
Arcanum: Detecting and Evaluating the Privacy Risks of Browser Extensions
on Web Pages and Web Content

Qinge Xie
Georgia Institute of Technology

Manoj Vignesh Kasi Murali
Georgia Institute of Technology

Paul Pearce
Georgia Institute of Technology

Frank Li
Georgia Institute of Technology

Abstract
Modern web browsers support rich extension ecosystems

that provide users with customized and flexible browsing ex-
periences. Unfortunately, the flexibility of extensions also
introduces the potential for abuse, as an extension with suffi-
cient permissions can access and surreptitiously leak sensitive
and private browsing data to the extension’s authors or third
parties. Prior work has explored such extension behavior, but
has been limited largely to meta-data about browsing rather
than the contents of web pages, and is also based on older
versions of browsers, web standards, and APIs, precluding its
use for analysis in a modern setting.

In this work, we develop Arcanum, a dynamic taint tracking
system for modern Chrome extensions designed to monitor
the flow of user content from web pages. Arcanum defines
a variety of taint sources and sinks, allowing researchers to
taint specific parts of pages at runtime via JavaScript, and
works on modern extension APIs, JavaScript APIs, and ver-
sions of Chromium. We deploy Arcanum to test all functional
extensions currently in the Chrome Web Store for the auto-
mated exfiltration of user data across seven sensitive websites:
Amazon, Facebook, Gmail, Instagram, LinkedIn, Outlook, and
PayPal. We observe significant privacy risks across thousands
of extensions, including hundreds of extensions automatically
extracting user content from within web pages, impacting
millions of users. Our findings demonstrate the importance
of user content within web pages, and the need for stricter
privacy controls on extensions.

1 Introduction

Web browsers manage some of the most sensitive user data.
From emails, to banking information, to medical records, to
social media, web pages display private information and users
rely on web browsers to ensure information remains secure
within their devices, and available only to the correct parties.

At the same time, browser extensions serve a fundamen-
tal role in the web ecosystem. Used by millions of users,

extensions enhance browser functionality with expressive,
powerful features. Google’s Chrome Web Store hosts over
100K extensions with billions of total installs [11].

Unfortunately, the same access and capabilities that exten-
sions rely on to enrich the web browsing experience can also
be abused to harm user privacy; extensions can collect sensi-
tive user data at scale, potentially without users’ knowledge
or explicit consent. Even in cases where data collection is
benign and necessary for legitimate extension functionality, it
introduces privacy risks as sensitive user data can be transmit-
ted and stored by a third party, which may further share the
data or possibly leak the data during a data breach.

The intersection of the sensitive nature of some websites
and the powerful nature of extensions creates a core privacy
conflict: how can we secure some websites and types of con-
tent when third-party code has significant access to that in-
formation. One mechanism deployed by browsers requires
extension developers to explicitly document what kinds of
content can be accessed, and on what sites. Unfortunately,
these permissions are coarse-grained; a simple extension that
changes page colors requires the ability to interact with all
content on the page. Such construction still affords abuse.

This avenue of privacy problems has not gone unnoticed.
Prior work such as Mystique [4] sought to develop an anal-
ysis framework for Chromium—the most popular browser
platform, underpinning more than 68% of all users’ brows-
ing [58]—to explore how extensions access some kinds of
user information such as URLs and passwords. Unfortunately,
the architecture of modern browsers, the expressiveness of
extension APIs, and the web itself have advanced since such
tools were developed, making them incapable of operating in
a modern context. Orthogonal to prior work, another remain-
ing question is the role that extensions play in the collection
of web page content, and once they access that information,
how it is processed, stored, and potentially exfiltrated.

To address these limitations, we present Arcanum, a dy-
namic taint tracking system for Chromium designed to track
sensitive user content on modern web pages and extensions.
The key distinctions of Arcanum from prior systems are its

ability to track user data from within web pages, operate on
the modern browser architecture, and support taint propaga-
tion across a more comprehensive set of browser, web, and
JavaScript (JS) APIs used by extensions (including new APIs
as well as important ones not previously accounted for, such
as the Fetch network request, and data encoding/encryption).

Arcanum understands a diverse set of data sources ranging
from meta-data, to content DOM elements, location informa-
tion, history data, and cookies. From these sources, Arcanum
is able to track data flow to a variety of exit sinks, including all
forms of web requests and storage APIs. Arcanum does this
by instrumenting both the Blink browser engine and the V8 JS
engine to mark taint for sensitive data objects (including those
returned by sensitive APIs) and comprehensively propagate
taint across data manipulation functions. A key feature of
Arcanum is allowing researchers to instrument specific web
page elements as tainted at runtime via JS DOM annotations.
This allows Arcanum to not only track how extensions use,
manipulate, store, or exfiltrate specific data objects, but also
reduce flagging of non-sensitive data, such as page colors.

We deploy Arcanum at scale to study all 113,099 functional
extensions in the Chrome Web Store. We test each extension
against seven privacy-critical sites covering a diverse set of
categories: Amazon, Facebook, Gmail, Instagram, LinkedIn,
Outlook, and PayPal.

We observe that the automated collection of potentially
private data is pervasive; we uncover 3,028 extensions col-
lecting sensitive user data, impacting up to 144M users. Of
these, the super majority exfiltrate the data, with a minority
storing it locally. We also observe the collection of sensitive
user data from within web page content by 202 extensions,
potentially affecting up to 300K+ users, which has not been
previously investigated. The collected information includes
the contents of emails, private social media profiles and activ-
ity, banking information, and professional networks. Further,
all sites tested are impacted by thousands of extensions.

In summary, our contributions include:
• Identifying that more than 58% of today’s extensions cannot

be analyzed by the existing extension analysis system [4].
• Designing and implementing Arcanum, a dynamic taint

tracking system driven by runtime annotations, for modern
Chromium browsers.

• Performing a study of all functional extensions from the
Chrome Web Store, across 7 popular and privacy-critical
sites covering email, banking, and social media. We present
analysis across extensions, sites, taint sources, and sinks.

• Finding 3,028 extensions automatically collect private user
data across sites, impacting up to 144M users; the super
majority of these extensions exfiltrate the data off-device.

• Uncovering 202 extensions collected detailed user content
from web pages, impacting as many as 300K+ users.

We open-source Arcanum at https://github.com/BEESL
ab/Arcanum/ to support future research. We have also shared
our results with Google and the affected sites.

2 Background and Motivation

In this section, we provide background on Chrome browser
extensions. We also discuss related prior work and their limi-
tations, motivating our system and study.

2.1 Chrome Browser Extensions
Extensions expand upon browser features and functionality.
Chrome extensions are composed of several core components.
Manifest File. Every extension has a manifest.json file
specifying an extension’s metadata and configuration, such
as the permissions required by the extension. In December
2020 [12], Chrome 88 rolled out a new version of its extension
platform, called Manifest Version 3 (MV3) [10]. Compared
to the previous version MV2, MV3 includes new features
and functionality, as well as changes to existing ones. The
Chrome Web Store no longer accepts new MV2 extensions.
While existing MV2 extensions remain in the Web Store,
Google will begin disabling MV2 extensions in pre-stable
versions of Chrome in June 2024 [21]. To migrate to MV3,
extensions must at a minimum update their manifest file.
Background Scripts. Background scripts (or service workers
in MV3) provide the long-term state and functionality of an
extension, independent of browser windows/tabs. Background
scripts can use Extension APIs (e.g., chrome.history) if the
necessary permissions are granted to the extension (e.g., the
“history” permission).
Content Scripts. Background scripts cannot directly access
web pages in browser windows/tabs. Instead, extensions can
inject content scripts into a window/tab, which runs within the
page’s context and thus can access the page’s DOM interface.
In order to inject into a page, extensions must define host per-
missions in the manifest file (or request it via the “activeTab”
permission). Content scripts can be injected by an extension
either through declarations or programmatic methods:
• Extension manifest files can statically declare content

scripts to always inject into web pages with URLs that
match specified patterns (including wildcard patterns).
Starting with Chrome 96, content scripts can also be
dynamically declared, registering content scripts using
the chrome.scripting.registerContentScripts API
and determining injection at runtime.

• Extensions can also programmatically inject a content
script through chrome.tabs.executeScript (MV2) or
chrome.scripting.executeScript (MV3).

Content scripts can communicate with the extension back-
ground script through message passing APIs, such as using
tabs.sendMessage and runtime.postMessage.

2.2 Prior Browser Extension Privacy Work
The security and privacy research community has broadly
investigated browser extensions, such as by assessing exten-

https://github.com/BEESLab/Arcanum/
https://github.com/BEESLab/Arcanum/

sion fingerprinting [23, 28, 33] and discovering vulnerable
data flows in extensions [20, 31]. In this work, we specifi-
cally focus on studying privacy leakage via browser extension
behaviors, which prior work has investigated through differ-
ing methods. The types of user information investigated by
prior work include those provided by browser or web API
calls [3, 4, 17, 20, 32, 67, 68], Document properties (e.g., cook-
ies) [4,17], and specific HTML element types (e.g., password-
typed fields in HTML forms) [4, 22]. Note that these informa-
tion sources are generically available across all sites, affording
straightforward evaluation at scale. However, prior work has
not investigated sensitive user data from within web pages
themselves, such as account profiles, user emails and posts,
and personal images. In our work, we seek to expand beyond
the user information considered by prior work and account
for the wealth of user data within web pages.

To evaluate extension privacy leakage, some works [32,67]
have applied network monitoring and analysis, searching for
user data within network requests generated by extensions.
The network vantage point is ultimately limited though, as
it struggles to identify encoded, encrypted, or otherwise ob-
fuscated user data, and provides limited visibility into how
the data is collected and exfiltrated. To provide deeper visi-
bility into extension activity, both static analysis [20, 22] and
dynamic taint tracking [4, 17] approaches have been used.
Extension static analysis by itself cannot comprehensively
identify data leakage flows though, as extension behavior
is often heavily dependent on dynamic values that can only
be determined at runtime on real-world sites. Thus, in this
study, we adopt the dynamic taint tracking approach, of in-
strumenting a browser to trace how sensitive tainted data may
eventually reach exfiltration points. Most similar to our ap-
proach is Dhawan et al. [17], who implemented taint tracking
for Firefox, and Chen and Kapravelos [4], who developed taint
tracking for Chromium. However, in our work, we develop
a new browser taint system, Arcanum, to overcome critical
limitations with these prior systems, as detailed next.

2.3 Motivation for Arcanum

Our study focuses on extensions for Chromium, the most pop-
ular browser platform [58]. While prior work [4] developed
extension taint tracking for Chromium, we identified critical
limitations necessitating a new system for modern Chromium.

Mystique [4] was developed in 2018, built upon Chromium
version 54 released in November 2016. Modern Chromium
has significantly evolved since this browser version though.
Beyond supporting additional features and APIs, the internal
browser architecture has been been substantially updated, in-
cluding redesigning the JS engine. As a consequence, modern
websites and extensions do not function correctly on such an
outdated version of Chromium. The browser changes have
also been significant enough that Mystique cannot be easily
ported to the new version of Chromium. We identify the fol-

lowing browser changes that drive the need for a new system:

Changes to the V8 JS Engine. Chromium uses the V8 JS en-
gine, which in 2017 migrated to an entirely new JS execution
pipeline (from Full-codegen/Crankshaft to Ignition/Turbo-
Fan) [64]. V8 has further updated its internal implementation,
such as optimizing its garbage collection in 2018 [59, 60]
and applying pointer compression to reduce memory con-
sumption in 2020 [62]. As a consequence, Mystique’s design
cannot be directly ported to modern Chromium versions, as
the JS engine architecture is distinct. Instead, a Chromium
taint tracking system specific to the modern V8 architecture
is needed.

Native Code Data Flow. Prior versions of Chromium imple-
mented core browser functionality in JS, including built-in
functions and the extension bindings system that supports
extension APIs [14]. These features provide both potential
taint sources as well as methods that could propagate tainted
user data. However, modern Chromium has migrated these
functionalities to native C++ for security and performance
reasons, as discussed in Section 3.2.3. Thus, taint tracking on
current Chromium requires tracking taint through both JS and
native code, necessitating an updated taint tracking system.

Manifest Version 3. As described in Section 2.1, Chrome
released a new version of the extension platform, MV3, in
2020. MV3 introduces new APIs and features; MV3 exten-
sions cannot operate on older browser versions that do not
support it. Mystique, built upon Chromium 54, cannot run
MV3 extensions.

To identify the extent of this limitation, we downloaded all
extensions in the Chrome Web Store (leveraging the Store
sitemap [7]) in both August 2022 and August 2023. In 2022
we observed 20.65% of extensions (out of 118,655) utilized
MV3, while in 2023, the prevalence of MV3 had increased
to 58.89% of extensions (out of 114,714). Thus, any attempt
to utilize prior taint tracking systems on modern extensions
precludes an ever-increasing majority of extensions. It is vital
that a taint tracking system supports MV3, especially given
that the Web Store no longer accepts new MV2 extensions.

Broken Websites. Since Chromium 54 (which Mystique
used), numerous new JS expressions and operators have
been added to Chromium. Many of these features have been
adopted by websites. For example, the LinkedIn website au-
tomatically loads a JS snippet that uses the Nullish coalesc-
ing operator, a feature only supported in Chrome 80+. Fur-
thermore, the Spread syntax in object literals is widely used
today [1], a feature only supported in Chrome 60+. We iden-
tified early in our study that many websites displayed fatal
errors when visited in an older browser (e.g., LinkedIn can-
not load in Chromium 54, as its core JS scripts relied on
missing operators and errored). Thus, not only will an out-
dated browser impact taint tracking, it inhibits the analysis of
modern websites.

Chromium

Extensions

Analysis
Results

Inline
Script

Record

Replay

Researcher
Annotations

V8 Blink

Extension
Bindings

<div class="ppvx_text--body”
data-taint=“1”>

<div class="fiDetails-content">
North Avenue</div>

<div class="fiDetails-content">
Atlanta, GA 30332</div></div>

Test Site

Figure 1: Overview of Arcanum. Researchers identify target
sites and annotate privacy-sensitive data on web pages. Ar-
canum then replays content across all extensions in a given
dataset, using its instrumented version of Chromium, produc-
ing detailed taint source and sink logs per extension and site.

3 System Design

We now present Arcanum, a browser framework that utilizes
dynamic taint tracking to detect and analyze the usage of
privacy-sensitive data by browser extensions. Figure 1 shows
an overview of Arcanum’s architecture.

