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ABSTRACT
Researchers have extensively explored how password creation poli-
cies influence the security and usability of user-chosen passwords,
producing evidence-based policy guidelines. However, for web au-
thentication to improve in practice, websites must actually im-
plement these recommendations. To date, there has been limited
investigation into what password creation policies are actually de-
ployed by sites. Existing works are mostly dated and all studies
relied on manual evaluations, assessing a small set of sites (at most
150, skewed towards top sites). Thus, we lack a broad understand-
ing of the password policies used today. In this paper, we develop
an automated technique for inferring a website’s password cre-
ation policy, and apply it at scale to measure the policies of over
20K sites, over two orders of magnitude (∼135x) more sites than
prior work. Our findings identify the common policies deployed,
potential causes of weak policies, and directions for improving
authentication in practice. Ultimately, our study provides the first
large-scale understanding of password creation policies on the web.
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1 INTRODUCTION
Passwords remain the de facto standard method for online authen-
tication [6], and password-based web authentication will likely
remain ubiquitous for the foreseeable future. As a consequence,
the security of the web ecosystem is critically dependent on how
both users and websites manage password authentication. Over
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the years, researchers have extensively explored how users behave
with passwords, particularly when constrained by password cre-
ation policies (e.g., [21, 22, 24, 40–43, 46, 48, 50]). These efforts have
produced insights into how authentication should be handled by
websites to promote password security and usability. These user-
centric efforts have helped drive significant updates to modern
password guidelines, such as spurring the US National Institute of
Standards and Technology (NIST) to release new online identity
management guidelines [20] in 2017, its first since 2004 [9].

Ultimately though, websites are the entities that must imple-
ment recommended practices to improve authentication security
and usability in reality. To date, there has been significantly less in-
vestigation into how website operators actually manage password
authentication and what password creation policies they enforce. A
handful of studies [7, 13, 15, 16, 23, 24, 27, 28, 35, 39, 49] have man-
ually analyzed the password policies of top websites. However, due
to the manual methods used in this prior work, the scale of investi-
gation is heavily limited, with the largest entailing only 150 web-
sites [7, 35]. The considered website populations also skew towards
highly-ranked sites [7, 15, 16, 24, 28, 35, 39], across a few coun-
tries (i.e., US, Germany, and China) [28, 39, 49]. Furthermore, most
studies were conducted over a decade ago [7, 13, 15, 16, 23, 27, 35],
predating significant updates to password guidelines, including
those by NIST [20] and Germany’s Federal Office for Information
Security (BSI) [18, 19]. Thus, we lack a large-scale modern under-
standing of the password creation policies deployed by sites today,
the authentication security and usability implications of these poli-
cies, and the adoption rate of authentication recommendations.

In this work, we seek to close this gap. Given the incredible
diversity of the web, doing so is challenging [24, 49], as websites
and their password authentication are implemented in a myriad
of ways, and password policy information is often not explicitly
published. In this work, we develop a web measurement method
that automatically infers password creation policies in a blackbox
fashion. Our method entails testing specifically-chosen passwords
in a carefully constructed order during a site’s account signup,
identifying which passwords are accepted or rejected to infer the
site’s password creation policy. We construct our inference method
to reduce its footprint on evaluated sites. We apply our technique
to successfully infer the password creation policies of over 20K
websites across the Tranco top 1M, evaluating a diverse population
over two orders of magnitude (∼135x) larger than any prior study.

Our analysis reveals how often websites employ certain creation
policy parameters, such as acceptable characters, character compo-
sition requirements, disallowed password structures, and breached
password blocking. We find that the most common policies today
enforce few requirements on passwords, aligning with recent pol-
icy recommendations (e.g., NIST’s 2017 guidelines [20]). However,
counter to modern standards, acceptance of short passwords is
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widespread, with over half of sites allowing passwords of six char-
acters or shorter, and an unexpected 12% lacking any minimum
length requirements. Furthermore, 30% of sites do not support cer-
tain recommended characters in passwords, including spaces and
special characters. We also observe only about 12% of sites using
password blocklists, resulting in the majority of sites being vulner-
able to password spraying attacks [29, 49]. Overall, only a minority
of sites fully adhere to common guidelines, with most sites adhering
to more dated guidelines. We also observe that top-ranked sites
tend to support stronger policy parameters. Through case studies
of weak policy parameters, we identify how web frameworks and
default configurations may be driving factors.

