general, k-NN
benefits greatly from execution over large data sets. Given a
single data owner will have a limited amount of data, aggre-
gation of data from multiple parties is desirable for increased
accuracy in k-NN applications. Also, since k-NN classifica-
tion is computationally expensive, it is practical to outsource
computation. These characteristics motivate our interest in
multi-data owner outsourced k-NN classification.

2.2 Kernel density estimation and regression
K-NN is an example of an instance-based learning method

as it involves making a prediction directly from existing in-
stances in the training data (as opposed to using a model
of the training data, for example). K-NN uses only the k
nearest instances to a query and allows each to equally in-
fluence the query classification. However, there are other
possible rules to decide how much influence each instance
should have on the final prediction, known as kernels.1

Formally, a kernel K(x) is a function which satisfies

(1)

∫ ∞
−∞

K(x)dx = 1 (2) K(x) = K(−x).

In other words, it integrates to 1 and is symmetric across 0.
Given n samples {x1, · · · ,xn} of a random variable x,

one can estimate the probability density function p(x) with
a kernel K in the following way, called kernel density esti-
mation:

p(x) =
1

n

n∑
i=1

K(‖x− xi‖)

where ‖ · ‖ is a norm. Given this estimate, classification can
be determined as the most probable class:

DC = {xi | (xi, yi) ∈ D, yi = C}

p(y = C|x,D) ∝
∑

xi∈DC

K(‖x− xi‖)

arg max
C

p(y = C|x,D) = arg max
C

∑
xi∈DC

K(‖x− xi‖)

See Appendix A of the full paper version for a more detailed
exposition.

Therefore, to classify a particular point x, we can sum the
kernel values of the points which belong to each class and
determine which class has the largest sum. The following
uniform kernel equates this derivation with k-NN:

dk,x,D := distance of kth nearest point from x in D

K(‖x− xi‖; k,D) =

{
1

2dk,x,D
if ‖x− xi‖ ≤ dk,x,D

0 otherwise

dk,x,D is the width of this kernel, as K(t) > 0 for ||t −
x|| ≤ dk,x,D and K(t) = 0 for ||t − x|| > dk,x,D. Thus, k-
NN classification is kernel density estimation with a uniform
finite-width kernel.

1To disambiguate between the many distinct meanings of
“kernel” in machine learning, statistics, and computer sci-
ence, the kind of kernels in this paper are also called
“smoothing kernels”.



One can substitute in a different kernel to obtain a clas-
sifier which behaves similarly. One example is the Gaussian
kernel:

K(x) =
1

σ
√

2π
e
− x2

2σ2

where σ is the standard deviation parameter. Note that
this kernel has infinite width, meaning all points have some
influence on the classification.

2.3 Paillier Cryptosystem
The Paillier cryptosystem [15] is a public-key semantically

secure cryptographic scheme with partially homomorphic
properties. These homomorphic properties allow certain
mathematical operations to be conducted over encrypted
data. Let the public key pk be (N, g), where N is a prod-
uct of two large primes and g is a generator in Z∗N2 . The
secret decryption key is sk. Also let Epk be the Paillier
encryption function, and E−1

sk be the decryption function.
Given a, b ∈ ZN , the Paillier cryptosystem has the following
properties:

E−1
sk (Epk(a) · Epk(b) mod N2) = a+ b mod N (Add)

E−1
sk (Epk(a)b mod N2) = a · b mod N (Mult)

In other words, multiplying the ciphertext for two values
results in the ciphertext for the sum of those values, and
computing the c-th power of a value’s ciphertext will result
in the ciphertext for the value multiplied by c.

The Paillier ciphertext is twice the size of a plaintext; if N
is 1024 bits, the ciphertext is 2048 bits. A micro-benchmark
of Paillier in [17] shows practical performance runtimes: en-
cryption of a 32-bit integer takes 9.7 ms, decryption takes
0.7 ms, and the homomorphic addition operation takes 0.005
ms.

2.4 Yao’s Garbled Circuits
Yao’s garbled circuit protocol [28, 13] allows a two-party

evaluation of a function f(i1, i2) run over inputs from both
parties, without revealing the input values when assuming
a semi-honest adversary model. If Alice and Bob have pri-
vate input values iA and iB , respectively, the protocol is
run between them (the input owners) and outputs f(iA, iB)
without revealing the inputs to any party.

In the protocol, the first party is called the generator and
the second party is the evaluator. The generator takes a
Boolean circuit for computing f , and generates a “garbled”
version GF (intuitively, it is cryptographically obfuscating
the circuit logic). Any input i for function f has a mapping
to a garbled input for GF , which we will denote as GI(i).
The generator gives the garbled circuit GF to the evalua-
tor, as well as the generator’s garbled inputs GI(i1). Since
the generator created the garbled circuit, only the generator
knows the valid garbled inputs. The evalutor then engages
in a 1-out-of-2 oblivious transfer protocol [19, 9] with the
generator to obliviously obtain the garbled input values for
her own private inputs i2. The evaluator can now evaluate
GF (GI(i1), GI(i2)) to obtain a garbled output, which maps
back to the output of f(i1, i2).

There exists efficient implementations of garbled circuits
[14, 6, 2, 22], although naturally the garbled circuit’s size
and evaluation runtime increases with the complexity of the
evaluated function’s circuit.

Figure 1: The general model of existing outsourced
k-NN system. The data owner is trusted and out-
sources encrypted data to the cloud party. Queriers
request k-NN computation from the cloud party,
and are sometimes trusted depending on the prior
work. The cloud party executes k-NN classification
and is semi-honest.

Prior Work DO Q Cloud
Wong et al [23] Trusted Trusted Semi-honest
Zhu et al [31] Trusted Semi-honest Semi-honest
Elmehdwi et al [8] Trusted Semi-honest Semi-honest
Xiao et al [25] Trusted Trusted Semi-honest

Table 1: A summary of the trust models from prior
private outsource k-NN works. DO is the data
owner, Q is the querier, and Cloud represents any
cloud parties. Semi-honest parties are assumed to
follow protocols but may attempt to discover query
or data values.

3. RELATED WORK
Prior works have focused on two general approaches to

achieving privacy in k-NN: distributed k-NN and outsourced
k-NN computed on encrypted data.

In distributed k-NN, multiple parties each maintain their
own data set. Distributed computation involves interactions
between these parties to jointly compute k-NN without re-
vealing other data values [5, 30, 26, 12, 18, 21, 27, 29]. A
general framework for how these systems operate is they it-
eratively reveal the next closest neighbor until k neighbors
have been determined. While allowing multiple parties to
include their data sets, these works do not provide a solu-
tion for outsourced k-NN because they requires data owners
to store and compute on their data. Furthermore, they must
remain online for all queries.

The other line of prior privacy-preserving k-NN work re-
lies on computing k-NN over encrypted data. These systems
are designed for outsourcing, as depicted in Figure 1. Table
1 summarizes the trust model each work assumes. An im-
portant observation is that all prior works assume a trusted
data owner.