Arcanum allows researchers to understand if specific el-
ements of a web page’s content or meta-data are processed,
stored, or exfiltrated by extensions. Arcanum provides a vari-
ety of privacy-sensitive taint sources (Section 3.1) and sinks
(Section 3.3), and monitors the flow of tainted data through
its taint propagation engine (Section 3.2), including in the ex-
tension’s context. Unique to Arcanum is its support for taint-
ing sensitive user data within web pages, through researcher-
provided annotations. To evaluate extensions at scale, Ar-
canum records and replays annotated webpages across all
browser extensions (Section 3.5), revealing how data is pro-
cessed and flows.

3.1 Taint Sources

To ensure the comprehensiveness of Arcanum in tracking
data flows containing sensitive information, we surveyed all
Chrome Extension APIs [6] and Web APIs [19], and list taint
sources supported by Arcanum in Table 1. Note that there are
other Chrome Extension/Web APIs supported by Arcanum in
the taint propagation process but are not taint sources, such
as Web Crypto APIs, which will be discussed in Section 3.2.
Overall, our sources can be categorized into three groups:
• Chrome APIs: Extensions can utilize Chrome Extension

APIs to directly query for privacy-sensitive information
(e.g., Chrome.history.getVisits) or dispatch events to
notify the extension when specific browser actions are
triggered and subsequently return privacy-sensitive data

(e.g., Chrome.tabs.onUpdate). Arcanum includes the
Chrome.cookies API as a taint source that can query web-
sites’ cookies, which was not considered in prior work.
Arcanum also supports information fields that only exist in
newer Chrome versions (e.g., “PendingUrl”, “initiator”, and
“ip”). We also further consider the “title” field for the history
and tabs API, which can include sensitive information.

• Web APIs: While prior work [4] did not recognize any Web
APIs as taint sources, extensions can leverage Web APIs
to retrieve privacy-sensitive information. Arcanum thus
supports the History, Geolocation and User-Agent APIs.

• DOM Elements: Extensions can access users’ private in-
formation through the DOM interface. For example, the
DOM property document.title gives the title of the page,
which is supported by Arcanum. Notably, Arcanum allows
researchers to mark custom DOM elements that contain sen-
sitive information as taint sources (discussed subsequently).

Notably, while prior work focused on browser APIs as taint
sources [3, 4, 68], Arcanum expands beyond prior work to
also encapsulate webpage-specific taint sources. Arcanum
is designed to also be easily extensible, should additional
taint sources be desired in the future (e.g., new browser APIs
or other site-specific tainted data). This is accomplished by
Arcanum separately handling native data flows in Chrome’s
extension bindings system (Section 3.2).
DOM Tainting. Arcanum allows researchers to generate cus-
tom annotations to taint specific DOM elements on a per-web
page basis, enabling investigation of exactly what information
is consumed by extensions. This flexibility allows researchers
to focus on the parts of the web page that are sensitive, and
ignore portions that are not, e.g., we can taint the content of
emails, while ignoring colors or themes (common extension
behaviors). This custom annotation method is a trade-off;
each web page we are interested in must be annotated, but
in exchange we get fine-grained information about extension
behavior, and reduced false positives of privacy concerns.

For each target web page, researchers identify DOM el-
ements that include sensitive information and label them
as taint sources via adding a “data-taint” attribute. The
HTML data-* attribute [18] can be used to store custom
data private to the page or application. We designate these ele-
ment nodes as labeled nodes. We modified Blink so that when
the “data-taint” attribute of an element node is set, Blink
traverses all of its descendant nodes, marking the content of
all text and CDATA nodes as tainted.

We briefly note that our taint annotation strategy is resistant
to evasion. Once an element is tainted (i.e., by a researcher’s
annotations), its taint status is maintained by the browser
internals and cannot be modified via JavaScript (i.e., extension
content scripts), even if removing the “data-taint” attribute
later on. In Section 3.4, we discuss our method for tainting
elements prior to extension content script execution.
Accessing Tainted DOM Elements. Extensions can use dif-
ferent HTML element properties to retrieve the data content of

Category Taint Source Permission

DOM custom elements innerText/outerText, innerHTML/outerHTML, textContent, wholeText, Content script injection
nodeValue, jQuery text(), etc.

DOM location Href, Protocol, Host, Hostname, Pathname, Search, Origin, Hash Content script injection

DOM property URL, Domain, Title, Cookie Content script injection

DOM Input Element <input type=“password”> Content script injection

Chrome.history API URL, Title “history” permission
Chrome.tabs API URL, PendingUrl, Title “tabs” permission
Chrome.cookies API Domain, Path, Name, Value “cookies” permission
Chrome.webNavigation API URL “webNavigation” permission
Chrome.webRequest API URL, Initiator, IP address, Cookies in request/response headers “webRequest” permission

History Web API URL -
Geolocation Web API Position -
User-Agent Client Hints Brands, Platform, Architecture, Model, PlatformVersion, UaFullVersion -

Table 1: Taint sources supported by Arcanum. Sources in bold have not been considered by prior work [4].

a node within the DOM, such as “innerText”, “innerHTML”
and “NodeValue”. As the innerText/outerText property
recursively collects text nodes from all child elements within
the specified element, we flag the resulting value as tainted
if any of the recursively retrieved text nodes are tainted.
A similar rule applies to innerHTML/outerHTML; we also
mark the return value of innerHTML/outerHTML as tainted
if any descendant nodes or ancestor nodes of the retrieved
node have the “data-taint” attribute. Arcanum handles the
wholeText and TextContent properties in the same way as
innerText/outerText. The nodeValue property (used by
the common jQuery text() method) returns the content of a
text node (or content of the CDATA section of a CDATA node),
and is tainted if the text node is tainted. We also separately
taint the value property of HTMLTextAreaElement and the
text property of HTMLTitleElement. We further notice that
Blink uses the StringBuilder class to aggregate texts within
various HTML elements, such as the title attribute
and the text attribute of HTMLOptionElement. Thus, we
modify the StringBuilder class so that whenever a tainted
string is appended to a StringBuilder object, we mark the
aggregated return values as tainted (i.e., the return value of
the StringBuilder.ToString() function).

3.2 Taint Propagation Engine

To track the flow of tainted information across the exten-
sion’s JS execution, Arcanum instruments the V8 engine
that Chromium uses to parse and execute JS. V8 parses JS
source code into an abstract syntax tree (AST). Arcanum first
marks AST nodes as tainted when the corresponding concrete
runtime objects (e.g., string objects) are tainted. Then for
each individual JS function that is in the Extension context
(discussed below), a data flow graph (DFG) is constructed
from the AST to process taint propagation that starts from

the tainted AST nodes. When this propagation occurs, the
corresponding runtime objects linked to these tainted AST
nodes are also marked as tainted. This method is consistent
with prior work [4], although implemented on the modern
Chromium V8 engine. To our knowledge, there are currently
no plans for major architectural changes to the V8 engine,
indicating that Arcanum should be applicable for the foresee-
able future.

3.2.1 Tracking Extension Context

Arcanum exclusively monitors JS execution within the Exten-
sion context, which distinguishes it from scripts initiated by
the website page itself. V8 uses a Context object to represent
a JS execution environment, enabling concurrent execution of
distinct JS applications within a single V8 instance. For MV2
extensions, this Context object can be used to identify JS
code that is from the extension’s content script or background
page. We use this Context object to identify and restrict taint
propagation to JS code that belongs to an extension, similar
to prior work [4, 17].

However, this strategy does not fully translate to MV3,
where service workers replace extension background pages.
While the Context of content scripts and background scripts
in extensions are initiated by Blink, service workers are man-
aged by Chrome’s extension bindings system. For each ex-
tension, the bindings system installs extension API bindings
before a service worker starts evaluating its top-level script.
Arcanum modifies the installation function to mark the service
worker Context before any service worker starts execution,
allowing us to also identify service worker JS code.

3.2.2 JavaScript Data Flows

We first discuss how Arcanum tracks the flow of tainted data
purely within JS execution.

Explicit Flows. While the previous Full-codegen compiler
in V8 directly generated unoptimized machine code, the Igni-
tion interpreter generates V8 bytecode from the AST. These
bytecode instructions are then interpreted by the TurboFan
compiler to generate optimized machine code. Arcanum mod-
ifies the Ignition interpreter in V8 to construct the DFG and
propagate taint status for AST nodes and runtime objects. The
V8 bytecode instructions can be broadly categorized into three
categories: 1) assignment operations, 2) arithmetic and logic
operations, and 3) control dependencies. Arcanum handles as-
signment operations by tainting the left-hand side (LHS) if the
right-hand side (RHS) of the assignment is tainted. Addition-
ally, when the RHS contains arithmetic and logic operations,
Arcanum considers the expression results as tainted if any
of the arguments within the expression are tainted. Lastly, in
the context of control dependencies (such as switch-case,
if-else, and do-while loops), if any arguments within the
conditional expression of a control structure are tainted, the
LHS in every assignment operation contained within the con-
trol structure is also tainted [4,17,65]. Note that Arcanum sup-
ports all current JS operators, including those introduced after
prior Chromium-based tainting systems [4] (e.g., await).
Implicit Flows. In addition to explicit data flows, we must
also consider implicit data flows in JS. For example, as we
construct the DFG at a per-function granularity, we must also
ensure the propagation of taint status across function calls. V8
treats the JS global scope as an anonymous function. Arcanum
taints function return values if the return statement expression
is tainted via propagation during explicit data flows (within
a function). As these tainted function return values reside on
the RHS, they subsequently propagate to the LHS through
assignment operations. Literal creation for compound types
is another scenario that involves implicit JS data flows. For
instance, when an extension creates an array literal: a = [x,
x+“pad”, “str”] with a tainted string x, it is equivalent to
assigning x to a[0] and x+“pad” to a[1]. Thus, Arcanum
propagates taint to a[0] and a[1], but not a[2].

3.2.3 Native Code Data Flows

As discuss in Section 2.3, prior Chromium-based tainting sys-
tems [4] predate modern Chromium’s migration of many func-
tions previously implemented in JS to native code. In earlier
Chromium versions, many browser internal functions were
implemented in JS, and thus taint propagation even through
browser internal JS was directly handled by the same process
propagating taint for explicit JS flows, as described in Sec-
tion 3.2.2. However, with modern Chromium’s migration of
these functions to native code, Arcanum requires a distinct ap-
proach that makes all possible data flow paths through native
code taint-aware.
Built-in Functions. In V8, built-ins implement core
functions executed at runtime. The prototypes of JS
objects (e.g., String.prototype.substring() and

Array.prototype.join()) are implemented as built-ins,
which must be accounted for during taint propagation. In
earlier V8 versions, built-ins were widely implemented in
JS. However, modern V8 has largely migrated built-ins to
CodeStubAssembler, Torque, and native C++ code for per-
formance and reliability reasons. V8’s CodeStubAssembler
(CSA) [61] is a custom assembler language that provides
low-level functionality, while Torque is a wrapper over
CSA that simplifies V8 code development. A built-in may
involve Torque, CodeStubAssembler, and C++ functions,
which requires Arcanum to properly propagate taint across
all involved operations. For example, the Torque built-in
String.prototype.slice() uses a CSA built-in for string
addition, which further invokes a C++ runtime function for
handling string addition.

We surveyed all built-ins [63], and Arcanum modifies the
functions to propagate taint, including those associated with
String, Array, RegExp, JSON, ArrayBuffer, and TypedArray
objects. Note that we exclude prototypes that do not involve
taint propagation, such as String.prototype.indexOf().
Extension Bindings System. The extension bindings system
supports browser APIs, including all Extension APIs, which
are critical for taint tracking. In early Chromium versions, this
system was implemented primarily in JS [14], due to ease of
development and the limited interactions between Blink and
V8. However, the modern bindings system has transitioned to
natively-implemented bindings. Arcanum modifies the native
implementation to handle tainted data flows, and also supports
MV3 features in the bindings system (described below).

Promises. In MV2, Extension API methods can input a
callback function to process results, and we directly taint any
privacy-sensitive information passed to the callback function
in the extension bindings system. However in MV3, exten-
sion API methods can either use callback functions or return
a Promise, where a Promise is an object that serves as a proxy
or placeholder for the value eventually returned by the asyn-
chronous method. We cannot directly taint privacy-sensitive
information when Promises are created in the bindings system,
and instead our implementation dynamically taints informa-
tion in V8 when the Promise is finally “fulfilled” at runtime.

ExecuteScript. Arcanum also propagates taint when a JS
function is compiled from a tainted string. In MV2, the
tainted string may be compiled by the eval function and the
tabs.executeScript Chrome API. Arcanum taints all LHS
targets of assignment expressions if the code string is tainted,
in a manner akin to [65]. MV3 additionally introduces the
chrome.scripting.executeScript API. Unlike the tabs
API, which solely accepts static string codes or files as input,
this new API allows the direct inclusion of JS functions and as-
sociated arguments to be passed to the included functions. We
do not address the scenario in which the injected scripts are
sourced from files, as we do not expect a tainted value to be
embedded in a static JS script and subsequently injected pro-
grammatically into a web page. In the case of injected scripts

containing tainted strings, Arcanum handles them similarly
as with eval. For JS function injection, Arcanum taints all
LHS targets of assignment expressions including the function
return values, if any specified input arguments are tainted.
Binary Data Buffers. Another important native data flow
that Arcanum augments beyond prior work is handling binary
data buffers. Previous work was constrained to taint propa-
gation only among strings, handling string-to-string [24, 25]
and/or from string to an object containing a string (e.g., an
array of strings) [4, 17, 65]. However, extensions may convert
strings to and from binary data buffers, such as when encod-
ing or encrypting strings, and web request APIs (e.g., Fetch)
support sending binary data buffers.

Such string encoding methods are not implemented by
V8; rather, they are components of the Web APIs handled
by Blink. Arcanum modifies Blink to propagate taint status
for binary data buffers as well. Specifically, Arcanum tracks
propagation between: 1) strings to binary data buffers, such
as with TextEncoder.encode(), 2) binary data buffers to
strings, such as TextEncoder.decode(), and 3) between bi-
nary data buffers, like with SubtleCrypto.encrypt().

