
Comparing Malware Evasion Theory with Practice: Results from Interviews with Expert Analysts

Miuyin Yong Wong
Georgia Institute of Technology

Matthew Landen
Georgia Institute of Technology

Frank Li
Georgia Institute of Technology

Fabian Monrose
Georgia Institute of Technology

Mustaque Ahamad
Georgia Institute of Technology

Abstract
Malware analysis is the process of identifying whether cer-
tain software is malicious and determining its capabilities.
Unfortunately, malware authors have developed increasingly
sophisticated ways to evade such analysis. While a significant
amount of research has been aimed at countering a spectrum
of evasive techniques, recent work has shown that analyzing
malware that employs evasive behaviors remains a daunting
challenge. To determine whether gaps exist between evasion
techniques addressed by research and challenges faced by
practitioners, we conduct a systematic mapping of evasion
countermeasures published in research and juxtapose it with a
user study on the analysis of evasive malware with 24 expert
malware analysts from 15 companies as participants. More
specifically, we aim to understand (i) what malware evasion
techniques are being addressed by research, (ii) what are the
most challenging evasion techniques malware analysts face
in practice, (iii) what are common methods analysts use to
counter such techniques, and (iv) whether evasion counter-
measures explored by research align with challenges faced
by analysts in practice. Our study shows that there are chal-
lenging evasion techniques highlighted by study participants
that warrant further study by researchers. Additionally, our
findings highlight the need for investigations into the barriers
hindering the transition of extensively researched countermea-
sures into practice. Lastly, our study enhances the understand-
ing of the limitations of current automated systems from the
perspective of expert malware analysts. These contributions
suggest new research directions that could help address the
challenges posed by evasive malware.

1 Introduction

Malicious software or malware is a serious and constantly
evolving threat to cybersecurity. As of 2023, a staggering
300,000 new malware samples are generated daily1. With
such a large volume of new malware, it is imperative that

1See 50+ Cybersecurity Statistics for 2023 You Need to Know

security professionals are equipped with the tools necessary
to identify and analyze these samples in a timely manner.
Unfortunately, as malware becomes more sophisticated, mal-
ware authors have developed evasive techniques to make the
analysis more difficult and time-consuming. In fact, in 2018
a study showed that 98% of malware samples employ at least
one evasive technique2. A few examples of evasive techniques
are code obfuscation and sandbox evasion [1, 28, 48].

Code obfuscation is a technique that deliberately makes
the code more difficult to understand during static analysis,
which is the process of examining a malware’s functional-
ity without executing the code. Some common examples of
code obfuscation include string encryption, packing, flatten-
ing the control flow, and adding spurious code. In turn, to
mitigate obfuscation techniques, researchers have developed
unpackers [13, 17, 31, 49, 74, 82], and de-obfuscators [7, 18,
65, 73, 84, 94]. To impede dynamic analysis, a type of anal-
ysis that executes the malware in a controlled environment,
malware authors often insert checks in their code to detect if
they are being executed within an analysis environment such
as a sandbox, a technique known as sandbox evasion. Such
checks enable malware to evade analysis by not revealing its
functionality. In response, researchers have developed more
transparent sandboxes which make the analysis environment
less detectable [20, 21, 26, 68, 80, 81, 87] and techniques to
detect evasive samples by comparing multiple executions of
the malware [30, 32, 40, 45, 53, 83]. More recently, there have
been efforts such as forced execution [38, 58, 79], which aim
to investigate the different execution paths of malware to ex-
pose its malicious behavior. Despite the considerable amount
of research aimed at evasion techniques, a user study by Yong
et al. [88] found that analyzing evasive malware continues to
be a challenge for practitioners.

To keep up with the increased sophistication of evasive
malware and explore how future research can enhance the
analysis of evasive malware in practice, it is necessary to
understand (i) methods that have been developed by past re-

2See Evasive Malware Now a Commodity.

https://www.techopedia.com/cybersecurity-statistics
https://www.securityweek.com/evasive-malware-now-commodity/.

search to counter evasion, and (ii) the evasion techniques that
still remain challenging for malware analysts in practice. Al-
though prior work has conducted surveys of dynamic malware
analysis evasion techniques [1, 10], none focused specifically
on countermeasures that help handle evasion techniques that
hinder either dynamic or static analysis. Additionally, while
prior user studies [77, 88] have studied the process of reverse
engineering and malware analysis, our study is the first to
identify the specific evasion techniques that malware analysts
in practice find challenging and examine how they currently
handle such techniques. Moreover, unlike prior studies, we
conduct a systematic comparison with existing literature to
provide informed recommendations for future research that
may help solve analysts’ challenges. To meet this goal, we
conduct the first systematic mapping of countermeasures for
evasion techniques employed by malware, and combine it
with 24 semi-structured interviews with highly experienced
malware analysts who work in established security groups of
well-known companies such as Proofpoint, General Electric
(GE), Mandiant (now Google), IBM, and SecureWorks.

Our systematic mapping allows us to understand which
malware evasion techniques have been addressed in research,
and the methodologies that have been developed to counter
such evasion techniques. Furthermore, our user study helps
us identify evasion techniques that remain challenging in
practice. Together, our systematic mapping and user study are
used to perform a comparative analysis between the evasion
countermeasures that research focuses on and the challenging
evasive techniques practitioners encounter. This can also help
inform areas in need of further research. Thus, we seek to
answer the following questions:

RQ1 Which malware evasion techniques have been the focus
of research dealing with evasion countermeasures?

RQ2 What are the most challenging evasive techniques en-
countered by malware analysts in practice?

RQ3 What approaches do malware analysts take to counter
evasive techniques?

The main contributions of this paper are the following:
First, we map and categorize evasive countermeasures found
in the literature. Second, we identify the most challenging eva-
sion techniques encountered by our study participants, along
with the manual processes they follow to overcome such chal-
lenges. Third, we conduct a comparative analysis between
solutions explored by research and challenges encountered
by malware analysts in practice. Our analysis reveals that
existing research solutions have significantly contributed to
the field. However, there exists a misalignment between some
of the practical challenges that malware experts face with eva-
sive malware and the focus of developed research solutions.
For example, we found that although malware analysts find
anti-disassembly to be a significant hurdle, there is relatively
less focus on research being done on anti-disassembly in the
scope of malware analysis. Conversely, we found that despite

the significant amount of research on countering obfuscation
techniques, participants state obfuscation as the most challeng-
ing evasion technique to handle. These observations provide
valuable insights for identifying future research directions, in-
cluding the development of innovative tools to assist analysts
with persistent challenges and the investigation of barriers
hindering the transition of existing research techniques into
practice.

2 Systematic Mapping Methodology

In this section, we introduce our systematic mapping of coun-
termeasures for evasion techniques. While there are surveys of
dynamic analysis evasion techniques [1, 10], they include lim-
ited information about their countermeasures. Furthermore,
to the best of our knowledge, none have covered both static
and dynamic analysis evasion countermeasures. Without an
understanding of previous research efforts aimed at counter-
ing malware evasion techniques, research gaps in the field
remain unclear. To fill this need and provide an overview of
existing research on evasion countermeasures for both static
and dynamic analysis, we conduct a systematic mapping.

We chose a systematic mapping approach because it sys-
tematically identifies knowledge gaps among existing re-
search literature and uncovers promising future research di-
rections within the field [60, 61]. More recently, this method
has gained recognition in fields such as software engineer-
ing [2, 59] and medicine [11, 62], underscoring its effective-
ness in enabling a rigorous and structured overview of the
current research landscape. In this study, we followed Per-
sons’s [61] guidelines, which include formulating research
questions, defining the search process, establishing clear inclu-
sion and exclusion criteria, performing data extraction aligned
with the research questions, and conducting data analysis.

2.1 Mapping Research Questions
The main objective of this mapping is to identify and analyze
the solutions developed in research to counter evasion tech-
niques for malware analysis. Specifically, our mapping aims
to answer the following research questions:

MQ1 Which malware analysis evasion techniques have been
addressed in research?

MQ2 What methodologies are proposed by researchers to
counter evasion techniques?

2.2 Search Strategy
In this study, we chose a database search as our primary search
strategy. Before starting our database search, the first and sec-
ond authors conducted a manual search of relevant papers to
identify keywords, necessary for the creation of our search
query. The manual search began by reviewing the titles of

research papers from four top security conferences (USENIX,
IEEE S&P, CCS, NDSS) published between 2012 and 2022
to identify papers related to the topic of malware analysis. We
scope our systematic mapping to papers addressing Windows
Exe malware that employ evasion techniques because Win-
dows is the most targeted operating system by threat actors.
In fact, in 2022 Mandiant reported that 92% of the newly iden-
tified malware families run on Windows3. Focusing solely
on Windows Exe also allows us to provide a fair comparison
between our participants’ challenges and research on counter-
measures discussed later in §8. Subsequently, the two authors
applied the following predefined inclusion criteria to the titles
and abstracts:
Inclusion Criteria on Title and Abstract.
• References dynamic malware analysis, deobfuscation, un-

packing, or disassembly.
• Not aimed towards mobile or IoT malware.
• Not a survey or a measurement study.

After identifying 40 papers that satisfied the above inclu-
sion criteria, both authors read the full text of the included
papers and applied the following exclusion criteria:
Exclusion Criteria on Full Text.

• The research findings does not directly help counter ei-
ther static or dynamic analysis evasion techniques such
as anti-sandboxing, anti-debugging, obfuscation, or anti-
disassembly, nor does it provide a way for the analysis to
proceed without countering the evasion techniques.

In 8 cases where the two authors disagreed, the two authors
reviewed the details of the paper together to resolve disagree-
ments, resulting in a final set of 20 papers.

To construct the database search query, we first extracted
keywords from the 20 papers identified through a manual
search. To extract keywords, we applied common preprocess-
ing steps to the abstracts, including lowercasing, removing
special characters, and removing stop words. While stem-
ming and lemmatization are also common preprocessing tech-
niques, we opted not to utilize these techniques since we
require the exact words to match during search queries and
these techniques would not produce exact matches. After pre-
processing the data, we categorized the abstracts based on the
evasion technique they address, either dynamic or static, and
utilized TF-IDF analysis to identify the most significant and
frequently occurring words within each category. Following
this, we categorized the remaining words based on their se-
mantic commonalities. For instance, we grouped the words
debugging, automatic, and dynamic together as they all relate
to the execution of a task or process. Lastly, we searched for
additional synonyms used in malware research.

We used the above group of words to construct two
database search queries. To make the search more precise, we
decided to search only within the abstracts. We conducted the

3See M-Trends 2023

same search in IEEE and ACM databases, two of the largest re-
search databases in computer science and engineering 4. Two
of the top security conferences, USENIX security, and NDSS,
along with RAID, a conference with a historical emphasis
on malware analysis, are not included in these databases. To
find relevant papers published in these three conferences, we
created an additional query for Google Scholar. Due to the
limitations of Google Scholar search, we were not able to
have an identical search query. However, the search strings
were logically checked by multiple authors. All of the papers
found through the database search underwent the same in-
clusion and exclusion criteria applied in the manual search
described earlier.