Wong et al. [23] provides secure k-NN outsourcing by de-
veloping an asymmetric scalar-product-preserving encryp-
tion (ASPE) scheme. ASPE transforms data tuples and
queries with secret matrices that are inverses of each other.
Multiplying encrypted tuples and queries cancel the trans-
formations to output scalar products, used for distance com-
parisons. Hence, a data owner and queriers can upload en-
crypted data tuples and queries to a cloud party, who can
compute k-NN using scalar products. It is worth noting this



encryption scheme is deterministic, so identical data tuples
have the same ciphertext and likewise for queries. The se-
cret matrices are symmetric keys for the encryption scheme,
and must be shared with both the data owner and queriers.
This approach assumes a trusted data owner and queriers,
and a semi-honest cloud party who follows the protocols but
attempts to learn query or data values.

In the outsourced k-NN system from [31], data encryption
is again conducted by a trusted data owner, using a sym-
metric scheme with a secret matrix transformation as a key.
However, queriers do not share this key. Instead, they inter-
act with the data owner to derive a query encryption without
revealing the query. Note this requires a data owner to al-
ways remain online for all queries. Also, data tuple encryp-
tion (being a matrix transformation) is deterministic, but
query encryption is not due to randomness introduced dur-
ing the query encryption protocol. The encryption scheme
is designed similiarly to ASPE and preserves distance, so
a cloud party can execute k-NN using distances computed
from encrypted data tuples and queries. In this system’s
trust model, the data owner is trusted while the queriers
and the cloud party are semi-honest.

The system in [8] is designed to protect data and query
privacy with two cloud parties. One cloud party is the data
host, who stores all uploaded (encrypted) data tuples. The
other cloud party is called the key party, since it generates
the keys for a public-key encryption scheme. Data tuples
and queries are encrypted with the key party’s public key.
In this system, Paillier encryption is used for its partially
homomorphic properties. For each k-NN execution, the sys-
tem computes encrypted distances through interactions be-
tween the key party and the data host. The key party orders
the distances and provides the data host with the indices of
the k nearest neighbor data tuples to return to a querier.
This work assumes a trusted data owner, and semi-honest
queriers and cloud parties.

Instead of finding exact k-NN, [25] allows a cloud party
to approximate it using encrypted data structures uploaded
by the data owner that represent Voronoi boundaries. The
Voronoi boundary surrounding a data point is the boundary
equidistant from that data point to neighboring points. The
region enclosed in a boundary is the region within which
queries will return the same 1-nearest neighbor. Because
the Voronoi boundaries change whenever a new data point
is added, this approach prevents continuous data upload-
ing without redoing the entire outsourcing process. The en-
cryption scheme is symmetric, and both the data owner and
queriers share the secret key. This work’s trust model is
identical to [23]’s, where the cloud party is semi-honest and
the data owner and queriers are fully trusted.

Another contribution from [25] is a reduction-based im-
possibility proof for privacy preservation in outsourced ex-
act k-NN under a single cloud party model, where the cloud
party has access to an encryption key. Note that [23] and
[31] assume the cloud party does not have the encryption
key, hence avoiding this impossibility argument. The proof
is a reduction to order-preserving encryption (OPE), and
leverages prior work that shows OPE is impossible under
certain cryptographic assumptions [4]. Fully homomorphic
encryption does actually allow OPE but it is still impractical
[10]. Let B be an algorithm, without access to a decryption
oracle, that finds the nearest neighbor of an encrypted query
E(q) in the encrypted data E(D). The impossibility proof

shows that B can be used to construct an OPE function
E(), hence B cannot exist. However, their argument does
not apply to a system model with multiple cloud parties.
Their proof, which relies on B’s lack of access to a decryp-
tion oracle, can be circumvented by providing access to the
decryption function at another cloud party, such as in [8].
Furthermore, OPE has been realized in an interactive two-
party setting [16]. As later discussed in Section 5 and 8,
we consider it reasonable that a cloud party has encryption
capabilities in a multi-data owner model. Thus further ex-
ploration of private k-NN is needed for scenarios not within
the scope of this impossibility result.

One important observation about these prior works is that
they all exhibit linear complexity in computation (and net-
work bandwidth in the case of [8]). Intuitively, this is be-
cause the protocols are distance based. Since the distances
from a query to all data tuples varies for each query, all
distances must be recomputed per query. While there are
techniques [3, 11] for reducing the computational complex-
ity of k-NN, these techniques may not be privacy preserving.
For example, these algorithms necessarily compute on only a
portion of the data tuples near the query. Observing similar
data tuple subsets used can leak the similarity of subsequent
queries. However, future work may yield more efficient pri-
vacy preserving k-NN constructions.

4. SYSTEM AND THREAT MODELS FOR
MULTIPLE DATA OWNERS

All existing private outsourced k-NN systems assume a
single trusted data owner entity. In this paper, we are the
first to consider multiple mutually distrusting data owner
entities. This is a simple and practical extension of exist-
ing models, yet has important implications. We explore the
various threat models that can arise in such a scenario, but
we focus the most attention on one threat model we find
particularly realistic. The remaining threat models can be
more easily dealt with, for example by extending existing
single data owner systems, and will be discussed in detail in
Section 8. In this section, we first discuss our model of a
multi-data owner system. We then provide a framework for
modeling threats in the system.

4.1 K-NN System Model
The privacy-preserving outsourced k-NN model has three

types of parties: the data owners who outsource their data,
the cloud party(s) who host the k-NN computation, and the
queriers requesting k-NN classification. For emphasis, the
key difference between our system model and prior models
is the existence of multiple data owner entities. An immedi-
ate consequence of this modification is seen on the structure
of the cloud parties. As discussed in Section 3, results from
[25] indicate that privacy-preserving outsourcing of exact k-
NN cannot be achieved by a single cloud party without fully
homomorphic encryption, which is impractical. Instead, at
least two cloud parties should exist, one which stores en-
crypted data, and one with access to the associated decryp-
tion function that acts as a decryption oracle. Hence our
system model includes an additional cloud party we call the
Cryptographic Service Provider (CSP) who generates a key
pair for a public-key encryption scheme, and distributes the
public key to data owners and queriers to use for encryption.
The cloud party storing the encrypted data, termed the data



Data Host CSP

Data
Owners

Data
Owners

Queriers

Queriers

Figure 2: The model of an outsourced k-NN system
containing four parties. The cloud parties are the
data host and the crypto-service provider (CSP).

host, is able to compute on encrypted data via interaction
with the CSP. As depicted in Figure 2, our system model
involves multiple data owners and queriers, the data host,
and the CSP. Note that encrypted queries and data submis-
sions must be sent to the data host, not the CSP, since the
CSP can simply decrypt any received values.