In Blink, a raw binary data buffer is represented using
an ArrayBuffer object. Additionally, an ArrayBufferView
object serves as a higher-level abstraction that offers a struc-
tured view on an ArrayBuffer, providing methods for ma-
nipulating the binary data contained within the ArrayBuffer.
In contrast to Blink strings, which are exposed as the string
type in V8, objects like ArrayBuffer and ArrayBufferView
inherit from the ScriptWrappable class in Blink, which
serves to specify type information when these objects are
exposed in V8. Thus, in Arcanum, we address the conver-
sions from ScriptWrappable objects to V8 objects and
vice versa, specifically when the types are ArrayBuffer and
ArrayBufferView. Since ArrayBufferView objects are ex-
posed as TypedArray in JS, we modified all built-in func-
tions that implement the prototypes of ArrayBuffer and
TypedArray to ensure the correct propagation of taint, which
include prototypes like ArrayBuffer.prototype.slice()
and TypedArray.prototype.subarray().

Arcanum propagates the tainted positional information
for all string-to-string operations, but also between binary
data buffers as well. For cryptographic functions, such as
SubtleCrypto.encrypt(), we fundamentally cannot track
which output bytes depend on tainted input bytes. Thus, Ar-
canum marks all bytes in the output binary data buffer of
cryptographic functions as tainted if the input is tainted. We
handle Base64 encoding similarly.

3.3 Taint Sinks
Arcanum tracks if tainted data propagates to taint sinks, where
it is potentially exfiltrated by an extension. These sinks,
as shown in Table 2, can be grouped into: web requests,
extension-injected DOM elements, and persistent storage.

Category Taint Sink

Web Request Fetch
Web Request XMLHttpRequest
Web Request WebSocket
Web Request Beacon
DOM DOM elements injection
Storage Chrome.storage API
Storage Web Storage API
Storage IndexDB

Table 2: Taint sinks supported by Arcanum. Sinks in bold
have not been considered by prior work [4].

• Web Requests. Extensions can leverage web request APIs
to transmit sensitive user information externally. Arcanum
tracks whether any tainted value is sent as any part of a net-
work request, including request headers, URL parameters,
or request bodies. These web request APIs include XML-
HttpRequest, WebSocket, Fetch and Beacon. Prior work [4]
was limited to taint tracking for text in the request body;
Arcanum extends its support to cover URLSearchParams,
FormData, ArrayBuffer, and ArrayBufferView as request
body formats (as discussed in Section 3.2). We also note
that prior work [4] did not account for Fetch as a taint sink,
which has been supported since Chrome 42 in 2015. Also
now in MV3, XMLHttpRequest can no longer be invoked
from a service worker (the background script) [8], forcing
modern extensions to migrate from XMLHttpRequest to
Fetch. Extending beyond prior work, we also include the
Beacon API that is used to send an asynchronous request
to a server, which could also be a data exfiltration channel.

• Extension-injected DOM Elements. Similar to prior
work [4], Arcanum inspects DOM elements injected by
extensions, in order to determine if their src attribute val-
ues contain tainted values. As browsers automatically fetch
content from the src attribute specified URL, extensions
can embed sensitive data within the URL to leak data.

• Persistent Storage. Extensions can locally store privacy-
sensitive information. This presents two potential privacy
threats: 1) an extension could potentially exfiltrate from
storage immediately, or could do so at some later time; 2)
buggy or poorly implemented extensions may be vulnerable
to attack by websites, and any information they store lo-
cally could be exfiltrated by those websites [20]. Arcanum
inspects if any tainted values are stored by extensions, ac-
counting for Chrome.storage, Web storage, and IndexDB
(which was not considered by prior work).

3.4 Delayed Content Script Injection
Tainted elements on a web page may not load immediately
(such as if dynamically loaded). To maximize the likelihood
that we detect an extension’s access to tainted data, we con-

figure Chromium to delay extension execution until after web
pages (and tainted elements) are fully loaded. To do so, we
configure the content script run-at parameter [9] in Blink
that controls when an extension’s content script is injected
into a page (regardless of static or dynamic injection).

We enforce that the run-at parameter is always set to
document_idle even if an extension configuration speci-
fies otherwise, such as document_start or document_end.
Blink currently reaches the idle status when the earliest of
two states arises: 1) after fully loading the document and all
subresources, or 2) 200 milliseconds after fully loading the
document (but some subresources may still be loading). We
introduce a forced delay after Blink reaches the idle status,
specific to the load times of a target page. We configure this
delay as an Arcanum input parameter, allowing it to be tuned
without rebuilding Chromium. Thus, a user can configure this
delay to ensure that a target web page will fully load before an
extension injects its content script, such as if the initial page
load involves some animation (e.g., on Gmail and LinkedIn).

3.5 Web Page Replay
When evaluating extension behavior on a web page, we opt to
record that web page and replay it across the extensions eval-
uated, using WprGo [2]. Popular websites are known to ac-
tively combat automated activity on their pages [26,27]. Thus,
frequent page load activities likely lead to forced account lo-
gout or account suspension/termination. Furthermore, we ob-
served that some sites periodically mutate to combat automa-
tion/scraping, such as by randomizing or periodically chang-
ing HTML element IDs or CSS class names. We found that
Facebook pages use randomly-generated CSS class names
that change every few weeks, while DOM element IDs in
LinkedIn pages change for each page load. Using replayed
web pages allows for consistent evaluation of these pages
over time and over extensions. In addition, replaying web
pages reduces the load on investigated websites (as discussed
further in Section 4.1). While we utilize replayed pages both
for our system’s design and subsequent evaluation, we note
that Arcanum itself does not require replay; Arcanum could
be run on live web pages.

4 Evaluation

We now describe our deployment of Arcanum across all
Chrome extensions and seven websites rich with user data.
Compared to prior work [4], our evaluation is not only for
extensions on modern Chromium, but also provides more
comprehensive and finer-grained analysis of data exfiltration.

4.1 Experimental Setup

Implementation. Our prototype implementation of Arcanum
is built on Chromium Browser version 108.0.5359.71 (re-

leased in November, 2022) [5]. We chose this specific version
as it supports both MV2 and MV3 extensions, whereas the
latest versions of Chromium cannot run MV2 extensions [13].
While the Chrome Web Store stopped accepting new MV2 ex-
tensions, we found that nearly half of the existing extensions
are still using MV2 (Section 2.3). This Chromium version
and Arcanum fully support modern MV3 extensions (as of
March 2024), and we have reviewed browser changes since
this version and did not find any changes that would impact
our taint sources, sinks, and propagation.

Target Sites. Previously, individual cases of browser ex-
tensions collecting user data from social network sites have
been documented [15, 16]. Based on these observations and
prior work, we experiment with seven popular sites rich with
user content. The sites and specific pages we explore are
Amazon (profile/address information), Facebook (wall/post
information), Gmail (inbox), Instagram (profile information),
LinkedIn (profile information), Outlook (inbox), and PayPal
(credit card information). Table 3 lists the details of tainted in-
formation on each page. These sites cover social networking,
email services, e-commerce, and financial services.

For each site, we manually created test accounts populated
with fictitious but realistic data, providing a wealth of infor-
mation that an extension may potentially access. We manually
identified the HTML elements containing the user data on
each web page. When recording and replaying a page (Sec-
tion 3.5), we inject our own custom JS script that immediately
taints the user data HTML elements (with the data-taint at-
tribute, Section 3.1). We taint elements with JS as we observed
that many elements are dynamically constructed, and thus
cannot be directly tainted in the replayed HTML resources
(without modifying web page JS itself, a significantly more
brittle and challenging task, especially with JS minification
and obfuscation). Note that our extension execution delay
(Section 3.4) is configured so that all elements are tainted
prior to extension content script injection.

Collecting Extensions. In August 2023, we downloaded all
Chrome extensions available in the Chrome Web Store, as
listed in the Store’s sitemap [7]. After filtering out Themes
and Chrome OS Apps, we were able to successfully down-
load 114,714 extensions. To ensure the extensions were still
functional, we automated an unmodified Chromium browser
(using Selenium WebDriver [29]) and attempted to install
each extension. For 1,615 (1.4%) of extensions, we encoun-
tered installation errors, primarily due to development bugs
(e.g., missing resources) or platform compatibility issues
(e.g., being classified as an extension in the Web Store but
is actually a Chrome OS App). We exclude these extensions,
leaving us with 113,099 extensions to evaluate. We note that
all population data given is as of this August 2023 collection.

Running Arcanum. We run each instance of Arcanum
in a Docker container on Ubuntu 18.04 (allocated 4 CPUs
and 10GB RAM), affording parallel analysis across many

Target page URL Title Tainted information on the page

Amazon-Address - - Name, Physical address (including address and phone number)

Facebook-Profile User ID - Name, Profile, Friend, Post (including Post content, Location, Comments)

Gmail-Inbox - Email address Name, Email address, Last account activity timestamp,
Email content (including Email content, Title, Sender, Timestamp)

Instagram-Profile User ID User ID, User Name Name, Profile, Image sources and captions (in alt attributes)

LinkedIn-Profile User ID User Name Name, Profile, Friend (“People you may know”), Message

Outlook-Inbox - User Name Name, Email address, Email content (including Email content, Title, Sender, Timestamp)

PayPal-Card Payment ID - PayPal balance, Credit card information (Last 4 digits of the card number, Card issuance institution,
Card expiration date), Physical (Billing) address

Table 3: Tainted information on each target page, and privacy-sensitive information within page URLs and titles.

containers. We use Selenium WebDriver [29] to automate
Arcanum browser navigation and install extensions. For
each extension to be tested on a target page, we launch a
fresh instance of our modified Chromium in headful mode
(with a fresh user data directory), with the extension pre-
installed using the -load-extension parameter in Selenium.
The Chromium browser is run with an Xvfb [69] virtual
display with 1920x1080 resolution, allowing the complete
loading of sensitive DOM elements. We use Chromium’s
-host-resolver-rules command line argument to redirect
network requests to our replay proxy to replay web resources
(Section 3.5). For each extension, we execute it for 60 seconds
after the web page has completely loaded. During evaluation,
we do not interact with the pages or extensions (e.g., we do not
click buttons on the page or deliberately trigger behaviors).

Note that in this evaluation, we cannot definitively ascer-
tain the intent behind extensions collecting user data. In many
cases, the purpose may be benign. Nonetheless, any exten-
sions detected by Arcanum during our experiment will have
automatically gathered sensitive user information after simply
installing the extension and visiting a page. Furthermore, even
in benign cases, exfiltrating sensitive user data is a privacy
risk as the data may be transmitted or stored insecurely, shared
with external parties, or compromised in the future.
Taint Log Processing. Arcanum produces detailed taint prop-
agation logs for each extension and web page, documenting
what taint sources are accessed, a stack trace of taint prop-
agation, and the taint sinks that are eventually reached. In
detail, for a propagation step, Arcanum logs the source JS
that propagates the taint status to the destination JS object,
along with the JS function and source code position where
propagation is triggered. This allows us to trace the path from
taint sinks back to their respective taint sources and analyze
the privacy-sensitive information accessed by each flagged
extension (shortly discuss in Section 4.4), even when taint
propagation involves encoding and truncation.

Since Arcanum separately handles native data flows in
Blink, it allows us to log the exact methods and positions
through which a taint source is accessed (for instance, through
the invocation of the chrome.Cookies API), as well as the

precise data format that a taint sink is reached (such as a
tainted ArrayBuffer object via a Fetch request). We also fur-
ther modify Blink to enable Arcanum to log particular taint
propagation flows we wish to inspect, such as those involving
text encoding operations (discuss later in Section 4.6).

We programmatically process logs to trace back from taint
sinks reached to the original taint sources. During our log
processing, we observed two situations that could result in
false positives. First, when an extension is installed, it opens
its own web page (e.g., a welcome page or a login page for
the website associated with the extension) and accesses a taint
source (in this case, it must be a Chrome or web API) that
eventually reaches a taint sink. Thus, the tainted information
is not directly related to our target web page. Second, when
our taint propagation stack trace does not involve extension
code or functions, thus indicating that it was not extension
behavior that resulted in taint propagation. This second case
arises only from our current handling of URLSearchParams
in Arcanum now. We filter out both situations when analyzing
taint data flows, which affected 232 extensions. Note that we
filter data flows only, but if an extension only contains these
errant data flows, it is not flagged.

Ethical Considerations. As our study involves large-scale
data collection and analysis, we discuss the ethical considera-
tions for each component of this study.

Target Sites. As we analyze numerous extensions on the
authenticated web pages of target sites, continuously revisiting
these pages on the live website can induce load. Thus, by only
visiting the pages once and replaying the captured response,
we minimize additional load on a site regardless of the number
of extensions evaluated. Furthermore, we use a test account
on each site populated with fictitious data, so no real user data
or accounts are involved.

Downloading Extensions. We downloaded extensions from
the Chrome Web Store serially to rate-limit our requests.

Disclosure. We have shared our results, including specific
Chrome extensions found, with Google and all target sites.
During the disclosure process, we observed that only Ama-
zon specifically reminds users about extensions’ privacy risks

Total Amazon Facebook Gmail Instagram LinkedIn Outlook Paypal

Extensions 3,028 (2.68%) 2,048 (1.81%) 1,730 (1.53%) 2,198 (1.94%) 2,067 (1.83%) 2,088 (1.85%) 1,964 (1.74%) 1,943 (1.70%)

Users 144.0M 89.6M 66.3M 86.1M 91.6M 95.7M 85.7M 83.4M

Table 4: Overview of the number of extensions Arcanum identified as having sensitive taint sources flow to an exfiltration or
storage taint sink, broken out by website. In total, 113,099 extensions were analyzed. The aggregate number of extension users is
also given, however due to potential user overlap, this user count must be taken as an upper bound.

Rank Extension Name #Users Taint Sink(s) Details Encoded?

1 Honey: Automatic Coupons & Rewards [47] 10M+ fetch, storage URL, Timestamp No
2 Online Security [52] 10M+ fetch URL No
3 Avast SafePrice [34] 10M+ XMLHttpRequest URL Yes
4 Capital One Shopping [38] 8M+ fetch, XMLHttpRequest, storage, DOM URL, Title, Device Partial
5 Touch VPN - Secure and Unlimited VPN Proxy [57] 8M+ storage URL, Country Partial
6 Avira Browser Safety [35] 6M+ XMLHttpRequest URL No
7 Hola VPN - The Website Unblocker [46] 6M+ XMLHttpRequest, storage URL No
8 Avira Safe Shopping [36] 5M+ XMLHttpRequest URL No
9 NordVPN - VPN Proxy for Privacy and Security [51] 3M+ fetch, storage Domain, Timestamp No
10 QuillBot: AI Grammar and Writing Tool [54] 3M+ fetch, storage Device Yes

Table 5: Top 10 extensions, by popularity, flagged across all target sites. Extensions in bold were also identified in prior work [4].

on their customer service page1, and we identified that sites
broadly lack contacts for reporting such privacy-related is-
sues. Thus, in addition to any privacy-related contacts found,
we engaged via vulnerability disclosure channels, technical
issue reporting, abuse contacts, and personal connections. To
date, we have not yet observed corrective actions taken, but
we recognize that there may be limited options for such ac-
tions (especially by sites), and any actions would need to be
carefully considered and executed.