Ultimately, our study illuminates the state of modern password
creation policies at scale for the first time, while also highlighting
authentication security and usability problems requiring attention
and identifying directions for improving authentication in practice.

2 RELATEDWORK
Here we summarize prior work measuring real-world password
policies and studies that relied upon automated account creation.

2.1 Password Policy Measurements
Over the past 15 years, multiple studies have manually investigated
the password policies used by real-world websites. Several initial
studies [15, 16, 27] were very limited in scale (considering up to 10
sites). At a larger scale, Kuhn et al. manually surveyed the password
policies of 69 domains in 2007 and then again in 2009 [23]. The
authors noted that 45% of the websites changed their password
policy in the two-year span. These changes included more widely
imposing password complexity and length requirements, although
policies on many sites remained weak. Similarly, in 2010, Florencio
et al. explored the factors that influence the password policies em-
ployed by websites [13]. The authors manually characterized the
password policies of 75 US websites, finding that factors related to
monetization seemingly correlated inversely with policy strength.
The study was replicated seven years later in 2017 by Mayer et al.,
using the same set of websites along with 67 additional German
websites [28]. This work replicated the earlier observations, and ob-
served that overall, password policies on US websites had increased
in strength over time, and were stronger than those on German
sites. In 2015, Wang et al. also compared the password policies be-
tween 30 Chinese websites and 20 English-language sites [49]. They
observed several Chinese websites requiring digit-only passwords,
and policies on English sites were overall more stringent.

At the largest scale, in 2010, Bonneau et al. conducted an exten-
sive manual evaluation of the password policies on 150 domains
chosen from the Alexa Top 500 sites [7]. They found that half of the
websites enforced a minimum password length of 6, and 18% had
no length restrictions. Furthermore, few sites disallowed common
dictionary words for passwords. Due to password reuse by users
across websites, the authors also highlighted the potential negative
externalities caused by websites with weaker password policies,
impacting the passwords chosen by users even on sites employing
more secure policies. This concept was empirically explored further
by Preibusch and Bonneau through a game-theoretic model using

the same dataset [35]. In 2017, Seitz et al. also characterized the po-
tential for password reuse across sites by contrasting the password
policies across 100 German sites [39], finding that the policies were
not diverse enough to mitigate the risk of password reuse. They
were able to construct passwords that could be accepted across 99%
of the sites. Most recently, Lee et al. [24] manually investigated 120
top English websites, finding that over half did not blocklist com-
mon passwords. Overall, less than a quarter of the sites followed
security and usability password policy recommendations.

A primary limitation of these studies is that they manually an-
alyzed website password policies. As a consequence, the studies
were small-scale, with the largest involving only 150 sites, and the
characterized sites heavily skewed towards top sites (summarized
in Table 8 of Appendix A). Furthermore, most studies were over
a decade ago, making their observations dated. The web has ex-
panded significantly since then, and our understanding of secure
password policies has also substantially evolved (including updates
to modern authentication recommendations, such as NIST’s lat-
est password policy guidance released in 2017 [20]). Thus, a more
modern view of website password policies is needed. Our study
leverages automation to provide the largest-scale picture of web
password creation policies today, encapsulating a diverse popula-
tion of websites across different rankings.

2.2 Account Creation Studies
Several studies have used automated account creation for different
measurements. DeBlasio et al. automatically created honey accounts
on websites to detect potential credential theft [11]. They success-
fully created accounts across 2.3K websites, detecting 19 potential
cases of website credential compromise. Recently, Drakonakis et al.
investigated how websites handle cookies during authentication
workflows [12]. They attempted automated account creation and
login across 1.5M domains, successfully creating accounts on 25K
domains in total. They found half of the domains vulnerable to
cookie-hijacking attacks. While our automated account creation
process shares similarities with the prior work, we designed our
method from the ground up, as our end-to-end empirical method
required overcoming distinct challenges, such as more extensive
account creation activity and inferring password policies.