2.3 Search Evaluation
To assess the quality of our search results, we conducted
tests using known papers found in existing surveys [1, 10].
The first test was on 14 papers found in Table 3 from Afi-
anian et al. [1]. While their table includes 17 papers, only
14 can be found in the databases we searched. Among these
14 papers, our initial database search was able to find 10,
achieving a 71.4% retrieval rate. To improve the search, we
identified reasons for the missing papers and added synonyms
to the query search (ex: "avoid detection", "running", "trans-
parently", "stealthily"). This change increased our retrieval
rate to 85.7%, which is above the suggested range of 70%-
80% by Kitchenham et al. [37], and added 76 papers to our
total database results. To further assess the quality of our
search, we conducted another test using 17 papers found in
Table 4 of Bulazel et al. [10] (excluding Android and Web
papers). Our database search successfully identified 14 of the
17 papers, achieving an 82.4% retrieval rate.

We narrowed our scope to papers published in class A or
A* conferences (based on CORE ranking) to help ensure the
quality of the papers in this study, as done in prior work [5,
55]. These conferences are known for their rigorous reviewing
process. We recognize that limiting our mapping to these
conferences may miss relevant papers. However, like other
systematic mappings, we do not claim completeness [36, 61]
though we strive to ensure quality through our evaluation.

2.4 Data Extraction and Classification
Based on our systematic mapping research questions (MQ1
and MQ2), we developed a standardized data extraction form
to ensure consistency in the information gathered from each
paper. This form asks for the type of evasion technique that
each paper helps address, the methodology used, and the main
research question being answered. The first two authors ap-
plied this form in a similar manner to reduce bias. Provided

4We observed that the ACM database search result often included research
papers that do not match the provided search query, resulting in a high number
of excluded papers.

https://services.google.com/fh/files/misc/m_trends_2023_report.pdf
https://www.resurchify.com/conference-ranking

Database Search

Unique Papers

Duplicates

Class A/A* Papers

Non Class A/A* Papers

Passed Inclusion

Failed Inclusion

Passed Exclusion

Failed Exclusion

961

101

360

601

114

246

45

69

Loading [MathJax]/extensions/MathMenu.js

Figure 1: Papers Selection Process

Database Dynamic Analysis
Evasion Papers

Static Analysis
Evasion Papers

Total Papers

IEEE 124 195 319
ACM 335 242 577
Google Scholar 86 80 166
Total Papers 545 517 1062

Table 1: Database Search Results

with the extracted data, the two authors were able to identify
research papers that aimed to answer similar research ques-
tions and also address similar evasion techniques. Within the
research papers with similar evasion techniques, we further an-
alyzed each research paper to find commonalities among their
methodologies. Through this process, we identified several
papers that addressed both anti-sandbox and anti-debugging
techniques so we categorized these papers into both.

3 Systematic Mapping Results

In this section, we present the results of the systematic map-
ping. As shown in Figure 1, with the database search, we
found 1062 papers. The number of papers identified by each
database query search can also be seen in Table 1. After re-
moving duplicates and refining our search to include only
class A or A*, we were left with a set of 360 papers. These
360 were then subjected to our inclusion criteria, defined in
§2.2, resulting in the selection of 114 papers. Finally, after
a thorough assessment of the full text, we applied our exclu-
sion criteria and identified that the majority of the 114 papers
do not directly help counter any evasion technique, which
resulted in a final set of 45 papers.

Based on the number of papers that address each type
of evasion technique, we find that obfuscation and anti-
sandbox were the most researched evasion techniques and
anti-disassembly was the least. Although we acknowledge
that paper counts do not provide a complete explanation for
the observed patterns, they serve as a practical and widely
accepted metric for identifying trends and patterns in existing
literature [2, 11, 59, 62]. Below we explain each of the four
categories discovered in our mapping and provide a descrip-
tion of the different methodologies proposed in research to
counter them. The categorized papers can be found in Table 2.
Obfuscation. Obfuscation is an evasive technique that modi-
fies the original malware code to obscure the understanding
of its functionality. Through our systematic mapping, we iden-

tified 19 papers that proposed countermeasures to this type
of evasion. The majority of papers used some form of dy-
namic analysis to overcome the obfuscation [12, 13, 17, 49,
84, 91]. One paper by Coogan et al. [17] deobfuscates virtu-
alized malware by identifying the system calls made when
the malware executes and extracting a subtrace containing
only the code related to those calls and then approximating
the original code with this information. Another frequently
used methodology is symbolic execution, which builds ex-
pressions containing different inputs and uses a SAT solver
to find values that satisfy the expressions [7, 52, 82, 85]. One
paper proposed backward-bounded dynamic symbolic exe-
cution [7], which leverages symbolic execution to answer
infeasibility questions that are frequent with obfuscated code.
Researchers have also applied static analysis to overcome ob-
fuscation [46, 66]. Lu et al. [46] proposed a method to remove
return-oriented programming (ROP) from malware to enable
standard analysis tools to work properly on such malware.

Some papers show that a combination of static and dynamic
analysis can also be effective for overcoming obfuscation [14,
63, 64]. PolyUnpack [64] is one such paper that does static
analysis to build a static code model, then, during dynamic
analysis, compares executed code to this model to identify
when unseen code is found to unpack a sample. Finally, there
are miscellaneous methodologies that are part of our mapping
including program synthesis [8, 29], artificial intelligence-
based search [51], and other [44].

Anti-sandbox. Anti-sandbox is an evasive technique used
by malware to detect whether its execution is monitored in
a controlled environment such as a sandbox. A few of the
most common examples of anti-sandbox are system checks,
user activity, and delay execution. Through our systematic
mapping results, we identified 19 papers that propose counter-
measures to this type of evasion. There are three main method-
ologies that these papers follow. The first one is hypervisor-
based analysis [20, 43, 54]. This approach involves the use
of virtualization to create isolated environments. To further
improve hypervisor-based analysis, these papers focus on cre-
ating more transparent hypervisors. For example, Ether [20]
proposed a novel and more transparent application of hard-
ware virtualization extensions where the analysis engine re-
sides completely outside the target OS environment. The
second methodology is forced execution-based analysis [38,
58, 89]. Forced execution, similar to other path exploration
approaches, forces malware to execute through many dif-

Evasion Types Evasive Tactics Methodologies Research Papers

Static Obfuscation

Dynamic Analysis 2007: [49], 2011: [17], 2013: [91], 2015: [84], 2018:
[13], 2023: [12]

Static Analysis 2011: [46], 2021: [66]
Dynamic & Static Analysis 2006: [64], 2010: [63], 2021: [14]

Symbolic Execution 2015: [52] [85], 2017: [7], 2018: [82]
Other 2010: [29], 2017: [8], 2021: [51], 2022: [44]

Anti-Disassembly Dynamic & Static Analysis 2015: [9]
Static Analysis 2004: [39]

Dynamic
Anti-Sandbox

Bare Metal-Based Analysis 2013: [93]
Hypervisor-Based Analysis 2008: [20], 2009: [54], 2014: [43], 2015: [90]

Introspection-Based Analysis 2016: [68], 2021: [71]
Forced Execution-Based Analysis 2011: [38], 2014: [58], 2020: [89]

Other 2006: [75], 2010 [16] 2011: [69], 2012: [87], 2013:
[34], 2014: [83]

Anti-Debugging

Hypervisor-Based Analysis 2013: [19], 2015: [90], 2022: [33]
Bare Metal-Based Analysis 2015: [92]

Introspection-Based Analysis 2016: [42] [68]
Instrumentation-Based Analysis 2021: [26]

Table 2: Categorization of Evasion Countermeasures Research Identified Through the Systematic Mapping

ferent paths to collect additional information regarding the
malware’s behavior. X-force [58] specifically explores differ-
ent paths without requiring specific inputs or environmental
setups. They achieve this by forcing specific instructions,
such as predicates and jump table accesses, to have prede-
fined values. A third somewhat less used methodology by
research is introspection-based analysis [68, 71]. Introspec-
tion refers to software’s ability to examine its internal state
during execution. Su et al. [71] introduces a novel Out-of-VM
introspection technique called Catcher that traces malicious
behavior without altering the target environment through the
use of CPU cache. Finally, we found six other research papers
[16, 34, 69, 75, 83, 87], each with their own distinct methodol-
ogy including bare-metal-based analysis [93], static analysis
[16], taint analysis [34], and multi-system execution [83].

Anti-debugging. Anti-debugging evasion techniques try to
detect and prevent analysis of their code during execution. Un-
like sandbox evasion techniques, anti-debugging techniques
are less concerned with the execution environment and more
focused on preventing the analysis of their code. However,
despite these differences, they do share similar methods for
countering both evasion techniques. Our systematic mapping
identified 7 papers that propose countermeasures for this type
of evasion. The two most common methodologies we identi-
fied were hypervisor-based analysis [19, 33] and introspection-
based analysis [42, 68]. The most recent hypervisor-based
analysis research paper found in our systematic mapping in-
troduced HyperDbg [33], a specialized hypervisor-assisted
debugger that relies on hardware capabilities like Intel-VT
to achieve more transparency in their analysis. Conversely,

LO-PHI [68] is an example of how introspection-based anal-
ysis can be used to help counter anti-debugging techniques.
LO-PHI, introduces physical hardware sensors capable of
capturing memory and disk activity during execution, which
can be used for analyzing evasive malware samples.

The two other methodologies in our mapping were bare
metal-based analysis and instrumentation-based analysis. By
executing the malware on bare metal and leveraging System
Management Mode, MALT [92] enhances the transparency
of the execution environment and minimizes the artifacts ex-
posed to malware, which aids in the debugging of evasive
malware. In contrast, Hong et al. [26] provide transparency
for native read, write, or access to the target through a novel
approach called Execution Flow Instrumentation (EFI). EFI
allows a user-space program to instrument the execution flow
of malicious threads across user and kernel space which can
help address existing instrumentation limitations in the analy-
sis of malware with anti-debugging techniques.

Anti-disassembly. Anti-disassembly evasion techniques for-
mat malware code in such a way that the disassembler in-
correctly interprets the bytes and produces assembly code
with errors. This causes problems for analysts because it pre-
vents them from performing accurate static analysis of the
malware, which is a critical component of some analysts’ pro-
cesses. The first work that addresses this form of evasion is by
Kruegel et al. [39]. This paper primarily uses static analysis
to perform a modified recursive and statistical disassembly
to correctly disassemble malware that is affected by obfusca-
tion. Bonfante et al. [9] focus on disassembling malware with
self-modifying code and overlapping instructions. Their solu-

tion uses both static and dynamic analysis by first executing
the malware and taking memory snapshots at different points
to capture different waves of code. For each wave, the tool
disassembled the code using the dynamic trace as a guide.

4 User Study Methodology

Through our systematic mapping, we were able to identify
malware evasion countermeasures and the degree to which
they have been explored in research. However, to assess
whether these countermeasures meet practitioner needs for
analyzing evasive malware, we conducted the first user study
on malware evasion to determine which evasion techniques
still pose challenges for analysts in practice through 24 semi-
structured interviews with malware analysis experts. While
an observational study was considered for our methodology,
they are less common in related literature because their time-
consuming nature can deter participation, and the participants’
behavior may be altered during observation. For these rea-
sons, along with NSF’s guidance on qualitative methods [56],
we chose to conduct semi-structured interviews for our study.
Additionally, exploratory qualitative research such as semi-
structured interviews offered us the flexibility to gain valuable
insights into the participants’ decision-making process and
their challenges based on their first-hand experiences, while
still providing a framework to ensure key topics were covered.
Our Institutional Review Board (IRB) approved this study
and participants signed a consent form before taking part in
the study. To ensure the confidentiality of the participants’
information, we sent a draft to all the participants prior to
submission and provided an opportunity for them to review
and request changes.