4.2 Results Overview

Table 4 presents our aggregate results. We find that across our
seven target websites, 3,028 (2.68%) extensions access a taint
source (i.e., sensitive user data) and directly propagate this
information to a taint sink (e.g., outbound network request).
The aggregate installation base of these extensions is 144M
users, which serves as an upper bound on the total user impact,
as a single user may install multiple of these extensions.

In total, there are 1,338 extensions (44.2% of flagged exten-
sions) displaying such activity across all of our target sites. A
manual investigation identified common libraries being used
in many such overlapping cases. For example, 149 extensions
use the Sentry Performance Monitoring Library [30], which
collects the URL, device, and user agent on every page visited
and sends the data to Sentry’s servers. Sentry offers other
performance monitoring capabilities, and in one instance [55]
we observed the extension utilizing their library to send spe-
cific web page content containing sensitive user data to the

1https://web.archive.org/web/20231126193227/https:
//www.amazon.com/gp/help/customer/display.html?nodeId=
G8V457F4P763VW8D

Sentry servers. A previous report [66] identified libraries
compromising the privacy of browser extensions, but this is a
demonstration of library impact on website content.

These results indicate that extensions pose a significant pri-
vacy risk for users, including their sensitive data within web
pages. Also, the majority of flagged extensions only operated
on certain sites, demonstrating more targeted activity. We
note that even if the data collection is benign and necessary
for legitimate extension functionality, it introduces privacy
risks as sensitive user data is transmitted and stored by a third
party (potentially without user awareness, discuss later in Sec-
tion 4.10), which may further share the data or unintentionally
leak it during a data breach.

4.3 Extension Popularity and User Impact

Table 5 lists the top 10 extensions flagged by Arcanum with
the most users, what information is accessed, where it flows,
and if it is encoded during propagation. We find extensions
with millions of users, accessing URL, timestamp, page title,
and device information and sending the data over network
requests or storing locally (which can still afford data ex-
filtration or privacy risks, as discussed in Section 3.3). We
also find that 4 of the 10 extensions apply some data encod-
ing during taint propagation, justifying Arcanum’s design for
propagating taint for binary data buffers (Section 3.2).

Figure 2 presents CDFs of extension user installs for our
full Chrome extension population, the subset of Chrome ex-
tensions that do inject content scripts, and extensions flagged
by Arcanum. We see that broadly, the extensions detected
by Arcanum are substantially more popular than the general
extension population, even constrained to those injecting con-

https://web.archive.org/web/20231126193227/https://www.amazon.com/gp/help/customer/display.html?nodeId=G8V457F4P763VW8D
https://web.archive.org/web/20231126193227/https://www.amazon.com/gp/help/customer/display.html?nodeId=G8V457F4P763VW8D
https://web.archive.org/web/20231126193227/https://www.amazon.com/gp/help/customer/display.html?nodeId=G8V457F4P763VW8D

Category Total Amazon Facebook Gmail Instagram LinkedIn Outlook PayPal

So
ur

ce
s

Domain 463 (15.3%) 543 (26.5%) 308 (17.8%) 575 (26.2%) 395 (19.1%) 304 (14.6%) 435 (22.1%) 435 (22.4%)
URL 1,551 (51.2%) 947 (46.2%) 902 (52.1%) 1,014 (46.1%) 1,112 (53.8%) 1,175 (56.2%) 971 (49.4%) 984 (50.6%)
Identification 375 (12.4%) 248 (12.1%) 177 (10.2%) 223 (10.1%) 217 (10.5%) 215 (10.3%) 235 (12.0%) 206 (10.6%)
Title 251 (8.3%) 149 (7.3%) 184 (10.6%) 193 (8.8%) 161 (7.8%) 184 (8.8%) 186 (9.5%) 164 (8.4%)
Page Content 202 (6.7%) 109 (5.3%) 124 (7.2%) 127 (5.8%) 133 (6.4%) 154 (7.4%) 105 (5.3%) 122 (6.3%)
Uncategorized 186 (6.1%) 52 (2.5%) 35 (2.0%) 66 (3.0%) 49 (2.4%) 56 (2.7%) 34 (1.7%) 32 (1.6%)

Si
nk

s

Web Requests 2064 (68.1%) 1,405 (68.6%) 1,198 (69.2%) 1,613 (73.4%) 1,478 (71.5%) 1448 (69.3%) 1,361 (69.3%) 1,353 (69.7%)
Storage 362 (12.0%) 318 (15.6%) 249 (14.4%) 312 (14.2%) 306 (14.8%) 349 (16.7%) 296 (15.0%) 312 (16.0%)
DOM 133 (4.4%) 132 (6.4%) 60 (3.5%) 80 (3.6%) 87 (4.2%) 113 (5.5%) 97 (5.0%) 113 (5.8%)
Mixed 469 (15.5%) 193 (9.4%) 223 (12.9%) 193 (8.8%) 196 (9.5%) 178 (8.5%) 211 (10.7%) 165 (8.5%)

Table 6: Distribution of privacy-sensitive information that flagged extensions are exfiltrating and the exfiltration methods. If an
extension engages with multiple levels of sensitive information, we place it into the most severe category. For instance, if an
extension transmits both URLs and page content to a third party, we exclusively categorize it at the page content level.

100 101 102 103 104 105 106 107

The Number of Extension Users

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

All Extensions

Extensions with Content Scripts

Flagged Extensions

Figure 2: CDFs of extension user populations, considering
the extensions flagged by Arcanum (red), the total population
of extensions in the Web Store (blue), and the population of
extensions that utilize Content Scripts (green). Extensions
that Arcanum flagged are significantly more popular than the
overall extension population.

tent scripts. For detected extensions, 15% have at least 10K
users and 5% have over 100K. Thus, the extensions accessing
and exfiltrating user data have an out-sized impact.

4.4 Source and Sink Distributions
Table 6 provides a detailed breakdown of how many exten-
sions activated specific taint sources and sinks, across each
target web page. We categorize accessed privacy-sensitive
information (sources) into five levels:
• Domain: Extensions that only exfiltrate the domain name of

the pages that users visit, excluding other URL components.
• URL: Extensions that exfiltrate additional URL compo-

nents (or the full URL) beyond the domain name may ex-
pose sensitive information. For instance, user names/IDs are
included in the Facebook, Instagram, and LinkedIn URLs,
and payment IDs are in some Paypal URLs.

• Identification: Extensions that exfiltrate any user identifi-
cation information, such as IP addresses and device details.

• Document Title: Extensions that exfiltrate information

Amazon
Facebook Gmail

Instagram
Outlook

Linkedin Paypal

Target Site

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o

Fetch

XMLHttpRequest

WebSocket

Beacon

Storage

DOM

Mixed

Figure 3: Distribution of the specific sink used by flagged
extensions across target sites. “Mixed” represents that flagged
extensions reached multiple specific sinks (e.g., “Mixed” ex-
tensions include those reaching both Fetch and Storage sinks,
but do not include those only reaching Fetch sinks).

from the DOM title. Titles can be more sensitive than URLs,
as they can contain confidential information, such as a user’s
email address on Gmail pages.

• Page Content: Extensions that scrape sensitive page con-
tent, which may encompass private information, such as a
user’s physical address and credit card details (Section 4.5).

Of flagged extensions, more than 78.6% exfiltrate privacy-
sensitive information beyond just the domain name, with
URL-level data being the most common level (51.2%). The
number of flagged extensions decreases as the sensitivity level
increases, which is consistent across all tested pages. We iden-
tified 202 extensions leaking the contents of web pages, which
has not been previously detected at scale. Of these, 90 exten-
sions are flagged accessing page content across all targets.

For 186 (6.1%) flagged extensions, the specific source con-
tent could not be programmatically checked, as we were
unable to trace back from taint sinks to their sources.
This limitation is due to an implementation issue, and
arose when extensions propagate taint using built-in func-
tions in V8, which are currently implemented in Torque

Content Type Extensions Max Extension # Users

Name 130 80k+ [50]
Profile 124 300k+ [42]
Email Address 73 10k+ [40]
Location 63 30k+ [43]
Friend 56 30k+ [53]
Credit Card 49 10k+ [40]
Post 49 3k+ [49]
Email Content 46 10k+ [40]
Physical Address 46 10k+ [40]
Comments 39 3k+ [49]
Whole HTML 30 1k+ [41]
Image alt Attribute 1 205 [55]

Total 202 300k+ [42]

Table 7: Breakdown of privacy-sensitive information (sources)
from within web pages that are exfiltrated by flagged exten-
sions, ordered by the number of flagged extensions. The given
number of users is the highest user count of an extension
flagged exfiltrating a given content type.

(e.g., string.prototype.slice). Our initial Arcanum im-
plementation did not properly log such propagation in Torque
(but it propagates taint correctly). Meanwhile, the sink objects
recorded in the logs may manifest as a Map or JS Array, and
identifying their sources directly necessitates manual efforts.
We note these extensions as “Uncategorized”.

Across all target sites, we observe a consistent pattern that
taint sinks are primarily web requests (68.1%). Figure 3
provides a more specific sink breakdown beyond the cate-
gories of Table 6. Fetch and XMLHttpRequest are the two
most prominent sinks that flagged extensions use to exfil-
trate privacy-sensitive information. Approximately 15% of
extensions reach multiple specific taint sinks. Among these
extensions, 87% reach two specific sinks, while 9.3% reach
three sinks, and very few extend beyond three sinks (averag-
ing across all target sites). The most common combination
among these extensions is Fetch and Storage, followed by
Fetch and XMLHttpRequest.

4.5 Web Page Content

We now explore extensions that Arcanum flagged as leaking
web page content. Table 7 provides a breakdown of the spe-
cific sensitive page content types automatically scraped by
extensions, how many extensions scraped each type, and the
maximum number of affected users of a flagged extension in
that category. In total, 202 extensions exfiltrated one of these
sensitive page content types, impacting at least 300K users.

We found that the collection of user’s names and profile
information is the most common page content collected, per-
formed by 130 and 124 extensions respectively. The most
popular name-collecting extension had over 80K users that

100 101
102 103 104 105

106

The Number of Extension Users

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 4: CDF of the number of extension users for exten-
sions collecting sensitive web page user content. The x-axis
maximum value is 106, differing from Figure 2 and Figure 5.

collected name and profile information on the LinkedIn page,
while an extension with over 300K users collected profile
information on the Facebook page. We still observe many
extensions collecting other types of user data from web page
content, including those with tens of thousands of users.

Figure 4 provides a CDF of the number of users of exten-
sions collecting page contents. A small number of extensions
impact many users; less than 10% of extensions impact 1K
users or more, with only a few impacting more than 10K.
The most impactful extension was installed by more than
300K users. While the total number of users impacted may be
limited, the impact can still be significant; these extensions
collect credit card information, physical location, personal
communication, and more. The prevalence of less popular but
privacy-invasive extensions highlights the need for a system
like Arcanum that can evaluate extensions at scale.

4.6 Text Encoding

We also discovered 159 extensions transmitting tainted
data after using some form of encoding, encryption (at
the application layer, not the transport layer), or obfusca-
tion. Such encoding is noteworthy as it can prevent iden-
tifying such data exfiltration without dynamic taint track-
ing, and prior taint tracking systems did not propagate taint
through such methods. The three most prevalent forms of
data transformations were TextEncoder.encode[Into]()
(used by 85 extensions), base64 encoding (78 extensions),
and SubtleCrypto.encrypt() (31 extensions). Extensions
utilizing these techniques span the popularity spectrum, as
Figure 5 illustrates, impacting as many as 10M users in total.

4.7 Insecure HTTP Usage

We identified 65 extensions exfiltrating sensitive tainted data
over network requests sent unencrypted over HTTP (both us-
ing XMLHttpRequest and Fetch). This behavior presents a
significant added privacy risk to users, as any information

100 101 102 103 104 105 106 107

The Number of Extension Users

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

SubtleCrypto

TextEncoder

Base64

Figure 5: CDFs of the number of extension users for ex-
tensions that encode tainted values using 1) SubtleCrypto,
2) TextEncoder, and 3) Base64 encoding.

transmitted this way would be visible in transit. In the most
impactful case, one extension [44] with more than 400K
users sent visited URLs in the clear over HTTP. Other ex-
tensions [37, 45, 48] sent more sensitive information such as
web page content (including for sites where the content is
originally served over HTTPS), IP addresses, and page titles.

4.8 Privacy Policies
In the Chrome Web Store, extension developers have the
option to indicate their extension’s privacy practices in a stan-
dardized format. This format includes enumerating the types
of information collected by the extension, including person-
ally identifiable information, authentication information, user
activity, location data, financial and payment information, per-
sonal communications, health information, and website con-
tent. In addition, developers can include a link to a web page
with further details on how the collected data may be used.

For all extensions flagged by Arcanum, we collected the
privacy practices from the Chrome Web Store in October
2023. We observed that 1,575 (52.01%) of flagged extensions
did not provide a privacy policy. Of the extensions that specif-
ically exfiltrate web content, 77 (38.12%) offered no privacy
policy, including extensions with tens of thousands of users
(e.g., [56]). For extensions with privacy policies, 23 (11.39%)
gathered website content without listing this data category
in their privacy policy, including extensions with more than
80K users (e.g., [50]). These findings suggest that Chrome
extensions are currently not heavily incentivized to provide
privacy policies, and even if they do, the policies may provide
limited accuracy and insights into extension data practices.

4.9 Manual Verification: False Positives
Thus far, all qualitative results and examples presented have
been manually verified as leaking sensitive user data. How-
ever, while Arcanum accurately detects taint propagation from

a source to a sink, it may be possible that the propagated data
no longer contains directly sensitive data. To understand the
extent to which this may occur and contextualize our results,
we conducted an in-depth manual exploration and verification
of two groups of 50 extensions, each targeting a different site.
We selected the 100 total extensions at random among the
flagged dataset. We selected two sites for this exploration:
LinkedIn and Paypal. We selected LinkedIn as it was the web-
site that observed the most extensions collecting data from it,
and PayPal as it is a completely different class of website that
has significant privacy and financial implications.