3 METHOD AND IMPLEMENTATION
Here, we describe our method for automatically inferring password
policies. At a high level, we attempt multiple account signups on
a website using different passwords, observing which accounts
are successfully created to identify password policy parameters.
As shown in Figure 1, we first discover a website’s account signup
workflow. To do so, we search for account signup forms (Section 3.2)
across a website’s pages to detect an account signup page (Sec-
tion 3.3). Then, we execute our policy inference process, which
attempts multiple account signups with different passwords (Sec-
tion 3.4) while evaluating whether the signup is successful (Sec-
tion 3.5). Based on which signup attempts (and the associated pass-
words) succeed, we infer the password policy parameters (Sec-
tion 3.6). To conduct our measurements, we train two machine
learning classifiers, one for signup form detection (Section 3.2) and
another for classifying signup attempt success (Section 3.5). Other
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Figure 1: Illustration of the stages of our password policy
measurement method.

components of our method rely on keyword-based heuristics (dis-
cussed in Section 3.1 and the Extended Version’s (EV) Appendix
A), particularly for identifying potential account signup URLs and
form fields. We will share our measurement data and code to vetted
researchers upon request, as otherwise these could potentially be
used in online abuse.

3.1 Ground-Truth Analysis
Modern websites and their authentication workflows are diverse,
in both design and implementation. As a consequence, we require
heuristics throughout our method for discovering and analyzing
website account creation (as have prior work conducting similar
automated account creation [11, 12]). These heuristics include key-
words for classifying webpages and HTML elements. We addition-
ally train machine learning classifiers for complex labeling tasks.

To identify keywords for our specific method in a systematic,
language-agnostic, and data-driven fashion, as well as to train our
classifiers, we manually analyzed 2800 domains randomly sampled
from the Tranco Top 1M [34] (from June 6, 2021). We identified
whether each domain supports account creation (26% did), and if
so, we analyzed the characteristics of its account signup workflow
(including the location of its signup pages and forms). We refer
to this dataset as our ground-truth data. For extracting relevant
keywords, we applied keyword ranking algorithms to identify the
top keywords prevalent in positive cases but uncommon in negative
cases, agnostic to any specific language (details in EV Appendix A).
We discuss training our classifiers in the following sections.

3.2 Detecting Account Signup Forms
To assess a site’s password policies, we first identify its signup
page and form. To distinguish account signup forms from others
(e.g., login, newsletter), we use a binary SVM classifier. For its fea-
tures, we use the presence of signup-related keywords (chosen from
our ground-truth data, discussed in EV Appendix A) in the HTML
form’s title, ID, class, and action, as well as the numbers of form
inputs in total and password-type inputs. For training data, we
manually labeled the HTML forms in our ground-truth data. We
trained our model using Python’s sklearn [38], selecting hyper-
parameters using grid search. Evaluating our model with 10-fold
cross-validation, we observe an average accuracy of 94.7% (errors
discussed in EVAppendix C.1). Note that while false negatives cause
us to skip evaluating sites, false positives result in unsuccessful
attempts to evaluate them (which we detect and filter out).

3.3 Discovering Account Signup Pages
Given a domain, our method starts by searching for its signup page,
identified by the presence of a signup form (from Section 3.2). This
process proceeds as follows until a signup page is found.
(1) We search for a signup form on the domain’s landing page.
(2) We next crawl URL links found on the landing page that contain

common keywords for account signup or login URLs. We call
these candidate URLs as they likely contain an account signup or
login form. Keywords are selected using ground-truth data (see
EV Appendix A), with separate keywords for signup and login
URLs. We use login URLs as they often contain links to a signup
page (for users without an account). On login URLs, we attempt
to detect a signup form, otherwise we collect further candidate
signup URLs (now ignoring candidate login URLs). For each
page, we visit at most four candidate URLs to avoid excessively
crawling a domain. (In our ground-truth data, we observed that
this threshold was sufficient for discovering signup URLs, as
most pages had few, if any, candidate signup or login URLs.)