4.1 Recruitment
To recruit an expert group of malware analysts for this study,
we utilized five different sources. We first reached out to a
known Slack channel for malware analysis research and sent a
description of our study to a security organization mailing list.
Additionally, we reached out to personal contacts who are in
the field of malware analysis. Finally, we posted a description
of the study on Twitter and LinkedIn, which are not restricted
to malware analysts. We specifically selected Twitter (now
X) given its popularity within the security community. The
description in the message explained that we were looking
for malware analysts to participate in a research study in
order to understand the current state of practice of evasive
malware analysis. We reached out to all five sources listed
above in November 2022, and included a link to the initial
questionnaire for this study.
Participant Screening. Given the wide range of recruitment
sources, we had an initial participant screening phase. To ver-
ify that the participants have experience with evasive malware,
we had prospective participants fill out a questionnaire with

22 questions hosted on Microsoft Forms. We estimated this
questionnaire would take 10 minutes to complete. The first
set of questions was about their background information and
analysis objectives. The majority of the questions focused on
their experience analyzing evasive malware. The last subset
of questions contained optional, demographic questions. Af-
ter interviewing our first participant and understanding the
significance of anti-disassembly techniques, we decided to
add the question "Based on your experience, which of the fol-
lowing categories of anti-analysis is the most challenging?"
This decision was made after meticulously considering the
number of responses received and determining a way to ask
this question to the participants who had already submitted
the questionnaire. Given that we only received 7 responses at
the time, we decided to modify the questionnaire for future
responses and asked this question during the interview to the
participants who had previously submitted the questionnaire.
The complete questionnaire is provided in Appendix A.

We received a total of 109 responses to the questionnaire.
We analyzed each response by determining whether the an-
swers made sense in the context. Additionally, we attempted
to verify the identity of those who responded by looking at
the requested LinkedIn profiles. 75 responses were discarded
due to random responses to questions that did not indicate
the responder had malware analysis skills. Additionally, we
were not able to confirm the identity of 5 responses through
LinkedIn, so we reached out to them and requested additional
information that could help us confirm their identity. Unfor-
tunately, they did not respond, so we were forced to exclude
them. We invited the remaining 27 respondents to participate
in the interview process and 24 scheduled an interview.

4.2 Interview Protocol
For each participant, we conducted an hour-long, semi-
structured interview via online video call. For consistency,
all interviews were conducted by the same researcher from
November 2022 through January 2023. The interview was
broken down into three sections, described below, totaling 29
questions, as seen in Appendix B.
Identifying and Analyzing Evasive Malware. The interview
began with understanding how participants identify that a
malware sample is evasive and how their analysis process
differs when analyzing an evasive sample. Additionally, we
asked the participants to explain the main challenges they
encounter when analyzing evasive malware samples.
Techniques Used for Handling Evasive Malware. The
second section of questions focuses on understanding how
malware analysis practitioners handle different evasion tech-
niques. We asked them to walk us through examples of how
they handle different evasive techniques such as sandbox eva-
sion, and obfuscation. Additionally, we asked the participants
what are the most time-consuming and challenging evasive
techniques they encounter, and how they handle them.

Use of Existing Tools for Malware Analysis. The last part
of the interview questions is about the analysis tools that the
participants use during their analysis process. We asked them
what tools they use and which are the most helpful. We also
wanted to know what aspects of the workflow would benefit
from a new automated system and what improvements they
want to see. The purpose of these questions was to understand
challenges that need to be addressed.

To ensure that the interview questions were complete, we
conducted 3 pilot interviews with graduate students who have
malware analysis experience and incorporated their feedback.

4.3 Data Collection and Analysis
All the interviews were audio recorded and automatically tran-
scribed with the built-in video call software. To make sure
the transcriptions were accurate, the two first authors man-
ually reviewed and corrected transcription errors. The same
researchers then coded the interviews using an iterative open
coding methodology [70]. First, they independently coded the
first 4 interviews and then agreed on an initial set of codes.
These codes were then used by each researcher to recode
the same 4 interviews. After this process, we compared the
codings between the researchers and eliminated codes that
were either redundant or too specific and developed the fi-
nal codebook composed of 80 codes, as seen in Appendix C.
With this final codebook, the authors coded the remaining
20 interviews. The Krippendorff’s alpha intercoder reliability
score was 0.95 [41], indicating very high consistency. The
codes from the final codebook are used to identify patterns
and produce our results in §6 and §7.

To determine the adequate amount of participants required
for our study, we calculated the point at which we reached
saturation. Saturation occurs when no new novel themes are
found with additional interviews. To compute saturation, we
followed Guest et al. [23] by looking at the interviews that
were coded after the final codebook was developed and deter-
mining how many interviews it took for all the codes to appear.
Additionally, we confirmed that no novel themes emerged.
Following this procedure, we reached saturation after the 9th
interview. To further validate our findings, when we shared a
draft of the paper with the participants, we received several
responses stating that they enjoyed reading how their personal
experiences aligned with our findings.

5 User Study Participants

We interviewed a group of 24 malware analysts. Most partic-
ipants have more than 7 years of experience with malware
analysis and thus can be viewed as expert analysts. By inter-
viewing participants with many years of experience working
at well-established security groups in companies such as Man-
diant (now Google), GE, Proofpoint, and Cisco, we were able
to identify the most challenging evasive techniques and obtain

a broad understanding of how evasive malware is handled in
practice. By far, the most common degrees completed by the
participants were computer science and electrical engineering.
Some participants also specialized in related fields such as
information technology or computer networks. Finally, 10 par-
ticipants stated that they acquired their malware analysis skills
through a mentor who played a crucial role in shaping their
current analysis workflow. A detailed table of our participants’
backgrounds can be found in Table 3 in Appendix D.

6 Malware Analysts’ Perspective

In this section, we present malware analysts’ definition of
evasion and their most challenging evasion techniques.

6.1 Definition of Evasion
To gain a better understanding of what practitioners consider
evasive malware, we asked each participant to define evasive
malware. The majority of the participants consider evasion
to be any technique that affects either their static or dynamic
analysis process. As P10 said, an evasive sample "has code,
which has the primary goal, intended or not, of disrupting
analysis. There are a couple of different forms of analysis,
dynamic and static, and each of them has [evasion techniques]
to make analysis harder." Static analysis evasion techniques
are "designed to make static analysis difficult, such as through
obfuscation of code and/or data, or other techniques that incur
additional steps to deobfuscate it," as P20 states. Another
static technique is anti-disassembly, which causes the disas-
sembler to recover incorrect instructions from the binary. To
evade dynamic analysis, malware authors "either bypass the
instrumentation itself, detect the environment, or logically not
expose behaviors. [This can be done through] delayed execu-
tion [or by] requiring parameters," as P7 expressed. Dynamic
analysis evasion can affect the proper execution of the mal-
ware sample in a debugger, sandbox, or any other controlled
environment analysts may use to analyze the sample.

6.2 Most Challenging Evasive Techniques
One of the main objectives of this study is to determine the
most challenging evasion techniques malware analysts en-
counter. To answer this question (RQ2), in the questionnaire,
we asked what is the most challenging anti-analysis technique
they routinely need to handle. The provided options were anti-
disassembly, anti-debugging, sandbox evasion, and others. We
further refine the option anti-disassembly into 2 categories;
obfuscation, and anti-disassembly based on participants’ ex-
planations during the interview. This change also facilitates
the comparison between malware analysts’ challenges and
research countermeasures discussed later in §8.

According to the responses provided by the study partic-
ipants obfuscation was identified as the most challenging

evasion technique analysts routinely have to handle by 9
participants. As P1 explained, "I think in terms of what is
probably the biggest problem on the team, just across all mal-
ware right now, it’s control flow obfuscated malware. That
obfuscation can show up in any kind of malware. JavaScript,
PowerShell, windows PEs, you name it. It’ll be everywhere."
Control flow obfuscated malware tries to hide the actual flow
of instructions, which makes it hard for analysts to understand
the malware’s logic. The second most challenging evasion
technique was anti-disassembly, which was mentioned by 6
participants. Anti-disassembly techniques affect static analy-
sis by hindering the proper function of the disassembler. P11
explains that "it tends to be very hard to automate your way
out of. It’s hard to make a generic anti-anti-disassembly tool."

3 participants expressed anti-debugging as being the most
challenging. Anti-debugging techniques include checking for
the presence of a debugger or altering the code to prevent re-
verse engineers from stepping through the code while running
it in a debugger. As P20 explains, this evasive technique is
challenging because "if it is designed in a way that I can’t
even follow the code execution [...] that makes it really dif-
ficult to figure out which blocks I should narrow in on for
doing static analysis work, and it makes it really difficult to
create detection signatures." Furthermore, only 2 participants
mentioned sandbox evasion to be the most challenging. The
reason why sandbox evasion is not considered much of a
challenge is "largely because the anti-sandbox stuff I could
[...] just run out on a real system, and that real system is still
instrumented with a lot of the same tools." as P20 stated.

7 Workflows For Handling Evasive Tactics

To inform future research on ways to address the challenges
posed by evasion techniques, we studied how expert malware
analysts counter evasion techniques to further analyze the
malware’s behavior. This information gave us an opportu-
nity for an in-depth look into the processes that each analyst
follows. It was not surprising to see that each participant em-
ploys a somewhat different workflow, as it can be argued that
the process of malware analysis involves a certain degree
of creativity, similar to an art form. Despite the creative and
varied nature of this process, we were able to distill com-
monalities among participants’ workflows and generated 3
distinct workflows malware analysts follow to handle evasive
malware.

7.1 How Malware Experts Handle Dynamic
Analysis Evasion

To handle dynamic analysis evasion, our participants use one
of two workflows, alter the dynamic analysis execution, or
resort to static analysis.
Debugging Workflow for Forced Execution. Workflow 1,

Locate cause of
termination in
disassembler

Determine
expected values

Make necessary
changes

Run sample until
termination

Execute sample

Set breakpoint at
target location

(a) (b) (c) (d)

(e)(f)

Figure 2: Workflow 1: Forced Execution; P1-P4, P6, P9-P12, P14,
P17, P18*, P20* P21, P24*. The asterisk symbol highlights partici-
pants that also patch the malware

the first workflow to handle dynamic analysis evasion, shown
in Figure 2, is used by 15 of the participants. It is important to
note that any line or task with a dotted line is optional. This
workflow is used by analysts who either make changes in real-
time in the debugger to force the malware sample to execute
or patch the malware to create a new version of the malware
without evasive checks. To begin, participants execute the
malware sample until termination (step a). This can be done
in a debugger or a sandbox. Once the sample terminates, the
analyst uses the end of the execution trace to locate the code
responsible for the evasive check in the disassembly (step b).
As P1 stated, “if I’m looking at a sample and I look at the trace
and notice that it’s stopped there, I can pull it up in IDA, and
go right to where it happens.” Alternatively, other participants
begin this workflow in step b by locating the evasive check
without executing it in the debugger. As P4 explained, "the
most important parts to understand the [malware’s] logic are
the conditional branches because that’s where the malware
is checking, is this true? [...] Is it greater or less than?." Af-
ter locating the dynamic evasion check, the analysts utilize
static analysis to better understand the malware’s functional-
ity and determine why the sample stopped executing (step c).
This step may also involve identifying the necessary values
required for the malware to continue executing.