We observed 3 cases for LinkedIn and 1 case from PayPal
where, while taint propagation is correctly inferred, the tainted
value may no longer be sensitive. In these cases, tainted values
were used in control flow decisions, resulting in tainting of
the outputs of the control flow branches. However, the actual
exfiltrated data is no longer directly derived from the tainted
value. Such behaviors could still be privacy violating (e.g., as
a covert channel), but it is unclear. As part of this analysis, we
also discovered 1 extension for LinkedIn and 2 extensions for
PayPal that were sending sensitive values back to LinkedIn
and PayPal destinations, respectively. Depending on the spe-
cific situation, this may or may not be problematic from a
privacy or security perspective. For example, an extension
could be taking data from the user’s context and exfiltrating it
to a context where others can observe it.

While in all cases, Arcanum is accurately detecting taint
propagation from a taint source to sink, our analysis here in-
dicates that for a small minority of extensions (approximately
6%), the exfiltrated information may no longer contain clearly
sensitive data. Nonetheless, Arcanum serves as an effective
platform for analyzing extension data exfiltration behavior.

4.10 Privacy Impact Case Studies

While Arcanum accurately detects cases of automated user
data collection, these cases may vary in their privacy impli-
cations, from surreptitious exfiltration to collection for legit-
imate extension functionality (although even if benign, this
collection still can entail privacy risks due to the transmission
and storage of sensitive user data by third parties, potentially
without user awareness, and the third parties may further share
the data or leak it unintentionally due to data breaches). To
better understand the privacy impact of the flagged extensions,
we manually analyzed random samples of extensions (auto-
mated analysis is challenging as it requires understanding and
comparing extension descriptions and privacy policies with
extension behavior).

We do not seek to specifically identify the intent behind
an extension’s behavior, and instead focus on whether the
automated data collection observed by Arcanum is specified
in the extension’s privacy policy (if existing) or expected
based on the extension’s description in the Chrome Web Store.
In detail, our assessment is as follows:

Privacy Policy Practices Web Store Description
Random Sample Group #In Policy #Not in Policy #No Policy #Clear #Vague #Violative

Web content (20) 8 7 5 3 10 7
All flagged extensions (20) 6 11 3 5 5 10

Total (40) 14 (35.0%) 18 (45.0%) 8 (20.0%) 8 (20.0%) 15 (37.5%) 17 (42.5%)

Table 8: Manual analysis of whether the observed automated data collection is discussed in an extension’s privacy policy or
Chrome Web Store description, for 40 randomly sampled extensions: 20 extensions sampled from those collecting web page
content, and 20 from all extensions flagged by Arcanum.

1) Privacy Policy. We characterize whether the observed
data collected is listed within the extension’s privacy policy.
As described in Section 4.8, an extension either does not
provide a privacy policy (“No Policy”), provides a policy
without listing the specific data categories (“Not in Policy”),
or accurately lists the data collection in the privacy policy
(“In Policy”).

2) Web Store Description. We also investigate whether an
extension’s automated data collection is clearly described
on the extension’s Web Store page, so that users could rea-
sonably expect the behavior. We label an extension’s Web
Store description as either “Clear”, “Vague”, or “Violative”.
We consider a description clear if it explicitly discusses
collecting data automatically for the extension’s described
functionality. We label a description as vague if automated
data collection is not discussed and its functionality could
feasibly be implemented client-side rather than requiring
data collection, as a user (especially a non-technical one)
may not expect automated data collection. We label a de-
scription as violative if either: 1) the description claims
it does not collected the data; 2) the description clearly
states that the extension’s functionality would be triggered
through certain actions (such as clicking a button), and thus
users would not expect data collection to be automatic.
We randomly sampled 20 extensions detected as exfiltrat-

ing web page content, and 20 extensions from all flagged
extensions. The 40 extensions were then manually analyzed
by two researchers independently, who then converged on the
final labels as listed in Table 8.

Overall, we found that only a minority of extensions dis-
closed the data collection within a privacy policy (aligning
with our prior observations in Section 4.8) or clearly described
the data collection within its Web Store page (with over a third
of extension descriptions contradicting the automated data
collection). Furthermore, none of the sampled extensions pro-
vided both an accurate privacy policy and a clear Web Store
description. Thus, for most sampled extensions, users reason-
ably would not expect the automated data exfiltration based
on the extension’s available descriptions and privacy policies.

Finally, to further illustrate the privacy risks of the exten-
sion behaviors observed, we present case studies of several
classes of extensions found by Arcanum.

Detecting Generative AI. We discovered 4 extensions that
all purport to detect generative text from systems such as
ChatGPT, while exfiltrating web page content to third parties.
For example, “DetectGPT - Detect Chat GPT Content” [40] is
an extension with 10K+ users that scrapes and exfiltrates all
tainted user data across all target websites over Fetch network
requests. However, its privacy policy states that it does not
collect or use user data, and its Web Store description does
not discuss data collection and even implies that user action
is needed before evaluating page content. We note that there
are 13 other extensions with similar behavior purporting to
have related AI applications.
Coupons / Financial Benefits. Arcanum found 16 extensions
that purport to provide financial benefits such as cashback or
comparing offers between web pages. For example, “Sidex
Scanner” [56] is one such extension used by 20K+ users,
describing itself as offering users on an online store with
product offers from other stores. However, it extracts user and
profile information from LinkedIn, Facebook, and Instagram
and sends the information over XMLHttpRequest requests.
The extension does not provide a privacy policy.
Business Contact Services. Arcanum flagged 9 extensions
that provide ways for identifying contact information for busi-
nesses or professionals. For example, “Mr. E-Find B2B con-
tacts universally” [50] has 80K+ users, and is described as
providing contact information for online business profiles
upon a user click. However, we observed it automatically
collecting and exfiltrating profile and identification informa-
tion from LinkedIn via Fetch, without listing web content
collection in its privacy policy.
Email Assistance. Email Extractor [42] is a popular email
assistance extension used by more than 300K users. Its stated
purpose is to quickly and easily extract emails from a given
web page. Arcanum found that it collects profile and identity
information on Facebook, and URL information on all pages
tested, storing all data within the extension’s local storage.
This is potentially problematic as a vulnerability in the exten-
sion could expose this data to malicious websites [20], and
the extension may later send this data over network requests.
Academic Projects. COKN Health Info Check [39] is an
example extension released as part of an academic research
project, which offers fact-checking of health-related web con-

tent. Arcanum detected it automatically exfiltrating all sensi-
tive information across all seven pages to an API endpoint at
a university, without specifying a privacy policy. While this
extension has few users, it highlights the potential privacy
risks of mass automated data collection even by researchers,
as the data can contain sensitive user information and could
be exposed inadvertently if not handled and stored securely.

5 Conclusion and Future Work

In this work, we presented Arcanum, a dynamic taint track-
ing system for modern Chromium browsers that allows re-
searchers to perform fine-grained analysis of the flow of
privacy-sensitive data into and out of extensions. In deploy-
ing Arcanum, we discovered extensive privacy risks from
thousands of extensions, potentially impacting millions of
users. Such risks point to the need for significant changes in
the browser extension ecosystem, as well as lessons for web
privacy research.
Web Content Matters. Through our study, we found hun-
dreds of extensions that automatically collect the content of
web pages—in some cases in alarming volume and sensitivity.
This highlights the need for tools and systems that account for
user data within page content when evaluating web privacy.
Researcher-Driven Annotations Help. Arcanum’s fine-
grained tracking of specific private user data depends on direct
annotation by researchers, for identifying and differentiating
various web page components. These annotations are needed
not only to understand what flows where, but also to reduce
false positives related to non-sensitive content. A future direc-
tion in this space is the automatic identification and annotation
of web pages, which would allow systems such as Arcanum to
scale across sites and discover other privacy problems across
the web.
Extension Permissions are Coarse and Opaque. The exist-
ing browser extension permissions are coarse, which permits
an extension with one stated purpose to risk privacy in other
ways. Similarly, in many cases, descriptions of extension be-
haviors (e.g., privacy policies) do not clearly and accurately
articulate the risk associated with the behaviors. Moreover,
all extensions have the ability to make third-party network
requests, adding complications between what an extension
can see and what it can do with that information, that may not
be apparent to users. Thus, more work is needed for enforc-
ing stricter privacy controls on extensions, as well as driving
extensions to deploy accurate privacy policies.
Taint Tracking For Extension Vetting. We strongly en-
courage the use of systems such as Arcanum and other taint
tracking tools as part of the extension vetting process, so that
extensions that pose significant privacy risks, even if doing
so unintentionally, can be remediated before they impact hun-
dreds of thousands of users.
Limitations and Future work. As discussed in Section 4.1,

we do not interact with web pages or extensions during the
experiments. However, extensions may exfiltrate sensitive
information when specific functions are triggered, and we
may not capture such behaviors. Thus, future work can more
deeply and extensively investigate extension behavior under
interaction and across a broader set of sites. Future work can
also combine Arcanum with browser extension fingerprinting
methods (e.g., [28, 33]) to detect and notifying users and/or
websites about sensitive data exfiltration behaviors by exten-
sions. Furthermore, Arcanum can be optimized more both in
terms of performance and functionality, providing an even
more effective platform for monitoring extension behaviors.

6 Acknowledgements

This work was in part supported by a gift from Facebook,
Inc. The authors also thank David Freeman for insightful
discussions, as well as the anonymous reviewers for their
valuable feedback.

References

[1] Caniuse. JavaScript operator: Object initializer: Spread
properties. https://caniuse.com/?search=Spread
%20in%20object, 2023.

[2] Catapult. Web Page Replay. https://chromium.goo
glesource.com/catapult/+/HEAD/web_page_rep
lay_go/README.md, 2023.

[3] Wentao Chang and Songqing Chen. ExtensionGuard:
Towards runtime browser extension information leakage
detection. In IEEE Conference on Communications and
Network Security (CNS), 2016.

[4] Quan Chen and Alexandros Kapravelos. Mystique: Un-
covering information leakage from browser extensions.
In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2018.

[5] Chrome. Stable Channel Update for Desktop. https:
//chromereleases.googleblog.com/2022/11/
stable-channel-update-for-desktop_29.html,
2022.

[6] Chrome. API reference. https://developer.chro
me.com/docs/extensions/reference/, 2023.

[7] Chrome. Chrome web store sitemap. https://chrome
.google.com/webstore/sitemap, 2023.

[8] Chrome. Replace XMLHttpRequest() with global
fetch(). https://developer.chrome.com/docs/ex
tensions/migrating/to-service-workers/#re
place-xmlhttprequest, 2023.

https://caniuse.com/?search=Spread%20in%20object
https://caniuse.com/?search=Spread%20in%20object
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromereleases.googleblog.com/2022/11/stable-channel-update-for-desktop_29.html
https://chromereleases.googleblog.com/2022/11/stable-channel-update-for-desktop_29.html
https://chromereleases.googleblog.com/2022/11/stable-channel-update-for-desktop_29.html
https://developer.chrome.com/docs/extensions/reference/
https://developer.chrome.com/docs/extensions/reference/
https://chrome.google.com/webstore/sitemap
https://chrome.google.com/webstore/sitemap
https://developer.chrome.com/docs/extensions/migrating/to-service-workers/#replace-xmlhttprequest
https://developer.chrome.com/docs/extensions/migrating/to-service-workers/#replace-xmlhttprequest
https://developer.chrome.com/docs/extensions/migrating/to-service-workers/#replace-xmlhttprequest

[9] Chrome. Run time. https://developer.chrome.c
om/docs/extensions/mv3/content_scripts/#run
_time, 2023.

[10] Chrome for Developers. Migrate to Manifest
V3. https://developer.chrome.com/docs/exte
nsions/develop/migrate, 2023.

[11] Chrome Web Store has 188k extensions with at least
1.2 billion installs. https://www.ghacks.net/2019/
08/04/chrome-web-store-has-188k-extension
s-with-at-least-1-2-billion-installs/, 2019.

[12] Chromium. Manifest V3 now available on M88 Beta.
https://blog.chromium.org/2020/12/manifest
-v3-now-available-on-m88-beta.html, 2020.

[13] Chromium. Will MV2 Chrome extensions stop working
on all Chrome browser versions after January 2023.
https://groups.google.com/a/chromium.org/g
/chromium-extensions/c/xd53CwuOyzk?pli=1,
2022.

[14] Chromium. Legacy JavaScript Implementations.
https://chromium.googlesource.com/chromium
/src/+/HEAD/extensions/renderer/bindings.m
d#Legacy-JavaScript-Implementations, 2023.

[15] Catalin Cimpanu. Facebook sues Ukrainian
browser extension makers for scraping user data.
https://www.zdnet.com/article/facebook-sue
s-ukrainian-browser-extension-makers-for-s
craping-user-data/, 2019.

[16] Catalin Cimpanu. Facebook sues two Chrome extension
makers for scraping user data. https://www.zdnet.
com/article/facebook-sues-two-chrome-exten
sion-makers-for-scraping-user-data/, 2020.

[17] Mohan Dhawan and Vinod Ganapathy. Analyzing in-
formation flow in javascript-based browser extensions.
In Annual Computer Security Applications Conference
(ACSAC), 2009.

[18] MDN Web Docs. Using data attributes. https:
//https://developer.mozilla.org/en-US/docs
/Learn/HTML/Howto/Use_data_attributes, 2023.

[19] MDN Web Docs. Web APIs. https://developer.mo
zilla.org/en-US/docs/Web/API, 2023.

[20] Aurore Fass, Dolière Francis Somé, Michael Backes,
and Ben Stock. Doublex: Statically detecting vulnera-
ble data flows in browser extensions at scale. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), 2021.

[21] Chrome for Developers. Manifest V2 support timeline.
https://developer.chrome.com/docs/extensio
ns/develop/migrate/mv2-deprecation-timelin
e, 2023.

[22] Alexandros Kapravelos, Chris Grier, Neha Chachra,
Christopher Kruegel, Giovanni Vigna, and Vern Pax-
son. Hulk: Eliciting malicious behavior in browser ex-
tensions. In USENIX Security Symposium (USENIX
Security), 2014.