4.2 Threat Model Abstractions
We consider any party as potentially adversarial. Like

prior works, we will consider semi-honest adversaries that
aim to learn data or query values, possibly through collu-
sion, while following protocols. We do not consider attacks
where parties attempt to disrupt or taint the system out-
puts. Additionally, we must assume that the CSP and the
data host do not directly or indirectly collude, since the CSP
maintains the secret key to decrypt all data tuples on the
data host. This is a reasonable assumption, for example,
if the two cloud parties are hosted by different competing
companies incentivized to protect their customers’ data pri-
vacy.

To describe our threat models, we will take a slightly un-
orthodox approach. Instead of providing a model for each
party’s malicious actions, we model the malicious behavior
of a party based on roles it possesses. The logic behind
this approach is that different parties in our system model
can pose the same threats because they possess the same
roles. Enumerating and investigating all combinations of
roles and parties is redundant. Hence, just using roles pro-
vides a cleaner abstraction from which to analyze threats.
Below we describe the four possible roles that arise in our
system model.

• Data Owner Role: A party with this role may submit
encrypted data into the system. We focus on misbe-
havior to compromise data privacy, and do not deal
with spam or random submissions aimed at tainting
system results. Note that the data owner role can-
not compromise data privacy by itself since it does not
allow observation of system outputs.

• Querier Role: This role allows submission of encrypted
queries to receive k-NN classification results.

We note that the querying ability can allow the dis-
covery of the Voronoi cell surrounding a data point.

The Voronoi cell is the boundary surrounding a point
p that is equidistant between p and its neighbors. In
the 1-NN case, queries within p’s Voronoi cell will re-
turn p’s classification. A query outside of the cell will
return the classification of a neighboring point. Hence,
changes in 1-NN outputs can signal a crossing over of
a boundary. However, we deem this inherent leakage
minimal since discovering the Voronoi cell would re-
quire numerous queries to reveal each boundary edge.
The Voronoi cell also simply bounds the value of the
data point, and does not directly reveal it. Further-
more, neighboring cells of the same class will appear
merged in such an attack, since the output signal will
not change between cells. K-NN with a large k param-
eter makes analysis even less accurate.

• Data Host Role: The data host role can only be pos-
sessed by a cloud party. It allows storage and obser-
vation of incoming encrypted data tuples and queries,
and the data host computation that is conducted. A
holder of the role also observes any interactions with
other parties.

• CSP Role: Only a cloud party may possess this role.
A CSP possesses both an encryption and decryption
key, and can decrypt any data it observes. It interacts
with a data host role to serve as a decryption oracle,
and can observe any interaction with other parties, as
well as the CSP’s own computation.

In Section 5, we focus on the primary threat model in this
paper, where any single party can possess both the data
owner and querier role. In Section 8, the remaining threat
models are explored. These are threats from one of the cloud
parties possessing either the data owner role or the querier
role, but not both. Also, we consider the case where the
cloud parties possess neither roles.

5. ATTACKS IN THE DATA OWNER-
QUERIER ROLES THREAT MODEL

In this section, we consider the threat model where an
adversarial party possesses both the data owner and querier
roles (termed the DO-Q threat model). Since we consider all
parties as potentially adversarial, any scenario where both
roles may belong to a single party falls under this threat
model. We argue this is a realistic threat model, and dis-
cover a set of conceptually simple attacks on any system
regardless of system design or encryption scheme. The at-
tacks work based purely on the mathematical nature of the
k-NN output, rather than implementation specifics. Hence,
we conclude that multi-data owner outsourced k-NN cannot
be secured under such a threat model.

5.1 DO-Q Threat Model
The DO-Q threat model covers any situation where a sin-

gle party can possess both the data owner and querier roles.
We consider this a practical threat model because it can
arise in numerous scenarios. Hence, we will focus on it in
this section as well as Section 6. The following outlines the
possible scenarios where a single party may possess both
roles:

• It is reasonable to expect that data owners, contribut-
ing their sensitive data, are allowed access to querying.



If not, there is less incentive for data owners to share
data. For examples, hospitals might want to pool their
data to create a disease classification system. The doc-
tors at any participating hospital should be able to
query the system when diagnosing their patients.

• The data owners may not be explicitly given query-
ing permissions, say if the data owners and queriers
are separate institutions. However, miscreants in each
party may collude together, providing a joint alliance
with both roles.

• If the data host can encrypt data tuples and queries,
it can act as its own data owner and querier. It can
insert its own encrypted data tuples into the system’s
data set, and compute k-NN using its own encrypted
queries. A data host with access to the encryption
keys is not unreasonable. In [8], the data host needs
to encrypt values to carry out operations on encrypted
data tuples. In addition, the queries are encrypted un-
der the same key as data tuples to allow homomorphic
operations.

• If the data host lacked the data owner and/or querier
roles (e.g., if an encryption key was kept secret from it),
it may still collude with a data owner and/or querier to
obtain the roles. This collusion can also occur between
the CSP with a data owner and querier.

• If the system is public to data submissions, queries,
or both, then any party can supplement their current
roles with the public roles. For example, a fully public
system allows anyone to obtain both the data owner
and querier role.

5.2 Distance-Learning Attacks in the DO-Q
Model

We now present a set of attacks that reveal distances be-
tween a query and encrypted data tuples, allowing triangu-
lation of the plaintext data values. We begin by present-
ing attacks under the simpler 1-NN, and gradually progress
towards k-NN. We assume that k-NN does not output the
neighboring tuples directly, which provides arbitrary privacy
breaches through querying, but rather just the query’s pre-
dicted classification.

We note that prior work [7] has developed algorithms for
cloning the Voronoi diagram of 1-NN using only queries if
the query responses contain the exact location of the nearest
neighbor or the distance and label of the nearest neighbor.
If only the nearest neighbor label is returned, then the algo-
rithm provides an approximate cloning. Our attacks differ
in that they are structurally very different, we look at k-
NN beyond 1-NN, our attacks reveal the exact data value
of a target tuple rather than the Voronoi diagram, and our
attacks leverage data insertion as well as querying. Also
we focus on a system model where query responses do not
contain the distance (which we considered an already broken
construction). The algorithms in [7] require at least distance
in the query response to conduct exact cloning.

5.2.1 Attack using Plaintext Distance
We begin by considering a broken construction of out-

sourced k-NN. The k-NN system must calculate the dis-
tances from all data tuples to the query point. If these

distances are ever visible in plaintext to a party with just
the querier role, then it is simple to discover the true value
of any encrypted data tuple.

Knowing a query q, the adversary can observe the distance
l from q to the nearest neighbor. This forms a hypersphere of
radius l around q. If the data is d dimensions, d+1 different
query points with the same nearest neighbor constructs d+1
hyperspheres, which will intersect at one unique point, the
nearest neighbor’s plaintext value. Hence, we can uncover
data even though it is encrypted in the data set. Note that
in this case, the adversary needs both a querier role as well as
the cloud party role that observes plaintext distances. This
is different from the threat model we are considering, but
we discuss it as it provides insight for the following attacks.