(3) Finally, we query the Google search engine for the domain’s ac-
count signup pages (using ScraperAPI [3]). Our search query in-
cludes the domain along with “account OR register OR sign+up
OR create”, constructed using the most frequent keywords in
the HTML titles of real signup pages in our ground-truth data.
Given the search results, we again consider candidate signup
and login URLs, crawling up to 4 candidate URLs in search of
a signup page/form (using the same method for identifying
candidate URLs and processing them as done with URL links
on the domain’s landing page). (We observed that this crawling
threshold was sufficient on our ground-truth dataset.)

(4) Here, we record the domain as lacking a signup page.
We note that our crawler is non-interactive and does not simulate

user actions on a page. Some sites require an action for the signup
form to fully appear (e.g., clicking a “signup” button, or clicking
through multi-page forms). However, in our ground-truth data, this
behavior is not widespread, and automating it would be challenging.

3.4 Attempting Account Signups
With a domain’s signup page, we next fill out and submit the signup
form. By testing different passwords across multiple signup at-
tempts, we will infer the domain’s password policy (discussed in
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Section 3.6). Automatically filling and submitting a signup form
encounters two key challenges.

First, we must identify signup form fields and provide accept-
able values/actions. We classify them based on the HTML input
element’s name, class, and ID, using relevant keywords identified
in our ground-truth data (see EV Appendix A). For common form
fields (e.g., name, email), we use either pre-selected values (not real
user data) or the Faker Python library [5] to generate synthetic
data. We handle the password field specifically, as discussed in
Section 3.6. For unrecognized fields, we generate a random string
as a last resort. Some forms offer multiple button elements (e.g.,
signup and single sign-on buttons). We identify the account signup
button using keywords derived from our ground-truth data (see EV
Appendix A).

A second challenge is that many signup workflows require
completing a CAPTCHA. In our ground-truth data, we identified
CAPTCHAs on at least 49% of signup forms. We aimed to overcome
CAPTCHAs to significantly increase our likelihood of successfully
assessing sites. Given our measurement’s scale and ethical con-
cerns1 with human-driven CAPTCHA solvers (discussed in Sec-
tion 3.10), we opted to rely on an automated CAPTCHA solver,
AZcaptcha2 [2]. We identify CAPTCHAs during the signup pro-
cess through fingerprinting the HTML/JavaScript code used by the
CAPTCHA implementations supported by AZcaptcha, and pass
the extracted CAPTCHAs to AZcaptcha to solve. (During our full
measurement, AZcaptcha correctly solved 94% of all CAPTCHAs
we encountered, with failure cases discussed in EV Appendix C.1)

3.5 Determining Signup Success
Websites vary widely in response to submitting an account signup
form, and behavior differs depending on the signup success. For
example, some sites redirect to another page, while others display a
message. To determine if a signup attempt is successful, we develop
an ensemble decision tree classifier that operates on features of the
webpage returned upon form submission. We collected training
data from signup attempts on 160 domains in our ground-truth
data. Our features include the presence of a signup form (detected
as in Section 3.2), keywords in the page and URL, and the similarity
of the page and its URL with those before form submission. We
then trained an XGBoost decision tree ensemble model with 100
trees, selecting hyperparameters using grid search. Evaluated using
4-fold cross-validation, we observe a 91.3% accuracy. Note that clas-
sification errors primarily result in consistent successes or failures
across all attempts for a domain, which we detect and filter out.