[23] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexan-
dros Kapravelos, and Nick Nikiforakis. Fingerprinting
in style: Detecting browser extensions via injected style
sheets. In USENIX Security Symposium (USENIX Secu-
rity), 2021.

[24] Sebastian Lekies, Ben Stock, and Martin Johns. 25
million flows later: large-scale detection of DOM-based
XSS. In ACM SIGSAC conference on Computer &
communications security (CCS), 2013.

[25] William Melicher, Anupam Das, Mahmood Sharif, Lujo
Bauer, and Limin Jia. Riding out domsday: Towards
detecting and preventing dom cross-site scripting. In
Network and Distributed System Security Symposium
(NDSS), 2018.

[26] Meta. How we combat scraping. https://about.fb
.com/news/2021/04/how-we-combat-scraping/,
2021.

[27] Meta. Scraping by the numbers. https://about.fb
.com/news/2021/05/scraping-by-the-numbers/,
2021.

[28] Iskander Sanchez-Rola, Igor Santos, and Davide
Balzarotti. Extension breakdown: Security analysis
of browsers extension resources control policies. In
USENIX Security Symposium (USENIX Security), 2017.

[29] Selenium. WebDriver. https://www.selenium.dev
/documentation/webdriver/, 2023.

[30] Sentry. JavaScript error and performance monitoring.
https://sentry.io/for/javascript/, 2023.

[31] Dolière Francis Somé. Empoweb: empowering web ap-
plications with browser extensions. In IEEE Symposium
on Security and Privacy (S&P), 2019.

[32] Oleksii Starov and Nick Nikiforakis. Extended tracking
powers: Measuring the privacy diffusion enabled by
browser extensions. In International Conference on
World Wide Web (WWW), 2017.

[33] Oleksii Starov and Nick Nikiforakis. Xhound: Quan-
tifying the fingerprintability of browser extensions. In
IEEE Symposium on Security and Privacy (S&P), 2017.

https://developer.chrome.com/docs/extensions/mv3/content_scripts/#run_time
https://developer.chrome.com/docs/extensions/mv3/content_scripts/#run_time
https://developer.chrome.com/docs/extensions/mv3/content_scripts/#run_time
https://developer.chrome.com/docs/extensions/develop/migrate
https://developer.chrome.com/docs/extensions/develop/migrate
https://www.ghacks.net/2019/08/04/chrome-web-store-has-188k-extensions-with-at-least-1-2-billion-installs/
https://www.ghacks.net/2019/08/04/chrome-web-store-has-188k-extensions-with-at-least-1-2-billion-installs/
https://www.ghacks.net/2019/08/04/chrome-web-store-has-188k-extensions-with-at-least-1-2-billion-installs/
https://blog.chromium.org/2020/12/manifest-v3-now-available-on-m88-beta.html
https://blog.chromium.org/2020/12/manifest-v3-now-available-on-m88-beta.html
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/xd53CwuOyzk?pli=1
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/xd53CwuOyzk?pli=1
 https://chromium.googlesource.com/chromium/src/+/HEAD/extensions/renderer/bindings.md#Legacy-JavaScript-Implementations
 https://chromium.googlesource.com/chromium/src/+/HEAD/extensions/renderer/bindings.md#Legacy-JavaScript-Implementations
 https://chromium.googlesource.com/chromium/src/+/HEAD/extensions/renderer/bindings.md#Legacy-JavaScript-Implementations
https://www.zdnet.com/article/facebook-sues-ukrainian-browser-extension-makers-for-scraping-user-data/
https://www.zdnet.com/article/facebook-sues-ukrainian-browser-extension-makers-for-scraping-user-data/
https://www.zdnet.com/article/facebook-sues-ukrainian-browser-extension-makers-for-scraping-user-data/
https://www.zdnet.com/article/facebook-sues-two-chrome-extension-makers-for-scraping-user-data/
https://www.zdnet.com/article/facebook-sues-two-chrome-extension-makers-for-scraping-user-data/
https://www.zdnet.com/article/facebook-sues-two-chrome-extension-makers-for-scraping-user-data/
https://https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.chrome.com/docs/extensions/develop/migrate/mv2-deprecation-timeline
https://developer.chrome.com/docs/extensions/develop/migrate/mv2-deprecation-timeline
https://developer.chrome.com/docs/extensions/develop/migrate/mv2-deprecation-timeline
https://about.fb.com/news/2021/04/how-we-combat-scraping/
https://about.fb.com/news/2021/04/how-we-combat-scraping/
https://about.fb.com/news/2021/05/scraping-by-the-numbers/
https://about.fb.com/news/2021/05/scraping-by-the-numbers/
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://sentry.io/for/javascript/

[34] Chrome Web Store. Avast SafePrice | Comparison,
deals, coupons. https://chrome.google.com/webs
tore/detail/avast-safeprice-compariso/eof
cbnmajmjmplflapaojjnihcjkigck, 2023.

[35] Chrome Web Store. Avira Browser Safety.
https://chrome.google.com/webstore/detai
l/avira-browser-safety/flliilndjeohchalpb
bcdekjklbdgfkk, 2023.

[36] Chrome Web Store. Avira Safe Shopping.
https://chrome.google.com/webstore/detai
l/avira-safe-shopping/ccbpbkebodcjkknkfkpm
feciinhidaeh, 2023.

[37] Chrome Web Store. Bookmark more. https:
//chrome.google.com/webstore/detail/bookma
rk-more/jdleicahfbehiikjcaocollfhbnigplo,
2023.

[38] Chrome Web Store. Capital One Shopping: Add to
Chrome for Free. https://chrome.google.com/we
bstore/detail/capital-one-shopping-add/nen
lahapcbofgnanklpelkaejcehkggg, 2023.

[39] Chrome Web Store. COKN Health Info Check.
https://chrome.google.com/webstore/detail/
cokn-health-info-check/blcdkmjcpgjojjffbdk
ckaiondfpoglh, 2023.

[40] Chrome Web Store. DetectGPT - Detect Chat GPT
Content. https://chrome.google.com/webstore
/detail/detectgpt-detect-chat-gpt/oadkgbg
ppkhoaaoepjbcnjejmkknaobg, 2023.

[41] Chrome Web Store. Eco-Index by Changing Room.
https://chrome.google.com/webstore/detail/
eco-index-by-changing-roo/pjmfidajplecnec
lhdghcgdefnmhhlca, 2023.

[42] Chrome Web Store. Email Extractor. https:
//chrome.google.com/webstore/detail/email-e
xtractor/jdianbbpnakhcmfkcckaboohfgnngfcc,
2023.

[43] Chrome Web Store. Email Finder-Kendo Sourcing
Ninja. https://chrome.google.com/webstore/d
etail/email-finder-kendo-sourci/kecadfolel
kekbfmmfoifpfalfedeljo, 2023.

[44] Chrome Web Store. Fiction Reader. https:
//chrome.google.com/webstore/detail/%E5%
B0%8F%E8%AF%B4%E9%98%85%E8%AF%BB%E5%8A%A9%
E6%89%8B/dknlfmhongfkfakmhhnmgfgnhhcbmldm,
2023.

[45] Chrome Web Store. GoRateUp. https:
//chrome.google.com/webstore/detail/gora
teup/opmmfaampmbhbohaaamhfpennnefnkfn, 2023.

[46] Chrome Web Store. Hola VPN - The Website Unblocker.
https://chrome.google.com/webstore/detail/
hola-vpn-the-website-unbl/gkojfkhlekighika
fcpjkiklfbnlmeio, 2023.

[47] Chrome Web Store. Honey: Automatic Coupons &
Rewards. https://chrome.google.com/webstore
/detail/honey-automatic-coupons-r/bmnlcja
bgnpnenekpadlanbbkooimhnj, 2023.

[48] Chrome Web Store. Investor Intel. https:
//chrome.google.com/webstore/detail/invest
or-intel/onfmefagepefndfhefodadmpodcdcneh,
2023.

[49] Chrome Web Store. Likewise. https:
//chrome.google.com/webstore/detail/like
wise/bahcihkpdjlbndandplnfmejnalndgjo, 2023.

[50] Chrome Web Store. Mr. E - Find B2B contacts
universally. https://chrome.google.com/websto
re/detail/mr-e-find-b2b-contacts-un/haphbb
hhknaonfloinidkcmadhfjoghc, 2023.

[51] Chrome Web Store. NordVPN - VPN Proxy for Privacy
and Security. https://chrome.google.com/websto
re/detail/nordvpn-vpn-proxy-for-pri/fjoal
edfpmneenckfbpdfhkmimnjocfa, 2023.

[52] Chrome Web Store. Online Security. https:
//chrome.google.com/webstore/detail/online
-security/llbcnfanfmjhpedaedhbcnpgeepdnnok,
2023.

[53] Chrome Web Store. PowerAdSpy - Ad Intelligence.
https://chrome.google.com/webstore/detail/
poweradspy-ad-intelligenc/nkecaphdplhfmmb
kcfnknejeonfnifbn, 2023.

[54] Chrome Web Store. QuillBot: AI Grammar and Writing
Tool. https://chrome.google.com/webstore/det
ail/quillbot-ai-grammar-and-w/iidnbdjijdk
bmajdffnidomddglmieko, 2023.

[55] Chrome Web Store. SHADE: Stylishly Sustainable.
https://chrome.google.com/webstore/detail/
shade-stylishly-sustainab/mdfgkcdjgpgoecl
hefnjgmollcckpedk, 2023.

[56] Chrome Web Store. Sidex Price Scanner. https://ch
rome.google.com/webstore/detail/%D1%81%D0%
B0%D0%B9%D0%B4%D0%B5%D0%BA%D1%81-%D1%81%
D0%BA%D0%B0%D0%BD%D0%B5%D1%80-%D1%86%D0%
B5%D0%BD/aamfmnhcipnbjjnbfmaoooiohikifefk,
2023.

[57] Chrome Web Store. Touch VPN - Secure and unlimited
VPN proxy. https://chromewebstore.google.co