After gaining a better understanding of the malware’s func-
tionality and determining the expected values, analysts either
move to step d or step e. The majority of the participants
stated a preference towards step d, where they set a break-
point in the debugger right before the function containing
the dynamic evasion technique (step d). Once they execute
the sample and reach the breakpoint, the analysts change the
value of registers, alter portions of dynamic memory, or flip
appropriate bits of conditional jumps to force the malware
to continue executing (step e). P17 explained his process as
"sometimes it’s just as easy as, I change this from 0 to 1, all of
a sudden I get a whole new branch. Sometimes it’s more com-
plicated [...] and then I have to go into the debugger, change
a register or a portion in dynamic memory to read something
else, to force the program to do what I want it to do." After the
dynamic evasive check is handled, the sample will continue
executing until it reaches the next point of termination (step f),
at which point, the analyst may decide to repeat this workflow

until the analyst is able to handle additional evasive checks
and complete the analysis.
Debugging workflow to execute target functions. One ma-
jor disadvantage of Workflow 1 is that analysts have to repeat-
edly apply it for every evasive check until they reach their goal,
which could be tedious, time-consuming, and worse, does not
scale. As P2 explains, "it might not always be feasible to get
the full code to run because maybe a sample does multiple
checks or it’s not as straightforward as defeating a check once
and letting it execute." To ease this burden, 5 participants pre-
fer to do a more targeted analysis following Workflow 2 shown
in Figure 3. Although the first three steps of this workflow are
similar to Workflow 1, one main difference is that analysts can
choose the point where they begin executing the sample (step
d). This point can be after the execution of dynamic analysis
evasion techniques in order to avoid handling them. As P1
said, "then I’ll just pick random spots after it to start execu-
tion again.“ Analysts may also decide to execute parts of the
malware sample that they may find challenging to understand
statically. P22 provides an example of when they have used
Workflow 2, "sometimes it’s hard to wrap your mind around
an algorithm you’re seeing in static analysis. A big loop or
some sort of mathematical transform. [...] So you can identify
it statically and then go run it." Because the analyst skipped
an initial part of the execution, they may have to manually
configure the memory and registers for the malware to run
properly (step e). This could involve, "thinking about what is
being passed to a function and you might have to sort of fab-
ricate parameters to be passed to that code.", as P2 explained.
Once the sample is properly configured, the analyst can run
the target function and obtain the return value (step f).
Alter Dynamic Analysis Execution. Based on Workflow 1
and Workflow 2, it is evident that the primary tool employed
by malware analysts for countering dynamic analysis evasion
is a debugger. As reported by 22 participants, the inclination
towards using a debugger may be attributed to the limitations
of dynamic analysis systems, which fail to capture the entirety
of evasive malware’s behavior. To mitigate this limitation and
handle dynamic analysis evasion, 16 participants either ex-
ecute the sample in a different system or make alterations
to their dynamic analysis system of choice. In such cases, 9
participants choose to run the sample in either commercial
sandboxes, internal sandboxes, or a bare metal system, which
are more resilient against dynamic analysis evasion. Some
of the commercial sandboxes that the participants referred to
were VMray, Any.run, Hybrid Analysis, FLARE Sandbox,
and Joe Sandbox. Participants stated that these sandboxes
incorporate many anti-evasion techniques to handle the most
known dynamic analysis evasive techniques. Some partici-
pants have access to internal sandboxes that are also able to
handle dynamic analysis evasive tactics. As P17 explained,
"anytime we come across something like that, like a timing
check or a new technique that’s trying to look at the environ-
ment, we try to build that into the sandbox so that next time

Locate code of
interest in

disassembler

Set instruction
pointer in new

location

Execute sample in
the debugger

Run in debugger
until termination

Determine expected
values

Make necessary
changes

(a) (b) (c)

(d)(e)(f)

Figure 3: Workflow 2: Targeted Execution; P1, P2, P6, P9, P22

the analyst spins up that sandbox, they don’t have to worry
about patching over it."

Although these can be effective techniques, not all of the
participants have access to such sandboxes. Another option
is to manually alter the execution environment to handle the
dynamic analysis evasion techniques. As P23 said, "let’s try
giving a different, fake username just to see [...] in the process
of reversing it to try to figure out what it’s doing, sometimes
you take guesses and think [...] I’m going to try something
instead of spending another 2 hours trying to statically re-
verse it. Let me just try something in 2 minutes with another
dynamic analysis run that has some different option." This
process generally requires static analysis to determine what
changes to make although sometimes analysts will make edu-
cated guesses about what changes to make, based on experi-
ence. When the analysts are not able to quickly find necessary
changes, they often utilize Workflow 1, Workflow 2 or decide
to statically analyze the sample.
Analyze the Sample Statically. A few participants who deal
with dynamic analysis evasion rely entirely on static analysis
as their primary approach. As P11 explained, “since I’m really
comfortable with static analysis as opposed to dynamic anal-
ysis, I usually just blow through those anti-dynamic analysis
measures pretty quickly and I’ll just look at it statically and
get what I need from it there.” This approach is effective for
samples that include dynamic analysis evasion techniques but
not sophisticated static analysis evasion techniques.

7.2 How Malware Experts Handle Static
Analysis Evasion

To handle static analysis evasion, our participants either use
workflow 3 or use workflows 1 or 2.
Debugging Workflow for Unpacking. As shown in Figure 4,
Workflow 3 is used by 8 participants primarily to unpack a
sample. Additionally, this workflow can also be used to semi-
automate the de-obfuscation process. Analysts have expressed
that it’s easier to execute the malware to de-obfuscate itself
than to go through the process statically. For example, P2
said, "I’ll just find that in the debugger and let it do all the
decoding and then I’ll just see what it decoded." The first step
in this workflow is to locate the code of interest, which in

https://any.run/.
 https://any.run/
https://www.hybrid-analysis.com/
https://github.com/mandiant/flare-vm
https://www.joesandbox.com/#windows

Set breakpoint at
target location

Run in the
debugger

Extract "clean"
data from memory

Locate code of
interest in

disassembler

(a) (b) (c) (d)

Figure 4: Workflow 3: Unpacking; P2, P4, P5, P6, P7, P20, P22

this case is the function that is responsible for unpacking or
deobfuscating the code (step a). This can be done by opening
up the binary in the disassembler and "identifying that that’s
the function that does the string deobfuscation," as P6 stated.
After locating this function, the analyst launches a debugger
and sets a breakpoint after the identified location (step b), and
executes the sample (step c). When the execution reaches the
breakpoint, the analyst extracts the deobfuscated data from
memory, such as decrypted code, or plain text strings (step d).
Debugging Workflow for Targeted De-obfuscation. Work-
flow 3 is an effective way for analysts to handle static analysis
evasion when the sample does not include dynamic analy-
sis evasion before the deobfuscation function. However, 10
participants have mentioned that some malware samples im-
plement both static and dynamic analysis evasion. In such
cases, the analysts rely on either Workflow 1 or Workflow 2.
When utilizing Workflow 1, the participants begin executing
the sample from the entry point and continue handling each
dynamic evasive check until they reach the function that de-
obfuscates the encrypted data. Once the deobfuscation has
been completed, the analyst extracts the data from memory in
the same way as the previous workflow.

Although this strategy is effective, participants have ex-
pressed that in some cases, malware samples either implement
dynamic analysis evasive techniques that are more difficult to
handle or include too many dynamic analysis evasive checks,
which can be time-consuming. To reduce the analysis time
for such samples, participants prefer to use Workflow 2, where
the code of interest is the function that deobfuscates the target
data, such as string decryption. One interesting finding that P2
mentioned is the scenario in which the target function requires
parameters to be passed. P2 said "it’s getting 4 parameters,
what are these parameters? The first one might be where the
payload is in the code, the second one might be a key, [...] you
might have to do a little bit of work upfront to sort of force it
to execute." Following Workflow 1 and Workflow 2 allows the
participants to extract the information that they want without
having to reimplement the samples’ decryption algorithm.

8 Comparing Malware Analysts Evasion Chal-
lenges and Research Countermeasures

To compare how evasion countermeasures explored by re-
search align with challenges faced in practice, we conducted
a comparative analysis between the challenges (§6.2) high-
lighted by our participants and the solutions found in existing
research (§ 3). As illustrated in Figure 5, although 25% of
the participants’ stated anti-disassembly as the second most

Research Papers
Malware Analysts

Anti-disassembly

Anti-sandbox

Anti-debugger

Obfuscation

4.4%

42.2%

15.5%

42.2%

25%

8.3%

12.5%

37.5%

Loading [MathJax]/extensions/MathMenu.js

Figure 5: Research on Evasion Technique Countermeasures Vs.
Challenging Evasion Techniques for Malware Analysts

challenging evasive technique to handle, based on the volume
of identified papers in our systematic mapping, it appears
to be less emphasized in research. Our systematic mapping
found that this category represented only 4.4% of the research
papers, suggesting an opportunity for future research to delve
more into this challenging task. Countermeasures for anti-
disassembly are especially important now given that partic-
ipants report a rising trend of malware samples developed
in uncommon programming languages, which may lead to
inaccuracies in the disassembly and debugging process. As
P2 explained, "alternative languages are becoming problem-
atic. So like Golang, Rust, and Delphi are three languages
that when you write a program and compile it, it is a lot less
straightforward than looking at compiled C." In fact, some
participants consider the use of such languages to be a novel
evasive technique and participants report that there are not
many available tools to deal with this rising problem. Without
tools to accurately recover the malware’s instructions when
it is written in these non-standard languages, analysts’ static
analysis will be more challenging and less accurate.

As discussed in §6.2, obfuscation is by far the most chal-
lenging evasive technique for malware analysts to handle,
with 37.5% of the participants stating this observation. At
the same time, this evasive technique is by far the one with
the most research aimed at developing countermeasures and
accounts for 42.2% of the analyzed papers. Based on this
observation, we suggest future research directions in §9.

More interestingly, sandbox evasion has the same volume
of research papers (42.2%) as obfuscation but is only consid-
ered to be a significant challenge by 8.3% of the participants
due to their experience with malware analysis, which allows
them to circumvent sandbox evasion through static analysis
or a debugger, as mentioned in § 7. It is worth noting that
research has made a lot of strides in creating more resilient
and stealthy sandboxes to help handle many techniques used
for fingerprinting or environment detection [20, 35, 75, 81,
87]. Despite analysts’ ability to handle sandbox evasion tech-
niques, most participants expressed a desire for additional

capabilities. For example, P7 stated that "pure dynamic anal-
ysis is very effective for the first stage [...] However, in the
second, third to fourth stages, you at least need to somehow
convince the attacker to send you them. It might happen not in
4 min. It might happen in 4 days." In such cases, the sandbox
may not be able to trigger the behavior that executes each
stage of the malware. Without all the stages, analysts are not
able to complete their analysis.

Lastly, anti-debugging techniques were identified to be the
most challenging evasion to handle by 12.5% of our study par-
ticipants and account for 15.5% of the papers found through
our systematic mapping. Based on the participants’ state-
ments, analysts are not in need of additional tools to handle
anti-debugging because available tools such as Scyllahide that
can be used to handle the majority of these techniques.