3.6 Inferring Password Policies
The prior sections discussed our method for finding signup pages,
as well as completing, submitting, and determining the submission
outcome for the signup forms. To infer the password policy, we
perform multiple signup attempts where we provide consistent
signup information except we vary the passwords provided system-
atically, allowing us to determine the password policy parameters
1Prior automated account creation work skipped sites with CAPTCHAs [12] or used
human CAPTCHA-solvers at a small scale [11].
2AZcaptcha [2] advertised an automated OCR-basedmethod.We note that AZcaptcha’s
price point is also significantly lower than human-driven CAPTCHA solvers, reinforc-
ing AZcaptcha’s automation claims.

based on which passwords are accepted or rejected. We determine
whether a password is accepted based on the form submission out-
come. However, form submission may fail due to other information
we provide, rather than just the passwords. In such cases, as we
provide consistent signup information across signup attempts, we
will observe consistent signup failures for a domain, independent
of the passwords tested, and we can subsequently filter out such do-
mains from our analysis. Also, a successful account signup results
in a created account. To minimize the account-related resources
we require of domains, we constructed our method to reduce the
number of accounts created, as discussed further in Section 3.10.

3.6.1 Password Policy Parameters. We evaluate the following pass-
word creation policy parameters, which encapsulate all policy pa-
rameters investigated by prior work [7, 24, 39, 49], which fall into
three classes. The first class involves password lengths:
• Length (𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥 ): The minimum and maximum password
lengths allowed, respectively. We conservatively consider 𝐿𝑚𝑖𝑛 ∈
[0, 32] and 𝐿𝑚𝑎𝑥 ∈ [6, 128].
The second class of parameters is restrictive, as they require

that all passwords exhibit certain character structure.
• Digits (𝐷𝐼𝐺𝑚𝑖𝑛): The minimum number of digits required. We
consider 𝐷𝐼𝐺𝑚𝑖𝑛 ∈ [0, 2].

• Uppercase Letters (𝑈𝑃𝑃𝑚𝑖𝑛): The minimum number of upper-
case letters required. We consider𝑈𝑃𝑃𝑚𝑖𝑛 ∈ [0, 2].

• Lowercase Letters (𝐿𝑂𝑊𝑚𝑖𝑛): The minimum number of lower-
case letters required. We consider 𝐿𝑂𝑊𝑚𝑖𝑛 ∈ [0, 2].

• Special Symbols (𝑆𝑃𝑆𝑚𝑖𝑛): The minimum number of special
symbols required. We consider 𝑆𝑃𝑆𝑚𝑖𝑛 ∈ [0, 2].

• Combination, 3 out of 4 (𝑅𝑐𝑚𝑏34): Passwords must exhibit 3
out of 4 character classes (Digits, Uppercase Letters, Lowercase
Letters, Special Symbols).

• Combination, 2 out of 4 (𝑅𝑐𝑚𝑏24): Passwords must exhibit 2
out of 4 classes (same classes as 𝑅𝑐𝑚𝑏34).

• Combination, 2 out of 3 (𝑅𝑐𝑚𝑏23): Passwords must exhibit 2
out of 3 classes (Digits, Letters, Special Symbols).

• Combination of Words (𝑅2𝑤𝑜𝑟𝑑 ): Passwords must have multi-
ple words, where a word is defined as a string of three or more
letters (any case), delimited by digits or special symbols3.

• No Arbitrary Special Symbols (𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 ): Passwords cannot
have arbitrary special characters (considering less popular special
characters not accounted for by parameters 𝑃𝑠𝑝𝑛1 − 𝑃𝑠𝑝𝑛4).

• Letter Start (𝑅𝑙𝑠𝑡𝑎𝑟𝑡 ): A password must start with a letter. (Prior
work observed such positional restrictions [13].)
A final class of parameters is permissive, allowing certain pass-

word characteristics without requiring them.
• Dictionary Words (𝑃𝑑𝑖𝑐𝑡 ): Common dictionary words (e.g.,
apple) are permitted within the password, where a word is at
least 3 letters.

• Sequential Characters (𝑃𝑠𝑒𝑞 ): Logical sequences of 3+ charac-
ters (e.g., 123, abc) are permitted in the password.

• Repeated Characters (𝑃𝑟𝑒𝑝 ): 3+ consecutively repeated charac-
ters are permitted in the password.