https://chrome.google.com/webstore/detail/avast-safeprice-compariso/eofcbnmajmjmplflapaojjnihcjkigck
https://chrome.google.com/webstore/detail/avast-safeprice-compariso/eofcbnmajmjmplflapaojjnihcjkigck
https://chrome.google.com/webstore/detail/avast-safeprice-compariso/eofcbnmajmjmplflapaojjnihcjkigck
https://chrome.google.com/webstore/detail/avira-browser-safety/flliilndjeohchalpbbcdekjklbdgfkk
https://chrome.google.com/webstore/detail/avira-browser-safety/flliilndjeohchalpbbcdekjklbdgfkk
https://chrome.google.com/webstore/detail/avira-browser-safety/flliilndjeohchalpbbcdekjklbdgfkk
https://chrome.google.com/webstore/detail/avira-safe-shopping/ccbpbkebodcjkknkfkpmfeciinhidaeh
https://chrome.google.com/webstore/detail/avira-safe-shopping/ccbpbkebodcjkknkfkpmfeciinhidaeh
https://chrome.google.com/webstore/detail/avira-safe-shopping/ccbpbkebodcjkknkfkpmfeciinhidaeh
https://chrome.google.com/webstore/detail/bookmark-more/jdleicahfbehiikjcaocollfhbnigplo
https://chrome.google.com/webstore/detail/bookmark-more/jdleicahfbehiikjcaocollfhbnigplo
https://chrome.google.com/webstore/detail/bookmark-more/jdleicahfbehiikjcaocollfhbnigplo
https://chrome.google.com/webstore/detail/capital-one-shopping-add/nenlahapcbofgnanklpelkaejcehkggg
https://chrome.google.com/webstore/detail/capital-one-shopping-add/nenlahapcbofgnanklpelkaejcehkggg
https://chrome.google.com/webstore/detail/capital-one-shopping-add/nenlahapcbofgnanklpelkaejcehkggg
https://chrome.google.com/webstore/detail/cokn-health-info-check/blcdkmjcpgjojjffbdkckaiondfpoglh
https://chrome.google.com/webstore/detail/cokn-health-info-check/blcdkmjcpgjojjffbdkckaiondfpoglh
https://chrome.google.com/webstore/detail/cokn-health-info-check/blcdkmjcpgjojjffbdkckaiondfpoglh
https://chrome.google.com/webstore/detail/detectgpt-detect-chat-gpt/oadkgbgppkhoaaoepjbcnjejmkknaobg
https://chrome.google.com/webstore/detail/detectgpt-detect-chat-gpt/oadkgbgppkhoaaoepjbcnjejmkknaobg
https://chrome.google.com/webstore/detail/detectgpt-detect-chat-gpt/oadkgbgppkhoaaoepjbcnjejmkknaobg
https://chrome.google.com/webstore/detail/eco-index-by-changing-roo/pjmfidajplecneclhdghcgdefnmhhlca
https://chrome.google.com/webstore/detail/eco-index-by-changing-roo/pjmfidajplecneclhdghcgdefnmhhlca
https://chrome.google.com/webstore/detail/eco-index-by-changing-roo/pjmfidajplecneclhdghcgdefnmhhlca
https://chrome.google.com/webstore/detail/email-extractor/jdianbbpnakhcmfkcckaboohfgnngfcc
https://chrome.google.com/webstore/detail/email-extractor/jdianbbpnakhcmfkcckaboohfgnngfcc
https://chrome.google.com/webstore/detail/email-extractor/jdianbbpnakhcmfkcckaboohfgnngfcc
https://chrome.google.com/webstore/detail/email-finder-kendo-sourci/kecadfolelkekbfmmfoifpfalfedeljo
https://chrome.google.com/webstore/detail/email-finder-kendo-sourci/kecadfolelkekbfmmfoifpfalfedeljo
https://chrome.google.com/webstore/detail/email-finder-kendo-sourci/kecadfolelkekbfmmfoifpfalfedeljo
https://chrome.google.com/webstore/detail/%E5%B0%8F%E8%AF%B4%E9%98%85%E8%AF%BB%E5%8A%A9%E6%89%8B/dknlfmhongfkfakmhhnmgfgnhhcbmldm
https://chrome.google.com/webstore/detail/%E5%B0%8F%E8%AF%B4%E9%98%85%E8%AF%BB%E5%8A%A9%E6%89%8B/dknlfmhongfkfakmhhnmgfgnhhcbmldm
https://chrome.google.com/webstore/detail/%E5%B0%8F%E8%AF%B4%E9%98%85%E8%AF%BB%E5%8A%A9%E6%89%8B/dknlfmhongfkfakmhhnmgfgnhhcbmldm
https://chrome.google.com/webstore/detail/%E5%B0%8F%E8%AF%B4%E9%98%85%E8%AF%BB%E5%8A%A9%E6%89%8B/dknlfmhongfkfakmhhnmgfgnhhcbmldm
https://chrome.google.com/webstore/detail/gorateup/opmmfaampmbhbohaaamhfpennnefnkfn
https://chrome.google.com/webstore/detail/gorateup/opmmfaampmbhbohaaamhfpennnefnkfn
https://chrome.google.com/webstore/detail/gorateup/opmmfaampmbhbohaaamhfpennnefnkfn
https://chrome.google.com/webstore/detail/hola-vpn-the-website-unbl/gkojfkhlekighikafcpjkiklfbnlmeio
https://chrome.google.com/webstore/detail/hola-vpn-the-website-unbl/gkojfkhlekighikafcpjkiklfbnlmeio
https://chrome.google.com/webstore/detail/hola-vpn-the-website-unbl/gkojfkhlekighikafcpjkiklfbnlmeio
https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/investor-intel/onfmefagepefndfhefodadmpodcdcneh
https://chrome.google.com/webstore/detail/investor-intel/onfmefagepefndfhefodadmpodcdcneh
https://chrome.google.com/webstore/detail/investor-intel/onfmefagepefndfhefodadmpodcdcneh
https://chrome.google.com/webstore/detail/likewise/bahcihkpdjlbndandplnfmejnalndgjo
https://chrome.google.com/webstore/detail/likewise/bahcihkpdjlbndandplnfmejnalndgjo
https://chrome.google.com/webstore/detail/likewise/bahcihkpdjlbndandplnfmejnalndgjo
https://chrome.google.com/webstore/detail/mr-e-find-b2b-contacts-un/haphbbhhknaonfloinidkcmadhfjoghc
https://chrome.google.com/webstore/detail/mr-e-find-b2b-contacts-un/haphbbhhknaonfloinidkcmadhfjoghc
https://chrome.google.com/webstore/detail/mr-e-find-b2b-contacts-un/haphbbhhknaonfloinidkcmadhfjoghc
https://chrome.google.com/webstore/detail/nordvpn-vpn-proxy-for-pri/fjoaledfpmneenckfbpdfhkmimnjocfa
https://chrome.google.com/webstore/detail/nordvpn-vpn-proxy-for-pri/fjoaledfpmneenckfbpdfhkmimnjocfa
https://chrome.google.com/webstore/detail/nordvpn-vpn-proxy-for-pri/fjoaledfpmneenckfbpdfhkmimnjocfa
https://chrome.google.com/webstore/detail/online-security/llbcnfanfmjhpedaedhbcnpgeepdnnok
https://chrome.google.com/webstore/detail/online-security/llbcnfanfmjhpedaedhbcnpgeepdnnok
https://chrome.google.com/webstore/detail/online-security/llbcnfanfmjhpedaedhbcnpgeepdnnok
https://chrome.google.com/webstore/detail/poweradspy-ad-intelligenc/nkecaphdplhfmmbkcfnknejeonfnifbn
https://chrome.google.com/webstore/detail/poweradspy-ad-intelligenc/nkecaphdplhfmmbkcfnknejeonfnifbn
https://chrome.google.com/webstore/detail/poweradspy-ad-intelligenc/nkecaphdplhfmmbkcfnknejeonfnifbn
https://chrome.google.com/webstore/detail/quillbot-ai-grammar-and-w/iidnbdjijdkbmajdffnidomddglmieko
https://chrome.google.com/webstore/detail/quillbot-ai-grammar-and-w/iidnbdjijdkbmajdffnidomddglmieko
https://chrome.google.com/webstore/detail/quillbot-ai-grammar-and-w/iidnbdjijdkbmajdffnidomddglmieko
https://chrome.google.com/webstore/detail/shade-stylishly-sustainab/mdfgkcdjgpgoeclhefnjgmollcckpedk
https://chrome.google.com/webstore/detail/shade-stylishly-sustainab/mdfgkcdjgpgoeclhefnjgmollcckpedk
https://chrome.google.com/webstore/detail/shade-stylishly-sustainab/mdfgkcdjgpgoeclhefnjgmollcckpedk
https://chrome.google.com/webstore/detail/%D1%81%D0%B0%D0%B9%D0%B4%D0%B5%D0%BA%D1%81-%D1%81%D0%BA%D0%B0%D0%BD%D0%B5%D1%80-%D1%86%D0%B5%D0%BD/aamfmnhcipnbjjnbfmaoooiohikifefk
https://chrome.google.com/webstore/detail/%D1%81%D0%B0%D0%B9%D0%B4%D0%B5%D0%BA%D1%81-%D1%81%D0%BA%D0%B0%D0%BD%D0%B5%D1%80-%D1%86%D0%B5%D0%BD/aamfmnhcipnbjjnbfmaoooiohikifefk
https://chrome.google.com/webstore/detail/%D1%81%D0%B0%D0%B9%D0%B4%D0%B5%D0%BA%D1%81-%D1%81%D0%BA%D0%B0%D0%BD%D0%B5%D1%80-%D1%86%D0%B5%D0%BD/aamfmnhcipnbjjnbfmaoooiohikifefk
https://chrome.google.com/webstore/detail/%D1%81%D0%B0%D0%B9%D0%B4%D0%B5%D0%BA%D1%81-%D1%81%D0%BA%D0%B0%D0%BD%D0%B5%D1%80-%D1%86%D0%B5%D0%BD/aamfmnhcipnbjjnbfmaoooiohikifefk
https://chrome.google.com/webstore/detail/%D1%81%D0%B0%D0%B9%D0%B4%D0%B5%D0%BA%D1%81-%D1%81%D0%BA%D0%B0%D0%BD%D0%B5%D1%80-%D1%86%D0%B5%D0%BD/aamfmnhcipnbjjnbfmaoooiohikifefk
https://chromewebstore.google.com/detail/touch-vpn-secure-and-unli/bihmplhobchoageeokmgbdihknkjbknd

m/detail/touch-vpn-secure-and-unli/bihmpl
hobchoageeokmgbdihknkjbknd, 2023.

[58] Top browsers market share. https://www.similarw
eb.com/browsers/, 2023.

[59] V8. A Read-only space in V8. https:
//docs.google.com/document/d/1UxALqYAnm
UnajDmswvizD7c5_pqQ1ks5wATry-nNBLA/edit,
2018.

[60] V8. Isolate Independent HeapObjects. https:
//docs.google.com/document/d/1awXj2nt4xDKoA
O1iVDUDg51oGOTkgBR0WCcpkUldrUo/edit, 2018.

[61] V8. CodeStubAssembler builtins. https://v8.dev/
docs/csa-builtins, 2020.

[62] V8. Pointer Compression in V8. https://v8.dev/bl
og/pointer-compression, 2020.

[63] V8. V8 Torque builtins. https://v8.dev/docs/tor
que-builtins, 2023.

[64] V8. Launching Ignition and TurboFan. https://v8.de
v/blog/launching-ignition-and-turbofan, May.
2017.

[65] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, En-
gin Kirda, Christopher Kruegel, and Giovanni Vigna.
Cross site scripting prevention with dynamic data taint-
ing and static analysis. In Network and Distributed
System Security Symposium (NDSS), 2007.

[66] Michael Weissbacher. These Chrome ex-
tensions spy on 8 million users. https:
//mweissbacher.com/2016/03/31/these-chr
ome-extensions-spy-on-8-million-users/,
2016.

[67] Michael Weissbacher, Enrico Mariconti, Guillermo
Suarez-Tangil, Gianluca Stringhini, William Robertson,
and Engin Kirda. Ex-ray: Detection of history-leaking
browser extensions. In Annual Computer Security Ap-
plications Conference (ACSAC), 2017.

[68] Mengfei Xie, Jianming Fu, Jia He, Chenke Luo, and
Guojun Peng. JTaint: Finding Privacy-leakage in
Chrome Extensions. In Information Security and Pri-
vacy: Australasian Conference (ACISP), 2020.

[69] Xvfb virtual framebuffer X server for X Version
11. https://manpages.ubuntu.com/manpages/tru
sty/man1/Xvfb.1.html, 2023.

https://chromewebstore.google.com/detail/touch-vpn-secure-and-unli/bihmplhobchoageeokmgbdihknkjbknd
https://chromewebstore.google.com/detail/touch-vpn-secure-and-unli/bihmplhobchoageeokmgbdihknkjbknd
https://www.similarweb.com/browsers/
https://www.similarweb.com/browsers/
https://docs.google.com/document/d/1UxALqYAnmUnajDmswvizD7c5_pqQ1ks5wATry-nNBLA/edit
https://docs.google.com/document/d/1UxALqYAnmUnajDmswvizD7c5_pqQ1ks5wATry-nNBLA/edit
https://docs.google.com/document/d/1UxALqYAnmUnajDmswvizD7c5_pqQ1ks5wATry-nNBLA/edit
https://docs.google.com/document/d/1awXj2nt4xDKoAO1iVDUDg51oGOTkgBR0WCcpkUldrUo/edit
https://docs.google.com/document/d/1awXj2nt4xDKoAO1iVDUDg51oGOTkgBR0WCcpkUldrUo/edit
https://docs.google.com/document/d/1awXj2nt4xDKoAO1iVDUDg51oGOTkgBR0WCcpkUldrUo/edit
https://v8.dev/docs/csa-builtins
https://v8.dev/docs/csa-builtins
https://v8.dev/blog/pointer-compression
https://v8.dev/blog/pointer-compression
https://v8.dev/docs/torque-builtins
https://v8.dev/docs/torque-builtins
https://v8.dev/blog/launching-ignition-and-turbofan
https://v8.dev/blog/launching-ignition-and-turbofan
https://mweissbacher.com/2016/03/31/these-chrome-extensions-spy-on-8-million-users/
https://mweissbacher.com/2016/03/31/these-chrome-extensions-spy-on-8-million-users/
https://mweissbacher.com/2016/03/31/these-chrome-extensions-spy-on-8-million-users/
https://manpages.ubuntu.com/manpages/trusty/man1/Xvfb.1.html
https://manpages.ubuntu.com/manpages/trusty/man1/Xvfb.1.html

A Artifact Appendix

A.1 Abstract
In this work, we develop Arcanum, a dynamic taint tracking
system for modern Chrome extensions designed to monitor
the flow of sensitive user content from web pages. Arcanum
defines a diverse set of taint sources ranging from meta-data,
to content DOM elements, location information, history data,
and cookies. From these sources, Arcanum is able to track
data flow to a variety of exit taint sinks, including all forms
of web requests and storage APIs. A key feature of Arcanum
is allowing researchers to instrument specific web page el-
ements as tainted at runtime via JS DOM annotations. We
deploy Arcanum to test all functional extensions currently
in the Chrome Web Store for the automated exfiltration of
user data across seven sensitive websites: Amazon, Facebook,
Gmail, Instagram, LinkedIn, Outlook, and PayPal. We ob-
serve significant privacy risks across thousands of extensions,
including hundreds of extensions automatically extracting
user content from within web pages.

The Arcanum prototype is built on Chromium Browser ver-
sion 108.0.5359.71. We open-source all Chromium patches
of the Arcanum implementation, allowing users to build and
adapt Arcanum from the Chromium source code. In the ar-
tifacts, we provide custom Chrome extensions for testing
Arcanum’s functionality, as well as representative real-world
extensions that were evaluated and flagged by Arcanum.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

When evaluating extension behavior on a web page using Ar-
canum, we strongly recommend users to record that web page
and replay it across the extensions evaluated using WprGo.
By only visiting the pages once and replaying the captured
response, we can minimize additional load on a site regardless
of the number of extensions evaluated. We provide web page
recordings for all experimental target pages in this artifact.
We also note that Arcanum itself does not require replay and
can be run on live web pages.

A.2.2 How to access

This artifact, including 1) all Chromium patches of
the Arcanum implementation, 2) sample extensions,
3) JavaScript files for annotating specific DOM ele-
ments on web pages, 4) web page recordings, and 5)
Python test case scripts for each sample extension, is
hosted on GitHub and can be accessed via: https:
//github.com/BEESLab/Arcanum/releases/tag/1.0.
Additionally, we provide two Docker images on Docker Hub
that have the necessary dependencies for 1) building Arcanum
from the Chromium source code, and 2) running Arcanum
to test sample extensions. They can be pulled via “docker

pull xqgtiti/arcanum_build:latest”, and “docker
pull xqgtiti/arcanum_run:latest”, respectively.

A.2.3 Hardware dependencies

Our experiments can be conducted either directly on a single
physical host machine or alternatively in a VM-based lab
environment on a host machine.

A x86_64 (amd64) machine with at least 8 GiB RAM, 4
cores/8 threads CPU, and at least 100 GiB of free disk space
is required. More than 16 GiB RAM is highly recommended.
For reference, all our experiments were conducted on
a physical machine with 512 GiB RAM, 32 cores/128
threads CPU, running Ubuntu 20.04.6 LTS (Kernel Linux
5.4.0-173-generic). The provided test cases were also eval-
uated on another Linux server with 8 CPUs and 16 GiB RAM.

A.2.4 Software dependencies

Git is required for fetching the Chromium source code
108.0.5359.71 (Linux) and depot tools.

To build Arcanum, we provide a Docker image (Ubuntu
20.04) that includes all necessary dependencies for building a
version of Chromium patched with the Arcanum implementa-
tion. Alternatively, users can follow the official instruction to
build your own Docker container.

To run Arcanum, we provide a Docker image (Ubuntu
18.04) that includes all necessary dependencies. We strongly
recommend using this pre-configured image, as our test case
scripts partly rely on its settings (such as software executable
paths). If you choose to build the environment manually, the
following software dependencies are required:
• Go 1.19.12 Linux
• WprGo v0.0.0-20230901234838-f16ca3c78e46
• Python 3.8.0 Linux (with Selenium 4, pyvirtualdisplay)
• ChromeDriver 108.0.5359.71
• Xvfb
• Chromium Dependencies
While we have not verified compatibility with versions other
than those listed above, we believe that our artifacts will work
with Ubuntu 18.04, 20.04, and 22.04, Python 3.8+ (Selenium
4), and any versions of Xvfb and WprGo.