5.2.2 Attack on 1-NN
Now consider the 1-NN scenario where the system does

not foolishly reveal the distance in plaintext. An adversary
with the data owner and querier roles can still breach the
privacy of the system. The querier role allows the adver-
sary to submit a query q, and observe the classification C of
its nearest neighbor p. The attacker, using its data owner
role, can then insert an encrypted “guess” data tuple E(g),
with any classification C′ 6= C. If the new nearest neighbor
classification returns C′, we know p is farther away from q
than g. If not, then p is closer. Using this changing 1-NN
output signal, the adversary can conduct binary search us-
ing additional guess tuples to discover the distance from q
to p. Hence, the distance is revealed and triangulation can
be conducted as in the insecure previous case. This takes
O((d + 1) logD) guesses in total to compromise a data tu-
ple, where d is the data dimensionality and D is the distance
from q to the initial guess insertion.

Note the above attack appears to require tuple deletions
or updates, without which guess tuples that are closer than p
will disallow continued binary search. Deletions or updates
will certainly improve attack performance, and is reasonable
to allow in many scenarios (e.g., location data which is con-
stantly changing). However, it is not required. First, the
attacker could conduct a linear search, rather than binary,
starting with a guess at distance D and linearly decreasing
the guess distance until equal to the distance between q and
p. Alternatively, a too-near guess still narrows down the
range in which p’s value can be located, and the adversary
can restart a search with a new query in that range.

5.2.3 Attack on k-NN
Consider now attacks on k-NN, instead of 1-NN. In this

scenario, the k-NN system returns the classes of all k nearest
neighbors. Let p of class C be the nearest neighbor to query
q. In fact, k-NN can be reduced to 1-NN by inserting k − 1
data tuples of class C′ 6= C adjacent to q. Then, p is the
only unknown data tuple whose classification is included in
the k-NN output set. The attacker with data owner and
querier roles can test guess data insertions of class C′ until
C is no longer included in the k-NN output, indicating the
guess tuple is closer than p. This signal can be used as before
to conduct a distance search.

5.2.4 Attack on Majority-Rule k-NN
The final scenario for a k-NN system is one that operates

on majority rule. Rather than outputting all classifications
from the k nearest neighbors, only the most common classifi-



cation is returned. Again, data owner and querier privileges
allow a distance-learning attack by reducing to 1-NN. Let p
of class C be the nearest neighbor. The attack can insert
k− 1 data tuples adjacent to a query q, split evenly over all
classes such that the output of k-NN solely depends on the
classification of p. For example, if we have binary classifi-
cation (0 and 1) and 3-NN, the attacker can insert a 0-class
tuple and a 1-class tuple adjacent to q. The original nearest
neighbor (p) now solely determines the output of 3-NN, and
the adversary may again use a change in k-NN output as a
signal for a distance search.

5.3 Fundamental Vulnerability
The vulnerability exposed by these attacks is fundamental

to exact k-NN. For any given query, k-NN outputs a func-
tion evaluated on the subset of tuples within a distance d,
where d is the distance of the k-th nearest neighbor. Repre-
senting k-NN as kernel density estimation using a uniform
kernel, d is the kernel’s width. The vulnerability above fun-
damentally relies on the fact that the kernel’s width changes
depending on which data points are near the query. An ad-
versary can learn distances through guess insertions and an
observation of k-NN output change. Hence, in any scenario
where a party possesses both the data owner and querier
roles, exact k-NN cannot be secure, regardless of implemen-
tation details. An alternate or approximate solution must be
used. In Section 6, we propose a privacy-preserving scheme
using a similar algorithm from the same family as k-NN.

6. PRIVACY-PRESERVING KERNEL DEN-
SITY ESTIMATION

In Section 5, we demonstrated that data privacy can be
breached in any multi-data owner exact k-NN system un-
der the DO-Q threat model. Given the practicality of this
scenario, particularly since the data host typically will have
those roles, we seek to provide a secure alternative to ex-
act k-NN. In this section, we propose a privacy-preserving
system using an algorithm from the same family as k-NN.

In particular, k-NN is a specific case of kernel density esti-
mation (as discussed in Section 2.2). Intuitively, the kernel
measures the amount of influence a neighbor should have
on the query’s final classification. For a given query, kernel
density estimation computes the sum of the kernel values for
all data points of each class. The classification is the class
with the highest sum. K-NN uses a kernel that is uniform
for the k nearest neighbors, and zero otherwise. We propose
substituting this kernel with another common kernel, the
Gaussian kernel:

K(‖q− xi‖) =
1

σ
√

2π
e
− 1

2σ2
‖q−xi‖2

In this equation, q is the query tuple, xi is the i-th data
tuple, σ is a parameter (chosen to maximize accuracy using
standard hyperparameter optimization techniques, such as
cross-validation with grid search), and ‖ · ‖ is the L2 norm.
As the distance between q and xi increases, the kernel value
(and influence) of xi decreases. K-NN allows the k nearest
neighbors to all provide equal influence on the query point’s
classification. When using a Gaussian kernel, all points have
influence, but points farther away will influence less than
points nearby. While this approach is not equivalent to exact
k-NN due to the non-uniformity of neighbor influences, it
is similar and from the same family of algorithms. Later,

we show experimentally that it can serve as an appropriate
substitute in order to provide privacy preservation.

6.1 Why the Gaussian Kernel?
The Gaussian kernel for kernel density estimation is

specifically chosen to provide defense against the adaptive k-
NN distance-learning attacks under the DO-Q threat model
(Section 5). Here, we briefly provide the intuition for why
this is true, with the formal proof in Section 6.3.

In k-NN, the width of the kernel depends on the distance
of the kth nearest point from the query, so that only the k
nearest neighbors influence the classification. An adversary
with the data owner role can change this set of neighbors by
inserting data tuples within the kernel width, and manipu-
late whether a particular point influences the classification.
Distances can be learned by using changes in this subset as
a signal. When using the Gaussian kernel, which has an in-
finite kernel width, any data the adversary inserts will not
change the influence of other points, and the outcome will
be affected by exactly an amount the adversary already can
compute. For example, for a given query q, an adversary
inserting a point y knows the influence for y’s class will in-
crease by exactly K(‖q − y‖). Hence, the adversary learns
nothing new from possessing the data owner role and query-
ing.

It is important to realize that this security arises from the
Gaussian kernel’s unvarying and infinite width. The choice
of an alternative kernel is non-trivial and must be carefully
selected. For example, another viable substitute is the logis-
tic kernel K(u) = 1

eu+2+e−u , since it too has an unvarying
and infinite width. Our decision to use the Gaussian kernel
was based on the ease of developing a scheme using partially
homomorphic cryptographic primitives.

6.2 A Privacy-Preserving Design
In this section, we will step-by-step describe the construc-

tion of a privacy-preserving classification system using ker-
nel density estimation with a Gaussian kernel. As we will
demonstrate, our protocols provide classification without
leaking data or queries. Our system will follow the same
system model as described in Section 4.1.