9 Discussion

Through our comparative analysis in §8, we are able to ob-
tain a better understanding of the impact of research on the
state of practice of evasive malware analysis. Specifically,
we identified discrepancies between research and practice,
finding instances where challenging techniques lack sufficient
research attention and others where significant research ex-
ists despite persistent analyst difficulties. To help mitigate
the identified discrepancies between research and practice,
we discuss future research directions that could help analysts
address the challenges they still face when analyzing evasive
malware. Additionally, we underscore the need to investigate
barriers that impede the transition of research into practice.
Analysis of Malware with Anti-disassembly Techniques.
Our results show that anti-disassembly is perceived as a major
challenge by many participants, yet in our systematic mapping
we found a noticeable gap in research focused on countering
evasive malware that implements these techniques. While
we acknowledge the difficulties in addressing the challenges
of anti-disassembly, our observations reveal a prevalent re-
liance on disassemblers among malware analysts in practice.
Consequently, it is imperative for future research to develop
techniques specifically tailored for analyzing malware with
anti-disassembly capabilities. More specifically, study partic-
ipants highlighted a need for ways to counter such evasive
malware written in less common programming languages
such as Golang, as mentioned in §8. Effective methodolo-
gies that counter anti-disassembly can significantly reduce
the amount of effort required by analysts to locate the cause of
termination (step b in Workflow 1), locate the code of interest
(step b in Workflow 2, step a in Workflow 3), and understand
the malware’s logic when it is written in alternative languages
or has evasive techniques that affect the disassembly process.
Evaluation of Existing Research Solutions in Practice (De-
obfuscation Tools). Obfuscation is another serious challenge
that was mentioned by our study participants. However, con-

sidering that previous research has developed many automated
systems to deobfuscate malware, as shown in §3, it raises the
question of why obfuscation remains a major challenge in
analyzing evasive malware in practice. Future research should
focus on identifying and addressing any potential barriers that
impede the transfer of this research into practice.

Malware Analysis Research with Analysts in Mind. In
our analysis, we identified the need for sandboxes tailored to
meet malware analysts’ specific needs. Prior work on sand-
boxes focuses on scalability and tries to optimize execution
time [40]. As expert analysts focus on more sophisticated
malware that employs evasive techniques, they require a more
granular report with a longer execution time. As P17 said, "I
would rather wait a longer time for a tool to go through and
really explore an executable, and automatically go through
all the different branches that could be taken." One promising
direction for meeting this requirement is symbolic execution.
Contrary to forced execution solutions [38, 58, 89], symbolic
execution maintains a valid execution state of the malware at
all times and is less likely to miss unexpected execution flows
that could reveal the malware’s malicious behavior. This ap-
proach is further motivated by 4 participants who mentioned
they use angr [67], a popular open-source binary analysis
framework that applies symbolic execution. Unfortunately,
deploying this tool in analysts’ workflow is difficult because
it’s not targeted for malware analysis. As P10 said, "angr has
very limited applications in malware analysis, and things like
a debugger or emulation will work a lot better for me".

To design tools that better meet malware analysts’ needs
and that more easily integrate with analysts’ current analy-
sis process, researchers could follow Workflow 1 as a guide.
A tool could begin by executing the malware sample until
it terminates (step a), then it could automatically locate the
last conditional branch that was executed before termination
through static analysis (step b). The next step in the analysis
workflow could be to determine what inputs the malware re-
quires to satisfy the conditional branch (step c). This step is
currently a demanding manual process that could benefit from
the implementation of symbolic execution. By providing the
symbolic execution engine with the conditional branch as a
target, it could come up with constraints for the path that did
not terminate and generate new inputs that allow the malware
to continue executing. Once the inputs are generated, they can
either be provided to the malware analyst or set automatically
in the dynamic analysis environment to continue executing
the malware sample. The implementation of such systems
could help analysts observe more of the malware’s behavior
in a shorter amount of time. Additionally, these systems could
also help analyze malware samples that implement both static
and dynamic analysis evasion, as participants mentioned the
use of Workflow 1 as a way of analyzing these malware sam-
ples in §7.2. Ideas along these lines appear in the work of
Chipounov et al. [15] but they are applied in the context of re-
verse engineering and bug finding. Based on our findings, we

https://github.com/notify-bibi/ScyllaHide-IDA7.5

believe that these recommendations can help narrow the gap
between research advances and practitioner needs, thereby
enhancing the overall impact of research in the field.

10 Limitations

Exploratory qualitative research practices have well-known
limitations. The first limitation is the lack of complete recall
of participants’ analysis process [25]. To mitigate this limi-
tation, we asked participants to state as much as they could
recall and only after they were done, move to the next ques-
tion. This is a best practice used to ensure recall [27]. The
second limitation is that participants may modify their an-
swers to appear more experienced in the field. We aimed to
mitigate this limitation by confirming their identity and years
of experience through the participant screening described in
§4.1. Given the exploratory nature of this study, the number
that we provide in each finding is the number of participants
that explicitly stated a concept. However, we acknowledge
that this number may be higher as some participants may have
failed to state the concept.

As was mentioned previously in §2, we scoped our system-
atic mapping results to papers published at tier A or tier A*
conferences which may exclude some relevant papers. How-
ever, in line with the nature of systematic mappings, we do not
claim completeness [36, 61]. Instead, we focus on ensuring
the quality of our mapping through a rigorous evaluation. It is
also important to recognize that although paper counts alone
do not offer a comprehensive explanation for the observed
patterns, they serve as a practical and widely accepted metric
for identifying patterns within existing literature [2, 11, 59].

11 Related Work

To our knowledge, only four human-centered studies have
been conducted to understand the cognitive process of soft-
ware reverse engineering [4, 47, 77, 88]. Of those, two are
focused on malware analysis [4, 88]. The first user study with
reverse engineers as participants was conducted by Votipka
et al. [77] in 2020. This study used semi-structured observa-
tional interviews to gain an understanding of the process of
reverse engineering. The authors were able to develop work-
flows that represent the necessary process reverse engineers
follow and suggest guidelines for designing future reverse en-
gineering tools. This early research has informed subsequent
studies that further explore this area [47], and investigate other
related fields such as malware analysis [88]. In 2021, Yong
et al. [88] conducted a user study specifically to understand
the objectives and workflows of malware analysts in practice.
In this study, they proposed a taxonomy of malware analysts
and identified workflows employed by the participants. In
contrast to [88], we conduct a systematic mapping of coun-
termeasures for malware evasion techniques, which allows

us to understand the extent to which malware evasion tech-
niques have been researched. Additionally, we perform a user
study to identify the specific evasion techniques that remain
challenging for malware analysts in practice. More impor-
tantly, our work identifies potential gaps by comparing eva-
sion techniques that remain challenging for practitioners with
countermeasures explored in the research literature, which is
not addressed in [88]. Thus, other than a similar user study
methodology, there is minimal overlap between our research.

Montovani et al. [47] aim to understand the mental model
and strategies adopted by reverse engineers to solve static RE
tasks. Unlike previous studies using interviews, Montovani
et al. designed a web-based platform similar to traditional
interactive disassemblers, which allowed a fine-grained ob-
servation of the participants’ actions. Their findings revealed
expert REs visit fewer basic blocks than beginner REs, and
identified strategies strongly correlated with experience level.

Recent work by Aonzo et al. [4] compares the procedures
followed by humans and machines to classify unknown pro-
grams as benign or malicious, aiming to understand how data
from malware analysis reports is used to reach a decision.
They accomplish this by designing an online game that re-
quests participants to classify suspicious files based on their
sandbox reports. During this activity, features required by the
analysts are observed. These features are then compared to
two Machine Learning (ML)-based malware classification
models. The key finding of this study is that the ML algo-
rithms performed less effectively and do not use the same
features as the malware analysts. ML focuses on static fea-
tures, while humans rely more on dynamic features.

Although it is only recently that researchers have started to
study cognitive procedures in malware analysis and reverse
engineering, it is important to acknowledge the considerable
amount of usable security research. Its predominant focus has
been on secure software development [6, 22, 57, 72, 76] and
vulnerability detection [3, 24, 78]. Prior work has also tested
the usability of tools used by reverse engineers [50, 86].

12 Conclusion

In this study, we focus on malware evasion techniques and
their countermeasures. We conduct a systematic mapping of
research in evasion countermeasures. Additionally, we con-
ducted a user study with malware experts to determine the
most challenging evasive techniques that analysts encounter in
practice. This allowed us to identify three distinct workflows
that capture the process that analysts use to handle malware
evasion. Lastly, we performed a comparative analysis of so-
lutions explored by research and challenges encountered in
practice. Such analysis can inform future research directions
that can help analysts handle challenging evasive techniques.
It can also help understand potential barriers that may be
hindering the transition of research into practice.

References

[1] Amir Afianian, Salman Niksefat, Babak Sadeghiyan,
and David Baptiste. “Malware dynamic analysis eva-
sion techniques: A survey”. In: ACM Computing Sur-
veys (CSUR) 52.6 (2019), pp. 1–28.

[2] Muhammad Ovais Ahmad, Denis Dennehy, Kieran
Conboy, and Markku Oivo. “Kanban in software engi-
neering: A systematic mapping study”. In: Journal of
Systems and Software 137 (2018), pp. 96–113.

[3] Noura Alomar, Primal Wijesekera, Edward Qiu, and
Serge Egelman. “" You’ve got your nice list of bugs,
now what?" vulnerability discovery and management
processes in the wild”. In: Sixteenth Symposium on
Usable Privacy and Security (SOUPS 2020). 2020,
pp. 319–339.

[4] Simone Aonzo, Yufei Han, Alessandro Mantovani, and
Davide Balzarotti. “Humans vs. Machines in Malware
Classification”. In: 32nd USENIX Security Symposium
(USENIX Security 23). 2023, pp. 1145–1162.

[5] Daniel Arp, Erwin Quiring, Feargus Pendlebury,
Alexander Warnecke, Fabio Pierazzi, Christian Wress-
negger, Lorenzo Cavallaro, and Konrad Rieck. “Dos
and don’ts of machine learning in computer security”.
In: 31st USENIX Security Symposium (USENIX Secu-
rity 22). 2022, pp. 3971–3988.

[6] Hala Assal and Sonia Chiasson. “Security in the Soft-
ware Development Lifecycle.” In: Fourteenth sympo-
sium on usable privacy and security (SOUPS 2018).
2018, pp. 281–296.

[7] Sébastien Bardin, Robin David, and Jean-Yves Marion.
“Backward-bounded DSE: targeting infeasibility ques-
tions on obfuscated codes”. In: 2017 IEEE Symposium
on Security and Privacy. IEEE. 2017, pp. 633–651.

[8] Tim Blazytko, Moritz Contag, Cornelius Aschermann,
and Thorsten Holz. “Syntia: Synthesizing the Seman-
tics of Obfuscated Code.” In: 26th USENIX Security
Symposium (USENIX Security 17). 2017, pp. 643–659.

[9] Guillaume Bonfante, Jose Fernandez, Jean-Yves Mar-
ion, Benjamin Rouxel, Fabrice Sabatier, and Aurélien
Thierry. “Codisasm: Medium scale concatic disassem-
bly of self-modifying binaries with overlapping instruc-
tions”. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security.
2015, pp. 745–756.