A.2.5 Benchmarks

To benchmark the performance of Arcanum, we provide two
types of sample extensions in this artifact as the dataset:
Custom Extensions. We provide sample extensions imple-
mented by ourselves to demonstrate how extensions can be
tested using Arcanum, on seven websites that were exper-
imented with in our paper (Amazon, Facebook, Gmail, In-
stagram, LinkedIn, Outlook, and PayPal). For each site, we
provide one Manifest Version 2 (MV2) extension and one

https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://github.com/BEESLab/Arcanum/releases/tag/1.0
https://github.com/BEESLab/Arcanum/releases/tag/1.0
https://chromium.googlesource.com/chromium/src/+/refs/tags/108.0.5359.71
https://chromium.googlesource.com/chromium/tools/depot_tools.git
https://hub.docker.com/r/xqgtiti/arcanum_build
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md#Docker
https://hub.docker.com/r/xqgtiti/arcanum_run
https://go.dev/dl/go1.19.12.linux-amd64.tar.gz
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://developer.chrome.com/docs/chromedriver/downloads#chromedriver_1080535971
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md#Install-additional-build-dependencies

Manifest Version 3 (MV3) extension. In addition to these
extensions, we also provide custom extensions to guide users
in testing the taint tracking process of Arcanum, including
testing different taint sources, sinks, and propagation cases.
Real-world Extensions. We provide representative exten-
sions from the Chrome Web Store that have been tested and
flagged by Arcanum. Specifically, we include all extensions
discussed as case studies of Section 4.10, as well as those
listed in Table 7 of Section 4.5 (i.e., the flagged extensions
with the most users in each web content category). The exten-
sion IDs are listed in Table 9:

Extension ID Paper Section

aamfmnhcipnbjjnbfmaoooiohikifefk Case Study, Table 7
haphbbhhknaonfloinidkcmadhfjoghc Case Study, Table 7
jdianbbpnakhcmfkcckaboohfgnngfcc Case Study, Table 7
oadkgbgppkhoaaoepjbcnjejmkknaobg Case Study, Table 7
blcdkmjcpgjojjffbdkckaiondfpoglh Case Study
kecadfolelkekbfmmfoifpfalfedeljo Table 7
nkecaphdplhfmmbkcfnknejeonfnifbn Table 7
bahcihkpdjlbndandplnfmejnalndgjo Table 7
pjmfidajplecneclhdghcgdefnmhhlca Table 7
mdfgkcdjgpgoeclhefnjgmollcckpedk Table 7

Table 9: Real-world extension IDs.

Web Page Recording Files. Since popular sites periodically
mutate to combat automation/scraping, we provide recording
files for each target page of the seven websites (as listed in
Table 3) for consistent evaluation. JS scripts for annotating
privacy-sensitive DOM elements on each web page are also
provided. All sample extensions mentioned above are tested
by Arcanum using these recording files in this artifact.

A.3 Set-up
A.3.1 Installation

This section describes how to set up a build environment for
Chromium and build a version of Chromium with the patches
of the Arcanum implementation. The set-up is mostly based
on the official Chromium build instructions on Linux.

1. On the host machine, clone the Chromium depot tools to
a specific directory (e.g., $HOME) and add their path to the
PATH environment variable.

1 git clone https://chromium.googlesource.
↪→ com/chromium/tools/depot_tools.git

2 export PATH="${HOME}/depot_tools:$PATH"

2. Get the Chromium source code (this may take a while
depending on your network connection).

1 mkdir ${HOME}/chromium && cd ${HOME}/
↪→ chromium/

2 fetch --nohooks chromium

3. In src/, check out the branch for Chromium version
108.0.5359.71. You could also refer to the official instruc-
tions on working with Chromium release branches.

1 cd src
2 gclient sync --with_branch_heads --

↪→ with_tags
3 git fetch
4 git checkout tags /108.0.5359.71
5 gclient sync --with_branch_heads --

↪→ with_tags

4. Prepare the Docker container for building. Pull the pro-
vided Docker image for building, then launch a Docker
container from this image. Make sure to mount the host
directory containing the Chromium source code and the
depot_tools into the container:

1 docker pull xqgtiti/arcanum_build:latest
2 docker run -it --mount src=${HOME},target

↪→ ="/mnt/build/",type=bind --name=
↪→ build xqgtiti/arcanum_build:latest

5. Prepare build in the Docker container’s interactive shell.
Add the path of Chromium depot tools to the PATH en-
vironment variable. The command “gn args ...” auto-
matically opens a file (args.gn) in the default text editor.
Replace the contents of this file with the contents of the file
“∼/build/args.gn” from the artifact GitHub repository.

1 export PATH="/mnt/build/depot_tools:$PATH"
2 cd /mnt/build/chromium/src/
3 gn args out/Default

6. After updating the contents of the args.gn file, run the
above command again to finalize the build preparations.

1 gn args out/Default

7. Build an unmodified Chrome and its Linux installer (this
may take a while depending on the host machine’s perfor-
mance).

1 ninja -C out/Default chrome
2 ninja -C out/Default "chrome/installer/

↪→ linux:unstable_deb"

8. Build a version of Chrome patched with the Arcanum
implementation (located in “∼/patches/” in the artifact
GitHub repository).

1 cd /mnt/build/chromium/src/
2 git apply ~/patches/chromium.patch
3 cd /mnt/build/chromium/src/v8/
4 git apply ~/patches/v8.patch
5
6 cd /mnt/build/chromium/src/
7 gn args out/Arcanum
8 cp out/Default/gn.args out/Arcanum/
9 gn args out/Arcanum

10 ninja -C out/Arcanum chrome

https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md
https://www.chromium.org/developers/how-tos/get-the-code/working-with-release-branches/
https://www.chromium.org/developers/how-tos/get-the-code/working-with-release-branches/

9. Build a Linux installer for Arcanum, you can then find the
.deb file in “../out/Arcanum/”.

1 ninja -C out/Arcanum "chrome/installer/
↪→ linux:unstable_deb"

2 cd /mnt/build/chromium/src/out/Arcanum/
3 ls chromium -browser -unstable_108

↪→ .0.5359.71 -1 _amd64.deb

A.3.2 Basic Test

Pull the provided Docker image for running Arcanum, and
then launch a Docker container from this image. Note that
the “--privileged” flag is required. You can also mount
any directory that is convenient for transferring files from the
host machine.

1 docker pull xqgtiti/arcanum_run:latest
2 docker run -it --privileged --name=run

↪→ xqgtiti/arcanum_run:latest

Copy the Arcanum installer file (i.e., the .deb file) to
“/root/Arcanum/” in the Docker container and decompress
it. Note that we use this path in the test case code as the
Arcanum executable path. Please modify the variable in the
code if you place the installer elsewhere.

1 cd /root/Arcanum/
2 ar x chromium -browser -unstable_108

↪→ .0.5359.71 -1 _amd64.deb
3 tar -vxf control.tar && tar -vxf data.tar

Run the basic test case Basic_Test.py from the artifact
GitHub repository in the interactive shell of the container,
using the pre-configured Python 3.8. The basic test case uses
Selenium to launch Arcanum (a modified Chromium) with an
empty extension pre-installed and navigates to a web page.

1 python3.8 ~/Test_Cases/Basic_Test.py

If Arcanum runs normally, you should see “Basic Test:
Success.” in the output.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The Functionality of Arcanum.
• Arcanum operates on the modern browser architec-

ture, as proven by the implementation patches for
Chromium 108.

• Arcanum supports both MV2 and MV3 extensions.
This is proven by experiment E1, where we test custom
extensions for both MV2 and MV3.

• Arcanum is able to track user sensitive data from
within web pages and support taint propagation across
a comprehensive set of browser, web, and JavaScript
APIs used by extensions. This is proven by both exper-
iments E1 and E2. In E1, we test custom extensions

that trigger different types of taint sources (including
chrome.history, document.location, etc.), taint
sinks (including Fetch, XMLHttpRequest, etc.), and
various propagation processes (including binary data
buffer propagation, Chrome message passing APIs,
etc.), as described in Section 3. In E2, we test real-
world extensions covering more propagation cases,
such as the storage taint sink, literal creation for com-
pound JS types, JS Promise, etc.

• Arcanum produces detailed taint propagation logs.
This is proven by both experiments E1 and E2, where
the test case results are determined by whether the
expected content appears in the taint logs.

(C2): Arcanum Can Track Specific Web Page Content.
Arcanum allows researchers to instrument specific web
page elements as tainted at runtime via JS DOM anno-
tations. This is proven by both experiments E1 and E2,
where we annotate specific sensitive DOM elements on
seven target pages and test the extensions with these
annotations.

(C3): Our Experiments are Reproducible.
In deploying Arcanum, we are able to discover auto-
mated exfiltration of user data by real-world extensions
across seven popular websites. This is proven by ex-
periment E2 described in Section 4.5 and Section 4.10.
Specifically, we provide all extensions discussed as
case studies in Section 4.10 and those whose IDs are
listed in Table 7 of Section 4.5. Our test cases evalu-
ate whether Arcanum can successfully flag each sample
extension, identifying whether the extension collects spe-
cific tainted page content on a target page and propagates
the information to a taint sink.

A.4.2 Experiments

(E1): [Test Custom Extensions] [1 human-hour]
Preparation: Use the same Docker container from the
Basic Test that has the Arcanum executable file placed
in “/root/Arcanum/”. Download all custom extensions
(in “∼/Sample_Extensions/Custom/”) from the ar-
tifact GitHub repository and copy the extensions to
“/root/extensions/custom/” in the container.

1 mkdir -p /root/extensions/custom/
2 cp -r ~/Sample_Extensions/Custom/* /root

↪→ /extensions/custom/

Download all recordings and JS scripts for DOM element
annotations from the artifact GitHub repository and place
them in the “/root/” directory in the container:

1 mkdir -p /root/recordings/
2 cp -r ~/recordings/* /root/recordings/
3 mkdir -p /root/annotations/
4 cp -r ~/annotations/* /root/annotations/

Execution: We have prepared a test case for each cus-
tom extension. Run these test cases in the container shell
using the pre-configured Python 3.8:

1 python3.8 ~/Test_Cases/Custom_Test.py

Each test case launches Arcanum with the correspond-
ing web recording and DOM element annotations (or
without annotations when testing non-web content taint
sources), and checks whether we successfully obtain the
expected content in the taint logs, demonstrating the cor-
rect taint tracking of Arcanum. You can test all custom
extensions together or test a specific extension by simply
commenting out other test cases in Custom_Test.py,
such as:

1 if __name__ == "__main__":
2 Amazon_Extension_MV2_Test()
3 # Amazon_Extension_MV3_Test()
4 # Facebook_Extension_MV2_Test()
5 ...
6 # Source_document_password_Test()
7 # Source_document_location_Test()
8 ...

Results: For each extension being tested, you should
see “Custom Extension ${Name}: Success.” in the test
case output, demonstrating the correct taint tracking of
Arcanum. You can refer to the test case code to see the
expected content in the taint logs for each extension.

(E2): [Test Real-world Extensions] [1 human-hour]
Preparation: Use the same Docker container from the
Basic Test that has the Arcanum executable file placed in
“/root/Arcanum/”. Download all real-world extensions
(in “∼/Sample_Extensions/Realworld/”) from the
artifact GitHub repository and copy the extensions to
“/root/extensions/realworld/” in the container.

1 mkdir -p /root/extensions/realworld/
2 cp -r ~/Sample_Extensions/Realworld/*

↪→ /root/extensions/realworld/

Execution: We have prepared a test case for each real-
world extension. Run these test cases in the container
shell using the pre-configured Python 3.8:

1 python3.8 ~/Test_Cases/Realworld_Test.py

Each test case launches Arcanum with the correspond-
ing web recording and DOM element annotations, and
checks whether we successfully obtain the expected con-
tent in the taint logs, aligning with the experiment results
described in Sections 4.5 and Section 4.10. You can test
all real-world extensions together or test a specific ex-
tension by simply commenting out other test cases in
Realworld_Test.py, such as:

1 if __name__ == "__main__":
2 amfmnhcipnbjjnbfmaoooiohikifefk()
3 # haphbbhhknaonfloinidkcmadhfjoghc()
4 # dianbbpnakhcmfkcckaboohfgnngfcc()
5 ...

Results: For each extension being tested, you should
see “Real-world Extension ${ID}: Success.” in the test
case output. You can refer to the test case code to see the
expected content in the taint logs for each extension.
We also release all taint logs (i.e., analysis results gener-
ated by Arcanum) for each real-world extension obtained
from the experiments conducted in our paper. Please
check these logs located in ∼/Taint_Logs/ in the arti-
fact GitHub repository.

A.5 Notes on Reusability
• Arcanum’s taint source logs, propagation logs, and the stor-

age sink logs are located in “/ram/analysis/v8logs/”.
All other taint sink logs are in the specified user data direc-
tory of Chromium.

• When testing Arcanum with Docker, ensure to allocate
sufficient CPU resources (4 logical processors or more),
especially when running multiple containers in paral-
lel (e.g., using “--cpus=4 --cpuset-cpus=0-3”). Use
“--cpuset-cpus” to specify CPUs in scenarios where pre-
emption may occur.

• As described in Section 3.4, we introduce a forced
delay in Arcanum to ensure that a target web page
will fully load before an extension injects its con-
tent script. We configure this delay as a Chrome
switch “--custom-script-idle-timeout-ms” and
“--custom-delay-for-animation-ms”. Users can set a
specific delay when recording and replaying different web
pages according to their page loading times. Please refer
to the provided test cases for examples of its usage. The
test cases were evaluated on a Linux server with 8 CPUs
and 16 GiB of RAM. If you are testing with fewer CPU
resources, please consider increasing the value of the two
switches mentioned above in the test case scripts.

• Please see the README file in our GitHub repository for
future updates.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Introduction
	Background and Motivation
	Chrome Browser Extensions
	Prior Browser Extension Privacy Work
	Motivation for Arcanum

	System Design
	Taint Sources
	Taint Propagation Engine
	Tracking Extension Context
	JavaScript Data Flows
	Native Code Data Flows

	Taint Sinks
	Delayed Content Script Injection
	Web Page Replay

	Evaluation
	Experimental Setup
	Results Overview
	Extension Popularity and User Impact
	Source and Sink Distributions
	Web Page Content
	Text Encoding
	Insecure HTTP Usage
	Privacy Policies
	Manual Verification: False Positives
	Privacy Impact Case Studies

	Conclusion and Future Work
	Acknowledgements
	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