6.2.1 Setup
Recall that the system model provides outsourcing data

storage and computation to a data host and a cryptographic
service provider. The cryptographic service provider gener-
ates a public/private key pair for the Paillier cryptosystem
and distributes the public key to data owners and queriers,
who use it to encrypt data they submit to the cloud, as
well as the data host. Data owners submit their data in en-
crypted form to the data host. Note that while we use the
Paillier cryptosystem, other similarly additive homormophic
cryptosystems may be appropriate as well.

6.2.2 Computing Squared Distances
Since a kernel is a function of distance, our system must be

able to compute distance using encrypted data without re-
vealing it. Algorithm 1 describes SquaredDist(E(a), E(b)),
which allows the data host to compute the encrypted
squared distance between a and b given only their cipher-
texts. The protocol does not leak the distance to either
cloud parties, to prevent a distance-learning attack. Only



Algorithm 1 SquaredDist(E(a), E(b)): Output E(‖a −
b‖2)

1. DH: for 1 ≤ i ≤ m do:
(a) xi ← E(ai) · E(bi)

−1. Thus, xi = E(ai − bi).
(b) Choose random µi ∈ ZN .
(c) yi ← xi · E(µi), such that yi = E(ai − bi + µi).
(d) Send yi to CSP .

2. CSP : for 1 ≤ i ≤ m do:
(a) wi ← E((E−1(yi))

2).
(b) Send wi to DH.

3. DH: for 1 ≤ i ≤ m do:
(a) zi ← wi · x−2µi

i · E(−µ2
i ).

4. DH: Encrypted squared distance E(‖a− b‖2) = Πm
i=1zi.

squared distances are required as they are used in the Gaus-
sian kernel calculation.

Assume our tuples are m dimensions, and ai is the i-th
feature of tuple a. E and E−1 are the Paillier encryption
and decryption functions, respectively, using the previously-
chosen public/private key pair. Note all Paillier operations
are done modulo the Paillier parameter N , but for simplicity
we elide the modulus. Also, we abbreviate the data host as
DH, and the cryptographic service provider as CSP.

Step 1 computes the encryption of di = (ai − bi) and
additively masks each with a random secret µi, such that
E−1(yi) = di + µi mod N . This prevents the CSP from
learning di in step 2. The CSP decrypts yi, squares it,
and sends it back to the DH the encryption of the square.
Note wi = E((E−1(yi))

2) = E(d2i + 2µidi + µ2
i ). The DH

can encrypt µ2
i and compute E(2µidi) as x2µii , allowing it

to recover E(d2i ) in step 3. Finally, the DH can compute
E(d2) = E(Σmi=1d

2
i ) = Πm

i=1E(d2i ), as in step 4. This pro-
vides the DH with encrypted squared distances without re-
vealing any information to either cloud parties.

6.2.3 Computing Kernel Values
Now that we can compute squared distances, we must

compute the Gaussian kernel values in a secure fashion. Al-
gorithm 2 does so such that the CSP obtains a masked kernel
value for each data tuple.

Algorithm 2 KernelV alue(q): Compute Gaussian kernel
values for data tuples t in data set D given query q

1. DH: for 1 ≤ i ≤ |D| do:
(a) si ← SquareDist(ti, q) = E(‖ti − q‖2)
(b) Choose random µi ∈ ZN
(c) ei ← si · E(µi). Thus, ei = E(‖ti − q‖2 + µi).
(d) Send ei to CSP .

2. CSP : for 1 ≤ i ≤ |D| do:

(a) gi ← 1

σ
√
2π
e
− 1

2σ2
E−1(ei)

In step 1, the DH additively masks each computed en-
crypted squared distance by adding a different random
mask. These values are sent to the CSP who in step 2
decrypts and computes the kernel values using the masked
squared distances. Note that since each distance is masked
with a random value, the CSP does not learn any distances,
even if the CSP knows some data values in the data set. The
CSP will not be able to determine which masked values cor-
respond to its known values. Again, no cloud party learns
any distances, and they observed only encrypted or masked

values. The query is only used in this algorithm, without
ever being decrypted. Hence query privacy is achieved.

6.2.4 Computing Classification
The final step is to conduct kernel density estimation for

classification by determining which class is associated with
the largest sum of kernel values. Our scheme represents
classes not as a single value, but rather as a vector. If there
are c classes, we require a set of c orthonormal unit-length
bases, where each basis is associated with a particular class.
When uploading a data tuple, a data owner uploads the
encrypted basis associated with the tuple’s class.

We can compute classification as described in Algorithm
3. This algorithm is run after Algorithm 2, such that the
CSP knows the masked Gaussian kernel values for all data
tuples. Let ci represent the classification vector for the i-th
data tuple.

Algorithm 3 Classify(q): Output a classification predic-
tion for query q where there are c classes

0. DH: Run KernelV alue(q)
1. DH: for 1 ≤ i ≤ |D| do:

(a) Generate a random invertible matrix Bi of size c× c.
(b) vi = Bi × E(ci).
(d) Send vi to CSP .

2. CSP : for 1 ≤ i ≤ |D| do:
(a) wi = vgii , where gi are kernel density values.
(b) Send wi to DH.

3. DH: for 1 ≤ i ≤ |D| do:

(a) w′i ← B−1
i ·w

e
1

2σ2
µi

i , where µi is the random distance
masking for the i-th tuple (see Algorithm 2 step 1(c))

4. DH: A← Σ
|D|
i=1w

′
i. Note that this is a c× 1 vector.

5. DH: for 1 ≤ i ≤ c:
(a) Choose new µi ∈ ZN randomly.
(b) Ac ← Ac + µi, where Ac is the c-th component of A.

6. DH: Let f(in1, ..., inc, µ1, ..., µc)
= arg max

k
(ink − µk mod N).

(a) Generate the garbled circuitGFf of f and the garbled
inputs GI(µi) ∀i ∈ {1, ..., c}.
(b) Send GFf , GI(µi) and Ai ∀i ∈ {1, ..., c} to CSP .

7. CSP :
(a) A′i ← E−1(Ai) ∀i ∈ {1, ..., c}.
(b) Conduct oblivious transfers with DH to obtain
GI(A′i) ∀i ∈ {1, ..., c}
(c) gout← GFf (GI(A′1), ..., GI(A′c), GI(µ1), ..., GI(µc)).
(d) Send gout to DH.

8. DH: Map gout to its non-garbled value out and return to
the querier. out is the number representing the predicted
class.

In step 1, the encrypted classification vectors are masked
through matrix multiplication with a random invertible ma-
trix Bi, which can be efficiently constructed [20]. Note this
computation can be conducted on encrypted data because
the DH knows the values of Bi, and the matrix multipli-
cation involves only multiplying by plaintext constants and
adding ciphertexts. The masked classification vectors are
sent to the CSP in step 2, who scales them by the kernel
values (from Algorithm 2). In step 3, the DH is returned
these values. The DH undoes the transformation by multi-
plying by B−1

i . The distance masks in the Gaussian kernel



from Algorithm 2 are removed by multiplying by e
1

2σ2
µi ,

where µi is the mask for the i-th tuple. Now, w′i is the en-
crypted basis for the i-th tuple’s class, scaled by the kernel
value. In step 4, the sum of these scaled encrypted bases
will sum the kernel values for each class in the direction of
the classes’ bases, forming the vector A. Note that A is still
a vector of encrypted values though.