[10] Alexei Bulazel and Bülent Yener. “A survey on auto-
mated dynamic malware analysis evasion and counter-
evasion: Pc, mobile, and web”. In: Proceedings of the
1st Reversing and Offensive-oriented Trends Sympo-
sium. 2017, pp. 1–21.

[11] Anna Cantrell, Elizabeth Croot, Maxine Johnson, Ruth
Wong, Duncan Chambers, Susan K Baxter, and Andrew
Booth. “Access to primary and community health-care
services for people 16 years and over with intellectual
disabilities: a mapping and targeted systematic review”.
In: (2020).

[12] Binlin Cheng, Erika A Leal, Haotian Zhang, and Jiang
Ming. “On the Feasibility of Malware Unpacking via
Hardware-assisted Loop Profiling”. In: 32nd USENIX
Security Symposium (USENIX Security 23). 2023,
pp. 7481–7498.

[13] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng,
Ting Chen, Xiaosong Zhang, and Jean-Yves Marion.
“Towards paving the way for large-scale windows mal-
ware analysis: Generic binary unpacking with orders-
of-magnitude performance boost”. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 2018, pp. 395–411.

[14] Binlin Cheng, Jiang Ming, Erika A Leal, Haotian
Zhang, Jianming Fu, Guojun Peng, and Jean-Yves Mar-
ion. “{Obfuscation-Resilient} Executable Payload Ex-
traction From Packed Malware”. In: 30th USENIX
Security Symposium (USENIX Security 21). 2021,
pp. 3451–3468.

[15] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. “S2E: A platform for in-vivo multi-path analy-
sis of software systems”. In: Acm Sigplan Notices 46.3
(2011), pp. 265–278.

[16] Paolo Milani Comparetti, Guido Salvaneschi, Engin
Kirda, Clemens Kolbitsch, Christopher Kruegel, and
Stefano Zanero. “Identifying dormant functionality in
malware programs”. In: 2010 IEEE Symposium on
Security and Privacy. IEEE. 2010, pp. 61–76.

[17] Kevin Coogan, Gen Lu, and Saumya Debray. “De-
obfuscation of virtualization-obfuscated software: a
semantics-based approach”. In: Proceedings of the
18th ACM conference on Computer and communica-
tions security. 2011, pp. 275–284.

[18] Mila Dalla Preda, Matias Madou, Koen De Bosschere,
and Roberto Giacobazzi. “Opaque predicates detection
by abstract interpretation”. In: Algebraic Methodol-
ogy and Software Technology: 11th International Con-
ference, AMAST 2006, Kuressaare, Estonia, July 5-8,
2006. Proceedings 11. Springer. 2006, pp. 81–95.

[19] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. “Spider:
Stealthy binary program instrumentation and debug-
ging via hardware virtualization”. In: Proceedings of
the 29th Annual Computer Security Applications Con-
ference. 2013, pp. 289–298.

[20] Artem Dinaburg, Paul Royal, Monirul Sharif, and
Wenke Lee. “Ether: malware analysis via hardware
virtualization extensions”. In: Proceedings of the 15th
ACM conference on Computer and communications
security. 2008, pp. 51–62.

[21] Daniele Cono D’Elia, Emilio Coppa, Federico Pal-
maro, and Lorenzo Cavallaro. “On the dissection of
evasive malware”. In: IEEE Transactions on Informa-
tion Forensics and Security 15 (2020), pp. 2750–2765.

[22] Kelsey R Fulton, Daniel Votipka, Desiree Abrokwa,
Michelle L Mazurek, Michael Hicks, and James Parker.
“Understanding the how and the why: Exploring se-
cure development practices through a course competi-
tion”. In: Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security.
2022, pp. 1141–1155.

[23] Greg Guest, Emily Namey, and Mario Chen. “A simple
method to assess and report thematic saturation in qual-
itative research”. In: PloS one 15.5 (2020), e0232076.

[24] Marco Gutfleisch, Jan H Klemmer, Niklas Busch,
Yasemin Acar, M Angela Sasse, and Sascha Fahl.
“How does usable security (not) end up in software
products? results from a qualitative interview study”.
In: 2022 IEEE Symposium on Security and Privacy
(SP). IEEE. 2022, pp. 893–910.

[25] Erik Hollnagel. Handbook of cognitive task design.
CRC Press, 2003.

[26] Jiaqi Hong and Xuhua Ding. “A novel dynamic anal-
ysis infrastructure to instrument untrusted execution
flow across user-kernel spaces”. In: 2021 IEEE Sym-
posium on Security and Privacy (SP). IEEE. 2021,
pp. 1902–1918.

[27] Stacy A Jacob and S Paige Furgerson. “Writing in-
terview protocols and conducting interviews: Tips for
students new to the field of qualitative research.” In:
Qualitative Report 17 (2012), p. 6.

[28] Ashish Jadhav, Deepti Vidyarthi, and M Hemavathy.
“Evolution of evasive malwares: A survey”. In: 2016 In-
ternational Conference on Computational Techniques
in Information and Communication Technologies (IC-
CTICT). IEEE. 2016, pp. 641–646.

[29] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and
Ashish Tiwari. “Oracle-guided component-based
program synthesis”. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering-Volume 1. 2010, pp. 215–224.

[30] Noah M Johnson, Juan Caballero, Kevin Zhijie Chen,
Stephen McCamant, Pongsin Poosankam, Daniel Rey-
naud, and Dawn Song. “Differential slicing: Identi-
fying causal execution differences for security appli-
cations”. In: 2011 IEEE Symposium on Security and
Privacy. IEEE. 2011, pp. 347–362.

[31] Min Gyung Kang, Pongsin Poosankam, and Heng Yin.
“Renovo: A hidden code extractor for packed executa-
bles”. In: Proceedings of the 2007 ACM workshop on
Recurring malcode. 2007, pp. 46–53.

[32] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen
McCamant, and Dawn Song. “Emulating emulation-
resistant malware”. In: Proceedings of the 1st ACM
workshop on Virtual machine security. 2009, pp. 11–
22.

[33] Mohammad Sina Karvandi, MohammadHosein Gho-
lamrezaei, Saleh Khalaj Monfared, Soroush Megh-
dadizanjani, Behrooz Abbassi, Ali Amini, Reza Mor-
tazavi, Saeid Gorgin, Dara Rahmati, and Michael
Schwarz. “HyperDbg: Reinventing Hardware-Assisted
Debugging”. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communica-
tions Security. 2022, pp. 1709–1723.

[34] Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and
Takeo Hariu. “Api chaser: Anti-analysis resistant mal-
ware analyzer”. In: Research in Attacks, Intrusions,
and Defenses: 16th International Symposium, RAID
2013, Rodney Bay, St. Lucia, October 23-25, 2013. Pro-
ceedings 16. Springer. 2013, pp. 123–143.

[35] Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. “Barecloud: Bare-metal analysis-based eva-
sive malware detection”. In: 23rd USENIX Security
Symposium (USENIX Security 14). 2014, pp. 287–301.

[36] Barbara A Kitchenham, David Budgen, and O Pearl
Brereton. “The value of mapping studies–A participant-
observer case study”. In: 14th international conference
on evaluation and assessment in software engineering
(ease). 2010, pp. 1–9.

[37] Barbara Ann Kitchenham, David Budgen, and Pearl
Brereton. Evidence-based software engineering and
systematic reviews. Vol. 4. CRC press, 2015.

[38] Clemens Kolbitsch, Engin Kirda, and Christopher
Kruegel. “The power of procrastination: detection and
mitigation of execution-stalling malicious code”. In:
Proceedings of the 18th ACM conference on Computer
and communications security. 2011, pp. 285–296.

[39] Christopher Kruegel, William Robertson, Fredrik
Valeur, and Giovanni Vigna. “Static disassembly of
obfuscated binaries”. In: USENIX security Symposium.
Vol. 13. 2004, pp. 18–18.

[40] Alexander Küchler, Alessandro Mantovani, Yufei Han,
Leyla Bilge, and Davide Balzarotti. “Does Every Sec-
ond Count? Time-based Evolution of Malware Behav-
ior in Sandboxes.” In: NDSS. 2021.

[41] J Richard Landis and Gary G Koch. “An application
of hierarchical kappa-type statistics in the assessment
of majority agreement among multiple observers”. In:
Biometrics (1977), pp. 363–374.

[42] Kevin Leach, Chad Spensky, Westley Weimer, and
Fengwei Zhang. “Towards transparent introspection”.
In: 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER).
Vol. 1. IEEE. 2016, pp. 248–259.

[43] Tamas K Lengyel, Steve Maresca, Bryan D Payne,
George D Webster, Sebastian Vogl, and Aggelos
Kiayias. “Scalability, fidelity and stealth in the
DRAKVUF dynamic malware analysis system”. In:
Proceedings of the 30th annual computer security ap-
plications conference. 2014, pp. 386–395.

[44] Shijia Li, Chunfu Jia, Pengda Qiu, Qiyuan Chen, Jiang
Ming, and Debin Gao. “Chosen-Instruction Attack
Against Commercial Code Virtualization Obfuscators”.
In: In Proceedings of the 29th Network and Distributed
System Security Symposium. 2022.

[45] Martina Lindorfer, Clemens Kolbitsch, and Paolo Mi-
lani Comparetti. “Detecting environment-sensitive mal-
ware”. In: Recent Advances in Intrusion Detection:
14th International Symposium, RAID 2011, Menlo
Park, CA, USA, September 20-21, 2011. Proceedings
14. Springer. 2011, pp. 338–357.

[46] Kangjie Lu, Dabi Zou, Weiping Wen, and Debin Gao.
“deRop: removing return-oriented programming from
malware”. In: Proceedings of the 27th Annual Com-
puter Security Applications Conference. 2011, pp. 363–
372.

[47] Alessandro Mantovani, Simone Aonzo, Yanick Fratan-
tonio, and Davide Balzarotti. “{RE-Mind}: a First
Look Inside the Mind of a Reverse Engineer”. In: 31st
USENIX Security Symposium (USENIX Security 22).
2022, pp. 2727–2745.

[48] Jonathan AP Marpaung, Mangal Sain, and Hoon-Jae
Lee. “Survey on malware evasion techniques: State of
the art and challenges”. In: 2012 14th International
Conference on Advanced Communication Technology
(ICACT). IEEE. 2012, pp. 744–749.

[49] Lorenzo Martignoni, Mihai Christodorescu, and
Somesh Jha. “Omniunpack: Fast, generic, and safe
unpacking of malware”. In: Twenty-Third Annual Com-
puter Security Applications Conference (ACSAC 2007).
IEEE. 2007, pp. 431–441.

[50] James Mattei, Madeline McLaughlin, Samantha
Katcher, and Daniel Votipka. “A Qualitative Evalu-
ation of Reverse Engineering Tool Usability”. In: Pro-
ceedings of the 38th Annual Computer Security Appli-
cations Conference. 2022, pp. 619–631.

[51] Grégoire Menguy, Sébastien Bardin, Richard Boni-
chon, and Cauim de Souza Lima. “Search-based lo-
cal black-box deobfuscation: understand, improve and
mitigate”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Secu-
rity. 2021, pp. 2513–2525.