3We assume that if 𝑅2𝑤𝑜𝑟𝑑 = 𝑇𝑟𝑢𝑒 , then 𝐿𝑚𝑖𝑛 ≥ 10 (whereas in theory, 𝐿𝑚𝑖𝑛

could be between 7 and 9). We argue that this is a reasonable assumption as requiring
such word structure without allowing longer passwords would overly constrain user
password selection, especially as the average word is 4.7 characters [32].
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• Long-Digit Passwords (𝑃𝑙𝑜𝑛𝑔𝑑 ): All-digit max-length passwords
are permitted (observed before on Chinese websites [49].)

• Short-Digit Passwords (𝑃𝑠ℎ𝑜𝑟𝑡𝑑 ): All-digit min-length pass-
words are permitted (used along with 𝑃𝑙𝑜𝑛𝑔𝑑 to determine
length’s role in accepting digit-only passwords)

• Personal Information/Identifiers (𝑃𝑖𝑑 ): Personal information
(e.g., username) is permitted in the password.

• Space (𝑃𝑠𝑝𝑎𝑐𝑒 ): Whitespaces are permitted in the password.
• Emojis (𝑃𝑒𝑚𝑜 𝑗𝑖 ): Emojis are permitted in the password.
• Unicode Letters (𝑃𝑢𝑛𝑖𝑐𝑑 ): Unicode characters (e.g., accented
characters) are permitted in the password.

• Popular Special Symbols (𝑃𝑠𝑝𝑛1−𝑃𝑠𝑝𝑛4): The fourmost popular
special symbols (“.”, “!”, “_”, and “#”, respectively) are permitted
in the password. We derive this list of top special symbols by
analyzing 10M passwords in a popular password dataset [1].

• Breached Passwords (𝑃𝑏𝑟 ): A common password from a known
password leak is permitted.

3.6.2 Inference Algorithm. With many parameters to infer, we
require an efficient algorithm that evaluates a limited number of
test passwords. We describe our algorithm here, with further details
(including correctness and efficiency) in EV Appendix B.

Algorithm Steps. At a high level, our inference algorithm oper-
ates by first finding one acceptable password (chosen in a specific
fashion). Then, we evaluate each policy parameter one by one,
testing passwords that are modifications of the original admissi-
ble password where only the specific parameter’s dimension is
changed, to determine that parameter’s value. The order of parame-
ter evaluation is specifically chosen to isolate the impact of just that
parameter and minimize the number of successful account signups.
Concretely, our algorithm operates in five steps.

Step 1. Admissible Password: First we must find an admissible
password to seed our exploration, which satisfies the restrictive
parameters (e.g., minimum class requirements) and all permissive
parameters (e.g., avoiding the relevant password characteristic such
as repeated letter and number sequences.)

For a given length 𝑙 , we identify that there exists only a small set
of passwords (which we call the safe set) for which one password
will satisfy any possible parameter combination. If a website accepts
passwords of length 𝑙 , then the safe set must contain at least one
acceptable password.

While we consider a variety of parameters, the safe set is small
because a password can satisfy multiple restrictive parameters si-
multaneously (e.g., contain multiple characters of all classes, satisfy-
ing all minimum class and class combination parameters), and also
satisfy all permissive parameters by avoiding the relevant password
characteristic (i.e., avoiding certain characters and sequences).

Wemanually construct the safe sets for lengths 𝑙 ∈ [6, 32], shown
in Table 1, covering the range of lengths that we conservatively as-
sume a site must accept (based on our 𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 assumptions).
As seen in Table 1, the safe set for a given length contains pass-
words covering all restrictive parameter combinations, while also
satisfying all permissive parameters. Note that for short lengths,
fewer restrictive parameters can be concurrently satisfied, so the
safe set is larger. The largest safe set contains 10 passwords (for
𝑙 = 6), while for lengths 8 or larger, the safe set consists of only two
passwords (with and without special characters).