At this point, we need to determine the class with the
highest kernel values summation. Having the CSP decrypt
A and return the kernel value sums for the classes may ap-
pear straightforward, but in fact leads to an attack on future
inserted data tuples if an adversary can view the kernel value
sums and can continuously query q. When the next data
tuple t is inserted, the adversary will observe an increase in
the kernel values summation for t’s class by K(‖t − q‖2).
Knowing q and K(‖t − q‖2), the adversary can compute
‖t − q‖. Assuming the data has m features, the attacker
can determine t using a set of (m + 1) queries both before
and after insertion to compute (m+ 1) distances. Note that
our threat model allows for one of the cloud parties to pos-
sess the querying role, so whichever party can observe the
kernel value sums can conduct this attack. Thus, the proto-
col must determine the classification without revealing the
kernel value sums to any party.

We accomplish this using a garbled circuit for the func-
tion f(in1, ..., inc, µ1, ..., µc) = arg max

k
(ink − µk mod N).

If there are c classes, this function accepts c masked inputs
in and c additive masks µ, unmasks each masked input with
its associated mask, and returns the index corresponding to
the largest unmasked value. If the masked inputs are masked
kernel value summations for each class, f returns the class
index with the kernel values summation. In step 5, the DH
additively masks the (encrypted) kernel values summation
for each class. Then in step 6, the DH generates the garbled
circuit GFf for f and garbles its own inputs, which are the
masks for each class’s kernel values summation. Note that f
is not that complex of a function (for example, compared to
a decryption function) and its garbled circuit can be practi-
cal implemented using existing systems [14]. The DH sends
GFf , its garbled inputs, and the masked (still encrypted) A
to the CSP. The CSP decrypts the masked A vector in step
7(a). By conducting oblivious transfer in step 7(b) with the
DH to obtain the garbled input associated with each Ai, the
CSP does not reveal the masked kernel value sums. With
all of the inputs now to GFf , the CSP evaluates the garbled
circuit and returns the garbled output to the DH. Because
the DH created the circuit, it can map the garbled output
back to its non-garbled value, which is the class index re-
turned by f with the largest kernel values summation. This
classification is exactly the classification output of kernel
density estimation using a Gaussian kernel.

6.3 Security Analysis
First we must show that use of the Gaussian kernel by our

scheme is resistant to the adaptive distance-learning attacks
detailed in Section 5. While Section 6.1 provide an intuitive
argument for this, here we present a formal proof.

Theorem 6.1. Under the Gaussian kernel in kernel den-
sity estimation, the adversary learns nothing from the
distance-learning attacks of Section 5. More specifically, the
adversary does not learn the distance from a query output
by adding to the data set (or removing her own data tuple).

Proof. Let D = {d0, ..., dn} be the current data set, q
be the adversary’s desired query point, and dA be any data
tuple the adversary could insert. Also define GKj(D, q) to
be the kernel value sums for the j-th class given the query
q and data set D, and C(di) to be the i-th data tuple’s
classification. Recall that if the system allows for c classes,
the query output is arg max

j∈{1,...,c}
(GKj(D, q)).

Before tuple insertion, for each class j in {1, ..., c}:

GKj(D, q) = Σ
|D|
i=1

1

σ
√

2π
e
− 1

2σ2
(‖di−q‖2)

1C(di)=j

Here, 1C(di)=j is an indicator variable for whether the i-th
data tuple di is of class j. After inserting tuple dA, for each
class j in {1, ..., c}:

GKj(D ∪ {dA}, q) = Σ
|D|
i=1

1

σ
√

2π
e
− 1

2σ2
(‖di−q‖2)

1C(di)=j

+
1

σ
√

2π
e
− 1

2σ2
(‖dA−q‖2)

1C(dA)=j

= GKj(D, q) +
1

σ
√

2π
e
− 1

2σ2
(‖dA−q‖2)

1C(dA)=j

The adversary, through using its data owner role, can

cause a change of δ = 1

σ
√
2π
e
− 1

2σ2
(‖dA−q‖2)

1C(dA)=j . How-

ever, the Gaussian kernel values have not changed for any
other data tuples. The change in a query output is directly
and completely a result of δ, which the adversary knows in-
dependent of querying since it knows dA, q, and σ (which
can be public). Given the query output is based only on
hidden Gaussian kernel value sums, the output after inser-
tion does not leak any more information on an individual
tuple’s kernel value beyond what the query output leaks in-
herently (without insertion). Because the distance is only
used in the Gaussian kernel, and the adversary learns noth-
ing about other tuples’ Gaussian kernel values through in-
sertion, it does not learn the distance from insertion.

If the adversary deleted one of her tuples, the outcome is
exactly the same except δ is negative. With a semi-honest
adversary, we can assume the adversary only deletes her own
tuples.

The next analysis is to show our scheme leaks no further
data beyond its output. More formally, our scheme leaks no
additional information compared to an ideal scheme where
the data is submitted to a trusted third party, who computes
the same classification output. In our initial discussion of the
protocol design in Section 6.2, we justified the security along
this front for each step of the construction. See Appendix B
of the full paper version for a more formal proof.

A final analysis that could be conducted is to formally
characterize what the kernel density estimation output it-
self reveals about the underlying data. While we proved
that the Gaussian kernel output does not leak data tuple
values through the distance-learning attacks of Section 5, we
have not yet developed a framework to analyze other leakage
channels other than the preliminary analysis above. Such a
problem is challenging and we leave it to future work. How-
ever, even in the face of potential leakage, data perturbation
provides some security, although in exchange for output ac-
curacy.



6.4 Performance Considerations
Our kernel density solution requires O(N) computation

and communication overhead, where N is the number of
data tuples in the data set. On large data sets, we ac-
knowledge this cost might be impractical. Future work
remains to find privacy-preserving constructions with op-
timizations. Our goals with the presented construction are
to both demonstrate that there exists a theoretically viable
privacy-preserving alternative to k-NN, and lay the ground-
works for future improvements. Note that existing private
k-NN schemes also have linear performance costs, as dis-
cussed in Section 3.

One solution for improving performance is parallelism,
since our scheme operates on each data tuple independent of
other tuples. Ideally, multiple machines would run in par-
allel at both cloud parties, providing parallelism not only
in computation but also network communication. Each ma-
chine at the data host would compute a subcomponent of the
kernel value sums, and one master node can aggregate these
subcomponents and execute Yao’s garbled circuit protocol
to produce the classification. Our protocol was intentionally
designed so that the function circuit that is garbled is of lim-
ited complexity, without need for complex sub-routines such
as decryption. Thus, Yao’s protocol can be implemented ef-
ficiently [14].