[52] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu.
“Loop: Logic-oriented opaque predicate detection in
obfuscated binary code”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Commu-
nications Security. 2015, pp. 757–768.

[53] Andreas Moser, Christopher Kruegel, and Engin Kirda.
“Exploring multiple execution paths for malware anal-
ysis”. In: 2007 IEEE Symposium on Security and Pri-
vacy (SP’07). IEEE. 2007, pp. 231–245.

[54] Anh M Nguyen, Nabil Schear, HeeDong Jung,
Apeksha Godiyal, Samuel T King, and Hai D Nguyen.
“Mavmm: Lightweight and purpose built vmm for mal-
ware analysis”. In: 2009 Annual Computer Security
Applications Conference. IEEE. 2009, pp. 441–450.

[55] Anna-Marie Ortloff, Christian Tiefenau, and Matthew
Smith. “{SoK}: I Have the (Developer) Power!
Sample Size Estimation for Fisher’s Exact,{Chi-
Squared},{McNemar’s}, Wilcoxon {Rank-Sum},
Wilcoxon {Signed-Rank} and t-tests in {Developer-
Centered} Usable Security”. In: Nineteenth Sympo-
sium on Usable Privacy and Security (SOUPS 2023).
2023, pp. 341–359.

[56] Overview of Qualitative Methods and Analytic Tech-
niques. https : / / www . nsf . gov / pubs / 1997 /
nsf97153/chap_3.htm.

[57] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende,
Jay Ligatti, and Xinming Ou. “An ethnographic un-
derstanding of software (in) security and a co-creation
model to improve secure software development”. In:
Proceedings of the Sixteenth Symposium on Usable
Privacy and Security. 2020.

[58] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu,
Zhiqiang Lin, and Zhendong Su. “X-force: Force-
executing binary programs for security applications”.
In: USENIX Security symposium 2014.

[59] Birgit Penzenstadler, Ankita Raturi, Debra Richardson,
Coral Calero, Henning Femmer, and Xavier Franch.
“Systematic mapping study on software engineering for
sustainability (SE4S)”. In: Proceedings of the 18th In-
ternational Conference on Evaluation and Assessment
in Software Engineering. 2014, pp. 1–14.

https://www.nsf.gov/pubs/1997/nsf97153/chap_3.htm
https://www.nsf.gov/pubs/1997/nsf97153/chap_3.htm

[60] Kai Petersen, Robert Feldt, Shahid Mujtaba, and
Michael Mattsson. “Systematic mapping studies in
software engineering”. In: 12th International Confer-
ence on Evaluation and Assessment in Software Engi-
neering (EASE) 12. 2008, pp. 1–10.

[61] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuz-
niarz. “Guidelines for conducting systematic mapping
studies in software engineering: An update”. In: In-
formation and software technology 64 (2015), pp. 1–
18.

[62] Meisam Ranjbari, Zahra Shams Esfandabadi, Tetiana
Shevchenko, Naciba Chassagnon-Haned, Wanxi Peng,
Meisam Tabatabaei, and Mortaza Aghbashlo. “Map-
ping healthcare waste management research: Past evo-
lution, current challenges, and future perspectives to-
wards a circular economy transition”. In: Journal of
hazardous materials 422 (2022), p. 126724.

[63] Kevin A Roundy and Barton P Miller. “Hybrid anal-
ysis and control of malware”. In: Recent Advances in
Intrusion Detection: 13th International Symposium,
RAID 2010, Ottawa, Ontario, Canada, September 15-
17, 2010. Proceedings 13. Springer. 2010, pp. 317–
338.

[64] Paul Royal, Mitch Halpin, David Dagon, Robert Ed-
monds, and Wenke Lee. “PolyUnpack: Automating the
Hidden-Code Extraction of Unpack-Executing Mal-
ware”. In: 2006 22nd Annual Computer Security Appli-
cations Conference (ACSAC’06). 2006, pp. 289–300.
DOI: 10.1109/ACSAC.2006.38.

[65] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and
Wenke Lee. “Automatic reverse engineering of mal-
ware emulators”. In: 2009 30th IEEE Symposium on
Security and Privacy. IEEE. 2009, pp. 94–109.

[66] Junfu Shen and Jiang Ming. “Mba-blast: unveiling and
simplifying mixed boolean-arithmetic obfuscation”. In:
(2021).

[67] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. “SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis”.
In: IEEE Symposium on Security and Privacy. 2016.

[68] Chad Spensky, Hongyi Hu, and Kevin Leach. “LO-
PHI: Low-Observable Physical Host Instrumentation
for Malware Analysis.” In: NDSS. 2016.

[69] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and
Dongyan Xu. “Process out-grafting: an efficient" out-
of-vm" approach for fine-grained process execution
monitoring”. In: Proceedings of the 18th ACM confer-
ence on Computer and communications security. 2011,
pp. 363–374.

[70] Prachi Srivastava and Nick Hopwood. “A practical
iterative framework for qualitative data analysis”. In:
International journal of qualitative methods 8.1 (2009),
pp. 76–84.

[71] Chao Su, Xuhua Ding, and Qingkai Zeng. “Catch you
with cache: Out-of-VM introspection to trace mali-
cious executions”. In: 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN). IEEE. 2021, pp. 326–337.

[72] Tyler W Thomas, Madiha Tabassum, Bill Chu, and
Heather Lipford. “Security during application develop-
ment: An application security expert perspective”. In:
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 2018, pp. 1–12.

[73] Sharath K Udupa, Saumya K Debray, and Matias
Madou. “Deobfuscation: Reverse engineering obfus-
cated code”. In: 12th Working Conference on Reverse
Engineering (WCRE’05). IEEE. 2005, 10–pp.

[74] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos,
and Pablo G Bringas. “Rambo: Run-time packer anal-
ysis with multiple branch observation”. In: Detection
of Intrusions and Malware, and Vulnerability Assess-
ment: 13th International Conference, DIMVA 2016,
San Sebastián, Spain, July 7-8, 2016, Proceedings 13.
Springer. 2016, pp. 186–206.

[75] Amit Vasudevan and Ramesh Yerraballi. “Cobra:
Fine-grained malware analysis using stealth localized-
executions”. In: 2006 IEEE Symposium on Security
and Privacy (S&P’06). IEEE. 2006, 15–pp.

[76] Daniel Votipka, Kelsey R Fulton, James Parker,
Matthew Hou, Michelle L Mazurek, and Michael
Hicks. “Understanding security mistakes developers
make: Qualitative analysis from build it, break it, fix
it”. In: 29th USENIX Security Symposium (USENIX
Security 20). 2020, pp. 109–126.

[77] Daniel Votipka, Seth M Rabin, Kristopher Micinski,
Jeffrey S Foster, and Michelle M Mazurek. “An obser-
vational investigation of reverse engineers’ processes”.
In: Proceedings of the 29th USENIX Conference on
Security Symposium. 2020, pp. 1875–1892.

[78] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy
Hu, and Michelle Mazurek. “Hackers vs. testers: A
comparison of software vulnerability discovery pro-
cesses”. In: 2018 IEEE Symposium on Security and
Privacy (SP). IEEE. 2018, pp. 374–391.

[79] Jeffrey Wilhelm and Tzi-cker Chiueh. “A forced
sampled execution approach to kernel rootkit iden-
tification”. In: Recent Advances in Intrusion Detec-
tion: 10th International Symposium, RAID 2007, Gold
Goast, Australia, September 5-7, 2007. Proceedings
10. Springer. 2007, pp. 219–235.

https://doi.org/10.1109/ACSAC.2006.38

[80] Carsten Willems, Thorsten Holz, and Felix Freiling.
“Toward automated dynamic malware analysis using
cwsandbox”. In: IEEE Security & Privacy 5.2 (2007),
pp. 32–39.

[81] Carsten Willems, Ralf Hund, Andreas Fobian, Dennis
Felsch, Thorsten Holz, and Amit Vasudevan. “Down
to the bare metal: Using processor features for binary
analysis”. In: Proceedings of the 28th Annual Com-
puter Security Applications Conference. 2012, pp. 189–
198.

[82] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao
Wu. “VMHunt: A verifiable approach to partially-
virtualized binary code simplification”. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security. 2018, pp. 442–
458.

[83] Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhiqiang
Lin. “Goldeneye: Efficiently and effectively unveiling
malware’s targeted environment”. In: Research in At-
tacks, Intrusions and Defenses: 17th International Sym-
posium, RAID 2014, Gothenburg, Sweden, September
17-19, 2014. Proceedings 17. Springer. 2014, pp. 22–
45.

[84] Babak Yadegari and Saumya Debray. “Symbolic execu-
tion of obfuscated code”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Commu-
nications Security. 2015, pp. 732–744.

[85] Babak Yadegari, Brian Johannesmeyer, Ben Whitely,
and Saumya Debray. “A generic approach to automatic
deobfuscation of executable code”. In: 2015 IEEE Sym-
posium on Security and Privacy. IEEE. 2015, pp. 674–
691.

[86] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-
Padilla, and Matthew Smith. “Helping johnny to ana-
lyze malware: A usability-optimized decompiler and
malware analysis user study”. In: 2016 IEEE Sym-
posium on Security and Privacy (SP). IEEE. 2016,
pp. 158–177.

[87] Lok-Kwong Yan, Manjukumar Jayachandra, Mu
Zhang, and Heng Yin. “V2e: combining hardware vir-
tualization and softwareemulation for transparent and
extensible malware analysis”. In: Proceedings of the
8th ACM SIGPLAN/SIGOPS conference on Virtual Ex-
ecution Environments. 2012, pp. 227–238.

[88] Miuyin Yong Wong, Matthew Landen, Manos Anton-
akakis, Douglas M Blough, Elissa M Redmiles, and
Mustaque Ahamad. “An inside look into the practice of
malware analysis”. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communica-
tions Security. 2021, pp. 3053–3069.

[89] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer,
Fei Peng, Yu Shi, Carson Harmon, and Xiangyu Zhang.
“Pmp: Cost-effective forced execution with probabilis-
tic memory pre-planning”. In: 2020 IEEE Symposium
on Security and Privacy (SP). IEEE. 2020, pp. 1121–
1138.

[90] Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin. “Pemu:
A pin highly compatible out-of-vm dynamic binary in-
strumentation framework”. In: Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. 2015, pp. 147–160.

[91] Junyuan Zeng, Yangchun Fu, Kenneth A Miller,
Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. “Ob-
fuscation resilient binary code reuse through trace-
oriented programming”. In: Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security. 2013, pp. 487–498.

[92] Fengwei Zhang, Kevin Leach, Angelos Stavrou, Hain-
ing Wang, and Kun Sun. “Using hardware features for
increased debugging transparency”. In: 2015 IEEE
Symposium on Security and Privacy. IEEE. 2015,
pp. 55–69.

[93] Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos
Stavrou. “Spectre: A dependable introspection frame-
work via system management mode”. In: 2013 43rd
Annual IEEE/IFIP international conference on depend-
able systems and networks (DSN). IEEE. 2013, pp. 1–
12.

[94] Qinghua Zhang and Douglas S Reeves. “Metaaware:
Identifying metamorphic malware”. In: Twenty-Third
Annual Computer Security Applications Conference
(ACSAC 2007). IEEE. 2007, pp. 411–420.

A Survey Questionnaire

Background and Experience.

• How many years of experience do you have analyzing mal-
ware?