Password 𝐿 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 𝐿𝑂𝑊 𝑈𝑃𝑃 𝐷𝐼𝐺 𝑆𝑃𝑆

M-7c4@

6

1 1 2 2
M-7cS@ 1 2 1 2
Mx-7c@ 2 1 1 2
Mx7c4@ 2 1 2 1
Mx7cS@ 2 2 1 1
M-7cS4 1 2 2 1
M-7S4@ 0 2 2 2
x-7c4@ 2 0 2 2
Mx-cS@ 2 2 0 2
Mx7cS4 T 2 2 2 0
M7-cS4@

7

1 2 2 2
Mx7-c4@ 2 1 2 2
Mx-cS4@ 2 2 1 2
Mx7-cS4 2 2 2 1
Mx7zcS4 T 2 2 2 0
Mx7-cS4@ 8 2 2 2 2
MxT7zcS4 T 2 2 2 0
Mx7-cS4@y 9 2 2 2 2
MxT7zcS4t T 2 2 2 0
MxT7zcS4-@ 10 2 2 2 2
MxT7zcS4t1 T 2 2 2 0

Table 1: The safe set of passwords for different lengths 𝐿.
For each password, we indicate which restrictive parameter
configurations are satisfied. Note that all passwords satisfy
the class combination parameters, 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 , and 𝑅2𝑤𝑜𝑟𝑑 (if 𝐿 ≥
10). Permissive parameters are also all inherently satisfied.
For 𝐿 > 10, the safe set is identical as with 𝐿 = 10, except with
passwords padded with arbitrary letters and digits to length.

We search for an admissible password through the safe sets in
increasing length order, first testing passwords with special charac-
ters within each safe set. Whether the admissible password found
contains a special character already determines our first restrictive
parameter 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 (if arbitrary special characters are disallowed).
In subsequent steps, we modify this admissible password along a
single parameter’s dimension and identify whether the modified
password remains accepted, revealing the parameter’s value.

Step 2. Restrictive Parameters: With an admissible password
of length 𝑙 (and 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 determined, which indicates whether
arbitrary special characters are allowed), we then evaluate the
restrictive parameters first, as determining these reveal the con-
straints enforced on any further tests. To determine the value of a
restrictive parameter, we modify the admissible password to only
violate that parameter, observing whether the modified password
is accepted. If so, then the restrictive parameter is in effect.

1) Combination of Words (𝑅2𝑤𝑜𝑟𝑑 ): If 𝑅2𝑤𝑜𝑟𝑑 = 𝑇𝑟𝑢𝑒 , the admis-
sible password must contain a two-word structure, delimited by a
non-letter character (if not, then we already know 𝑅2𝑤𝑜𝑟𝑑 = 𝐹𝑎𝑙𝑠𝑒).
To test 𝑅2𝑤𝑜𝑟𝑑 , we modify the admissible password by moving
the non-letter delimiter to the password end, eliminating the two-
word structure (e.g., Admissible Password: MxT7zcS4-@, Modified
Password: MxTzcS4-@7). If this modified password is no longer
accepted, 𝑅2𝑤𝑜𝑟𝑑 = 𝑇𝑟𝑢𝑒 , otherwise 𝐹𝑎𝑙𝑠𝑒 . This modification does
not affect other parameters as the length and character composi-
tion remain identical, and there are no other positional restrictions
on middle-of-password characters. Permissive parameters are also
not affected as the modification does not introduce a character se-
quence related to a permissive parameter (e.g., sequential/repeated
characters, dictionary word).
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2) Letter Start (𝑅𝑙𝑠𝑡𝑎𝑟𝑡 ):All our admissible passwords begin with a
letter. To assess 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 , we move the first non-letter character in the
admissible password to the start (e.g., Admissible Password: Mx7-
cS4@, Modified Password: 7Mx-cS4@). If accepted, 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑎𝑙𝑠𝑒 ,
otherwise 𝑇𝑟𝑢𝑒 . If 𝑅2𝑤𝑜𝑟𝑑 = 𝑇𝑟𝑢𝑒 , we take care to avoid moving
the two-word delimiter (e.g., Admissible Password: MxT7zcS4t1,
Modified Password: 4MxT7zcSt1), as all admissible passwords have
multiple non-letter characters (see Table 1). This modification does
not affect other parameters as the length and character composition
remain identical, and the only other positional restriction remains
satisfied. Also, moving the non-letter characters does not introduce
a character sequence affecting a permissive parameter.