K-NN suffers this linear-growth complexity as well, how-
ever approximation algorithms significantly improve perfor-
mance by reducing the number of points considered during
neighbor search. For example, k-d trees [3] divide the search
space into smaller regions, while locality hashing [11] hashes
nearby points to the same bin. Hence, search for a query’s
neighbors involves computation over the data points in the
same region or bin, rather than the entire data set. Unfortu-
nately, it is not obvious how to execute approximate k-NN
in a privacy-preserving fashion. Similarly, there must be fu-
ture work on similar optimizations and approximations for
kernel density estimation.

7. COMPARING K-NN AND GAUSSIAN
KERNEL DENSITY CLASSIFICATION

In this section, we examine the differences between clas-
sification with k-NN and with Gaussian kernel density esti-
mation. We empirically evaluated the performance of using
both algorithms, to show they can give similar results on
real data. Appendix C of the full paper version expands on
this evaluation, discussing a number of additional consider-
ations when using Gaussian kernel density estimation. We
construct hypothetical data sets where we can expect them
to behave differently, and discuss the underlying causes for

Data Set k-NN KDE Agreement
Cancer 1 97.85% 97.14% 99.28%
Cancer 2 96.49% 96.49% 98.24%
Diabetes 81.82% 74.68% 87.66%
MNIST 97% 96% 99%

Table 2: Empirical results for k-NN versus kernel
density estimation (KDE) with a Gaussian kernel.
Using several data sets, we evaluate each algorithm’s
classification accuracy as well as the degree of agree-
ment between the two algorithms’ outputs.

the discrepancy. We also discuss some practical issues spe-
cific to using a Gaussian kernel and how to solve them.

We summarize the results in Table 2. The medical data
comes from the UCI Machine Learning Repository [1], a col-
lection of real data sets used for empirical evaluations of ma-
chine learning algorithms. “Cancer 1” and “Cancer 2” con-
tain measurements from breast cancer patients conducted
at the University of Wisconsin. “Cancer 1” contains 9 fea-
tures for each patient; “Cancer 2” came several years after
“Cancer 1” and contains 30 features which are more fine-
grained. “Diabetes” contains measurements from Pima In-
dian diabetes patients (8 features per patient). We also use
the MNIST handwritten digit recognition data set, which
consist of 28 × 28 pixel grayscale images each containing a
single digit between 0 and 9.

Following our recommendations described in Appendix C,
we scaled each feature to [0, 1]. For the UCI data sets, we
used cross-validation to select k and σ; for MNIST, we set
them manually to 5 and 0.25. Except for MNIST which al-
ready came divided into training and test sets, we randomly
took 20% of each data set for testing. Table 2 contains the
prediction accuracy and classification agreement for both al-
gorithms on these test sets when using the remaining 80%
as training data.

Except for the Pima Indian diabetes data set, Gaussian
kernel density classification exhibits an accuracy no more
than 1% lower than k-NN’s, and the two algorithms agree
on over 99% of classifications. In the diabetes case, both
algorithms perform poorly because the data is not well sep-
arated, with regions scattered with both classes. We argue
such a data set is not well suited for k-NN in the first place.
Prior investigation must decide whether a particular algo-
rithm is suitable for use.

8. ALTERNATIVE THREAT MODELS
Sections 5 and 6 focused on the DO-Q threat model since

it accounts for a number of realistic scenarios, including var-
ious collusion relationships. Without any party (directly
or through collusion) possessing both the data owner and
querier roles, there are several remaining threat situations.
In this section, we explore these threat models. The one
pervasive assumption remains: the data host and the cryp-
tographic service provider (CSP) do not collude. As men-
tioned in Section 4.2, a data owner or querier role itself does
not allow privacy compromise of the system. Hence, the
remaining alternate threat models are outlined below:

• Each party possesses only its original role (e.g., a data
host only possesses a data host role).

• The data host additionally obtains a data owner role.

• The data host additionally obtains a querier role.

• The CSP additionally obtains a data owner role.

• The CSP additionally obtains a querier role.

Note that a given system may be under more than one of
the above threats. For example, the CSP and data host may
both obtain an additional role. However, since we assume
no collusion directly or indirectly between the two cloud
parties, we can analyze each threat independently.

These threat models, while each covering fewer scenarios,
are still realistic. There are settings where the cloud parties



do not collude with certain other parties. For example, the
cloud parties may have reputations to maintain, and may
avoid collusion or misbehavior for fear of legal, financial,
and reputational backlash from discovery through security
audits, internal and external monitoring, whistleblowers, or
investigations. Note that in all cases, our kernel density
estimation solution using the Gaussian kernel can still be
used as an appropriate alternative, since the DO-Q threat
model allows for a strictly more powerful (in terms of roles)
adversary. Our discussion that follows will look at other
solutions though, under each threat model.

8.1 Original Roles Threat Model
In this threat model, each party only possesses or utilizes

the role it was originally designated. This is the simplest of
threat models because data owners do not collude with any
other parties. Since data owners themselves do not receive
output from the k-NN system, they cannot compromise pri-
vacy. Hence, we can treat them as trusted, allowing us to
revert to single data owner designs [8, 23], except using mul-
tiple data owners. These existing systems already provide
privacy against cloud and querier adversaries. This scenario
could realistically arise if data owners and querier are sep-
arate institutions. For example, hospitals could contribute
data to a research study conducted at a university, and only
the researchers at that university can query the system.

8.2 Data Host Threat Models
We consider now the threat models where the data host

obtains the role of a data owner or a querier, but not both.
This can be through collusion, or a design giving the data
host the ability to insert data (e.g., encrypt data tuples) or
initiate queries.

An extension of the system in [8] can protect against a
data host with the data owner role. This system uses compu-
tation over Paillier ciphertext, similar in flavor to our kernel
density estimation approach. Their system consists also of a
CSP which they call the key party, and a data host. Their
scheme is privacy-preserving in the single data owner model.
The data host is allowed to encrypt, and hence possesses the
role of a data owner, but all data that flows through the data
host is encrypted, including that received from the key party.
Given the data host does not know query values, the data
host cannot learn anything that it did not already possess
prior knowledge about (e.g., data submitted using the data
owner role). Hence, we argue this scheme can be simply
extended to multiple data owners in this threat model. Do
note that this scheme is not secure under the DO-Q threat
model since it still computes exact k-NN.

The data host with the querier role appears more prob-
lematic due to information leakage. Intuitively, the ability
to observe plaintext query outputs can leak the classifica-
tion of data tuples. In particular, the data host can ob-
serve what tuples are used in the output construction, and
the query output associates classifications to those tuples.
It is challenging to defend against this breach because in
outsourced exact k-NN, some cloud party typically must de-
termine the subset of encrypted data tuples associated with
the system output. If that party colludes with a querier (or
possesses the querying role), the group will be able to as-
sociate those tuples with query-returned classifications. In
this situation, our Gaussian kernel density algorithm can
again provide privacy, since the query output is dependent

on the classification over all encrypted tuples. Hence, the
query output cannot be associated with any particular set
of data tuples.