• Can you please describe your job role?
• We would like to get to know more about you, please pro-

vide your LinkedIn profile. If you do not have a LinkedIn
profile, please describe your work experience and educa-
tion such as your highest level of education and major (if
applicable).

• Which of the following best describes your malware anal-
ysis objective? Extract easily obtained string based IOCs
such as hashes, domain names and IP addresses from mal-
ware samples, Focus on identifying potentially malicious
activities exhibited by malware samples using network and
host artifacts, Perform malware analysis to identify the
strategies and intentions behind threat actor’s attack cam-
paigns which is accomplished by understanding the Tactics,
Techniques and Procedures (check all that apply).

Malware Evasion.

• How do you define an evasive malware sample?
• How often do you analyze evasive malware?
• How do you determine that a malware sample is evasive?
• Which of the following type of analysis do you tend to

rely on more when identifying an evasive malware sample?
Dynamic Analysis, Static Analysis, I use both static and
dynamic analysis equally, Other.

• Which of the following type of analysis do you tend to
rely on more when analyzing evasive malware samples?
Dynamic Analysis, Static Analysis, I use both static and
dynamic analysis equally, Other.

• Do you consider evasive malware to be challenging to ana-
lyze? Yes, No, Other.

• What is the biggest challenge when analyzing evasive mal-
ware samples?

• Based on your experience, have evasive tactics become
more sophisticated over time? If so, how?

• Based on your experience, is there any correlation between
the malware family and the evasive tactics?

• Based on your experience, which of the following category
of anti-analysis is the most challenging? Anti-disassembly,
Anti-debugging, Sandbox Evasion, Other.

• Based on your experience, what are the most common types
of sandbox evasion tactics? Delayed Execution: execute
malware after a short period of time to successfully leave the
sandbox, Environmental Awareness: verify that it is being
executed in a real life environment, System Analysis: look
for system characteristics like CPU core count and system
reboots, User Interaction: detect user actions like mouse

clicks and document scrolling, Data Obfuscation: tricks the
sandbox by changing the DNS names or encrypting API
calls.

• Does your analysis process differ when you are analyzing
an evasive malware sample? If so, how?

B Interview Questions

Identifying and Analyzing Evasive Malware.

• At a high level, what is your workflow when analyzing a
malware sample?

• When do you begin to consider the possibility that the sam-
ple is evasive?

• How do you identify an evasive malware sample?
• What percentage of the malware samples that you analyze

are evasive?
• Is there anything that you would like to change in the pro-

cess of identifying an evasive malware sample?
• In your questionnaire you mentioned that you use both

static and dynamic analysis. Can you explain why you use
both and what causes you to switch from one to the other?

• Is your workflow documented or standardized?
• How did you come up with your current workflow?
• Do you hold a college degree? If so, what was your major,

and did it help with malware analysis?
• Do you know if your workflow is similar to your co-

worker’s workflow in your group?
• Can you walk me through your process of analyzing an

already identified evasive malware sample?
• What are you trying to accomplish when analyzing an eva-

sive sample? What information do you want to extract?
• Is understanding evasion tactics helpful or do you just want

to bypass them?
• What are the challenges that you encounter in your work-

flow and what tools would help you overcome them?

Techniques for Handling Evasive Malware.

• How do you handle malware that uses code obfuscation?
• Do you consider fingerprinting a significant evasive tactic?

If so, what steps do you take to mitigate it?
• How do you handle malware that employs timing-based

evasion techniques?
• How do you handle malware that checks for user interac-

tion? If you don’t, why not?
• When doing dynamic analysis, are you concerned with the

malware detecting that it’s being executed in an analysis
environment? If so, what steps do you take to mitigate this?

• Which evasive malware techniques do you consider to be
the most challenging to analyze?

• Which evasive malware techniques do you consider to be
the most time-consuming to analyze?

• Why do you think evasive malware remains challenging to
analyze?

Use of Existing Tools for Malware Analysts.

• What tools do you use when analyzing an evasive malware
sample?

• Which tool would you consider to be the most helpful in
your analysis workflow and why?

• Which tool do you use but would you like to be improved?
• When was the last time you implemented a new tool into

your workflow?
• Where do you find new tools?
• What qualities do you consider when selecting a new tool?
• Is there any limitation or challenge that you would like a

tool to automate?

C Codebook

Below is our complete codebook in their corresponding cate-
gories. We provide a brief description of the codes that may
need further explanation.
Participant Role.

• Job Description: current job title and job
• Experience: years of experience in malware analysis and

previous jobs.
• Education

Organization.

• Escalation: When malware samples get sent between teams.
• Mentoring: If malware analysts mention having a mentor or

mentoring another individual regarding malware analysis.
• Operational Analyst: Participants that mention they work at

AV companies, as malware analysts, or as incident respon-
ders.

• Research Focus: When the analysts’ objective reaches be-
yond detection and requires a more in-depth understanding
of the malware’s origin and purpose.

• Restrictions: Factors that restrict the analysis process.
• Resources Influence Workflow: When malware analysts’

workflow is affected or benefited by specific resources
within their organization.

Malware.

• Acquisition of Malware: the process of acquiring a poten-
tially malicious program.

• Malware Context: information the analysts receive about
the malware sample.

• Commodity Malware: any information mentioned about
commonly viewed malware.

• Sophisticated Malware: any information mentioned about
sophisticated malware.

• Example of Malware: analyst mentions specific examples
of malware samples, including the name of the family.

• Targeted Malware: when the analyst mentions a malware
sample that avoids detection unless it is executed in its
desired environment.

• Multiple Stages: analysts describes multi-stage malware
• Type of Malware Informs Analysis Process: a case when a

participant’s process changes based on the malware sample.
• Programming Language

Analysis Workflow.

• High-Level Workflow: description of the analysis workflow
used by analysts to analyze any malware sample.

• Switch Trigger Between Static and Dynamic Analysis: what
causes analysts to go back and forth between static and
dynamic analysis.

• Need for Automation: a process that analysts mention
would benefit from automation.

• Standardized Workflow: if the analyst mentions they have
a standardized analysis workflow.

• Non-Standardized workflow: if the analyst mentions they
do not have a standardized analysis workflow.

• Suspicious Activity: signs that may provide analysts hints
about the program’s malicious behavior.

• Process of Generating Signatures: how malware analysts
create signatures.

• Objectives: the objectives analysts have when analyzing a
malware sample.

• Automated Triage: a malware analysis pipeline through
which each sample undergoes automated processing.

• Useful Information from One Type of Analysis to the Other:
specific information that analysts take from static analysis
to use during dynamic analysis or vice versa.

Static Analysis.

• Static Analysis Preference
• Basic Static Analysis: static analysis process such as check-

ing for strings.
• Advanced Static Analysis: how analysts analyze the mal-

ware binary in a disassembler.
• Benefits of Static Analysis
• Limitations of Static Analysis
• Locating Suspicious Activity: how malware analysts locate

suspicious activity in a disassembler.
• Where They Begin: how do analysts begin analyzing a

sample in a disassembler.

Dynamic Analysis.

• Dynamic Analysis Preference
• Basic Dynamic Analysis: sandbox execution
• Advanced Dynamic Analysis: debugging process
• Sandbox configuration
• Sandbox Limitations
• Benefits of Sandbox
• Multiple Sandbox Execution: if they execute the sample

multiple times and why
• Symbolic Execution: the use of symbolic execution
• Contributing to Sandbox: when analysts use new informa-

tion from their analysis to improve sandboxes.
• Unpack Sample: process of unpacking a malware sample
• Use of Sandbox Report
• Bare metal: execute malware in bare metal systems.
• Emulation: analysts use emulation techniques.

Malware Evasion.

• Definition of Evasion
• Detecting Evasive Malware
• Frequency of Evasive Malware
• Most Challenging Evasive Techniques
• Most Time-Consuming Evasive Techniques
• Most Common Evasive Techniques
• Why Analyzing Evasive Malware Remains Challenging
• Correlation Between Malware Family & Evasive Technique
• Purpose of evasion technique
• Layers of Evasion
• Evasion-Based Signatures

Static Analysis Evasion.

• Static Analysis Evasion Techniques
• Frequency of static analysis evasion
• Bypassing Static Analysis Evasion: how malware analysts

overcome static analysis evasion techniques.

Dynamic Analysis Evasion.

• Dynamic Analysis Evasion Techniques
• Frequency of Dynamic Analysis Evasion
• Bypassing dynamic analysis evasion: how malware analysts

overcome dynamic analysis evasion techniques.

Implementation.

• Discovering New Tools: where analysts find new tools.
• Does Not Use New Tools Often: when analysts mention

that they do not use new tools often.
• Willingness to Implement New Tools

• Qualities: when analysts mention qualities that they con-
sider when deciding to use a new tool.

Tools.

• Malware Analysis Tools
• Most Helpful Tool
• Improvements for Tools: when analysts mention how exist-

ing tools can be improved.
• New Tool Idea: when analysts mention ideas for new tools.
• Internal Tools: when analysts mention tools made exclu-

sively for their organization.
• Custom Scripts: when malware analysts describe how they

create custom scripts.
• Open Source Vs. Custom Tools: when analysts compare

open source with tools internal to the organization.
• Hard to Apply in Practice: when analysts mention that

certain approaches are difficult to apply in practice.

D Participants

ID Education Yrs. Analysis Preference

P1 N/A 10 Static Analysis
P2 IT 7 Static Analysis
P3 N/A 8 Static Analysis
P4 Math 10 Static Analysis
P5 CS 15 NA
P6 CE 11 Static Analysis
P7 IT 15 NA
P8 N/A 3 Static Analysis
P9 Computer Networks 3 NA
P10 Information Assurance 11 Dynamic Analysis
P11 CS & Math 8 Static Analysis
P12 CS 9 Static Analysis
P13 CS 6 Static Analysis
P14 CS 7 NA
P15 EE & Math 9 Static Analysis
P16 CS 27 NA
P17 CS 9 Static Analysis
P18 IT 5 NA s
P19 CS 12 Static Analysis
P20 CS 12 NA
P21 Digital Forensics 8 Static Analysis
P22 EE & Math 15 Dynamic Analysis
P23 CE 12 Static Analysis
P24 N/A 15 Dynamic Analysis

Table 3: Participants’ Education (IT: Information Technol-
ogy, CS: Computer Science, EE: Electrical Engineering, CE:
Computer Engineering), Years of Experience, Analysis Prefer-
ence, and Tiers [88] (Behavior: Goal of identifying potentially
malicious activity, TTPs: Goal of understanding tactics, tech-
niques, and procedures).

	Introduction
	Systematic Mapping Methodology
	Mapping Research Questions
	Search Strategy
	Search Evaluation
	Data Extraction and Classification

	Systematic Mapping Results
	User Study Methodology
	Recruitment
	Interview Protocol
	Data Collection and Analysis

	User Study Participants
	Malware Analysts' Perspective
	Definition of Evasion
	Most Challenging Evasive Techniques

	Workflows For Handling Evasive Tactics
	How Malware Experts Handle Dynamic Analysis Evasion
	How Malware Experts Handle Static Analysis Evasion

	Comparing Malware Analysts Evasion Challenges and Research Countermeasures
	Discussion
	Limitations
	Related Work
	Conclusion
	Survey Questionnaire
	Interview Questions
	Codebook
	Participants