8.3 Key Party Threat Models
Finally, we consider a key party either colluding with or

possessing the role of a data owner or a querier, but not both.
Again we will consider extending the Paillier-based scheme
in [8]. A key party with either roles should not be able
to compromise this system even with multiple data-owners.
K-NN computation is done with relations to distances from
a query point. Without knowing the query point, the key
party who knows values in the data set (through the data
owner role) will not be able to associate observed distance-
based values with known data. Furthermore, the values it
observes should either be masked (as in our scheme), or
encrypted (as in [8]). A key party with querying ability
will only observe masked or encrypted values, hence it will
not be able to learn anything from the computation.

9. CONCLUSION
In this paper, we have presented the first exploration of

privacy preservation in an outsourced k-NN system with
multiple data owners. Under certain threat conditions, we
can extend existing single data owner solutions to secure the
multi-data owner scenario. However, under a particularly
practical threat model, exact k-NN cannot be secured due to
a set of adaptive distance-learning attacks. This highlights
the need for investigation into the inherent leakage from out-
puts of machine learning algorithms. As an alternative so-
lution, we propose use of a Gaussian kernel in kernel density
estimation, which is the family of algorithms k-NN belongs
to. We present a privacy preserving system that supports
this similar algorithm, as well as evidence of its similarity
to k-NN. Admittedly, the scheme may not be practical for
large data sets, given that the computational and commu-
nication complexities scale linearly. Improving performance
is a remaining challenge, and we hope this first step lays
the groundwork for future optimized privacy-preserving so-
lutions.

10. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

helpful comments and suggestions for improving this work.
This work is partially supported by a National Science Foun-
dation grant (CNS-1237265). The first author is supported
by the National Science Foundation Graduate Research Fel-
lowship. Any opinion, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thors(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.



11. REFERENCES

[1] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[2] M. Bellare, V. T. Hoang, S. Keelveedhi, and
P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In Proceedings of the IEEE Symposium
on Security and Privacy, SP’13.

[3] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM, Sept.
1975.

[4] A. Boldyreva, N. Chenette, and A. O’Neill.
Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In
Proceedings of the Annual Conference on Advances in
Cryptology, CRYPTO’11.

[5] M. Burkhart and X. Dimitropoulos. Fast
privacy-preserving top-k queries using secret sharing.
In Proceedings of the International Conference on
Computer Communications and Networks, ICCCN’10.

[6] D. Demmler, T. Schneider, and M. Zohner. ABY - a
framework for efficient mixed-protocol secure
two-party computation. In Proceedings of the Network
and Distributed System Security Symposium, NDSS’15.

[7] M. Dickerson, D. Eppstein, and M. Goodrich. Cloning
voronoi diagrams via retroactive data structures. In
European Symposium on Algorithms, Lecture Notes in
Computer Science. 2010.

[8] Y. Elmehdwi, B. K. Samanthula, and W. Jiang.
Secure k-nearest neighbor query over encrypted data
in outsourced environments. In Proceedings of the
IEEE International Conference on Data Engineering,
ICDE’14.

[9] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. Commun. ACM, June
1985.

[10] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the ACM Symposium on
Theory of Computing, STOC’09.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proceedings
of the International Conference on Very Large Data
Bases, VLDB’99.

[12] M. Kantarcioglu and C. Clifton. Privately computing
a distributed k-nn classifier. In Proceedings of the
European Conference on Principles and Practice of
Knowledge Discovery in Databases, PKDD’04.

[13] Y. Lindell and B. Pinkas. A proof of security of Yao’s
protocol for two-party computation. In Journal of
Cryptography, April 2009.

[14] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay:
a secure two-party computation system. In Proceedings
of the USENIX Security Symposium, USENIX’04.

[15] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proceedings of
the International Conference on Theory and
Application of Cryptographic Techniques,
EUROCRYPT’99.

[16] R. A. Popa, F. H. Li, and N. Zeldovich. An
ideal-security protocol for order-preserving encoding.
In Proceedings of the IEEE Symposium on Security
and Privacy, SP’13.

[17] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: Protecting confidentiality
with encrypted query processing. In Proceedings of the
ACM Symposium on Operating Systems Principles,
SOSP’11.

[18] Y. Qi and M. J. Atallah. Efficient privacy-preserving
k-nearest neighbor search. In Proceedings of the
International Conference on Distributed Computing
Systems, ICDCS’08.

[19] M. Rabin. How to exchange secrets by oblivious
transfer. Technical report, Boston, MA, USA, 1981.

[20] D. Randall. Efficient generation of random nonsingular
matrices. Technical report, Berkeley, CA, USA, 1991.

[21] M. Shaneck, Y. Kim, and V. Kumar. Privacy
preserving nearest neighbor search. In Proceedings of
the IEEE International Conference on Data Mining
Workshops, ICDM Workshops ’06.

[22] E. Songhori, S. Hussain, A.-R. Sadeghi, T. Schneider,
and F. Koushanfar. TinyGarble: Highly compressed
and scalable sequential garbled circuits. In Proceedings
of the IEEE Symposium on Security and Privacy,
SP’15.

[23] W. K. Wong, D. W.-l. Cheung, B. Kao, and
N. Mamoulis. Secure knn computation on encrypted
databases. In Proceedings of the International
Conference on Management of Data, SIGMOD’09.

[24] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh,
Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu,
P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and
D. Steinberg. Top 10 algorithms in data mining.
Knowl. Inf. Syst., Dec. 2007.

[25] X. Xiao, F. Li, and B. Yao. Secure nearest neighbor
revisited. In Proceedings of the IEEE International
Conference on Data Engineering, ICDE’13.

[26] L. Xiong, S. Chitti, and L. Liu. K nearest neighbor
classification across multiple private databases. In
Proceedings of the ACM International Conference on
Information and Knowledge Management, CIKM’06.

[27] L. Xiong, S. Chitti, and L. Liu. Preserving data
privacy in outsourcing data aggregation services. ACM
Trans. Internet Technol., Aug. 2007.

[28] A. Yao. How to generate and exchange secrets. In
Proceedings of the IEEE Annual Symposium on
Foundations of Computer Science, FOCS’86.

[29] J. Zhan and S. Matwin. A crypto-based approach to
privacy-preserving collaborative data mining. In
Proceedings of the IEEE International Conference on
Data Mining Workshops, ICDM Workshops’13.

[30] F. Zhang, G. Zhao, and T. Xing. Privacy-preserving
distributed k-nearest neighbor mining on horizontally
partitioned multi-party data. In Advanced Data
Mining and Applications, Lecture Notes in Computer
Science. 2009.

[31] Y. Zhu, R. Xu, and T. Takagi. Secure k-nn
computation on encrypted cloud data without sharing
key with query users. In Proceedings of the
International Workshop on Security in Cloud
Computing, Cloud Computing’13.