3) Character Class Minimums (𝐷𝐼𝐺𝑚𝑖𝑛 , 𝑈𝑃𝑃𝑚𝑖𝑛 , 𝐿𝑂𝑊𝑚𝑖𝑛 ,
𝑆𝑃𝑆𝑚𝑖𝑛): To find the character class minimum for class 𝐶 (where
𝐶 is either digits, uppercase letters, lowercase letters, or special
symbols), we modify the admissible password to contain no𝐶 char-
acters, by replacing 𝐶 characters with characters of other classes
(e.g., if 𝐶 = 𝐿𝑂𝑊 , Admissible Password: Mx7-cS4@, Modified Pass-
words: MX7-CS4@). If accepted, 𝐶𝑚𝑖𝑛 = 0. Otherwise, we modify
the admissible password to contain only one 𝐶 character (e.g., if
𝐶 = 𝐿𝑂𝑊 , Admissible Password: Mx7-cS4@, Modified Passwords:
MX7-cS4@). If accepted, 𝐶𝑚𝑖𝑛 = 1, otherwise 𝐶𝑚𝑖𝑛 = 2.

To avoid conflictingwith other restrictive parameters, our default
replacement policy is to swap between lowercase and uppercase
characters (to not impact 𝑅2𝑤𝑜𝑟𝑑 and 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 ), and between digits
and special symbols (to not affect 𝑅2𝑤𝑜𝑟𝑑 ). If 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 = 𝑇𝑟𝑢𝑒 (no
special characters allowed), digits are instead replaced with any
letters (note here that if 𝑅2𝑤𝑜𝑟𝑑 = 𝑇𝑟𝑢𝑒 , then 𝐷𝐼𝐺𝑚𝑖𝑛 ≥ 1).

In most cases, all class combination parameters (𝑅𝑐𝑚𝑏23, 𝑅𝑐𝑚𝑏24,
𝑅𝑐𝑚𝑏34) remain satisfied without further consideration. As seen in
Table 1, most admissible passwords already have four character
classes, so three classes remain after eliminating one class in the
admissible password. A few admissible passwords have only three
character classes (none have fewer classes), either because they are
short (specifically, 𝑙 = 6) or because 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 = 𝑇𝑟𝑢𝑒 (so only three
classes are allowed). For 𝑙 = 6 admissible passwords, there are two
characters of each class, and we can replace the second𝐶 character
with one from the missing class, following the default replacement
policy for the first character (e.g., if𝐶 = 𝑈𝑃𝑃 , Admissible Password:
Mx-cS@,Modified Password: mx-c1@). This preserves𝑅𝑙𝑠𝑡𝑎𝑟𝑡 while
maintaining 3 distinct classes. When 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 = 𝑇𝑟𝑢𝑒 , the class
combination parameters either implicitly imply class minimums
which we will correctly infer (e.g., 𝑅𝑐𝑚𝑏34 = 𝑇𝑟𝑢𝑒 means there
needs to be one character of each class), or will remain satisfied
(the modified password still has two classes).

4) Combinations Requirements (𝑅𝑐𝑚𝑏23, 𝑅𝑐𝑚𝑏24, 𝑅𝑐𝑚𝑏34): To eval-
uate the final set of restrictive parameters, the class combination
requirements, we modify the admissible password to have fewer
classes and test for acceptance.

We start by identifying required character classes based on the
other restrictive parameters.𝑅2𝑤𝑜𝑟𝑑 and𝑅𝑙𝑠𝑡𝑎𝑟𝑡 both require letters;
we select the required case based on class minimums, selecting
lowercase letters by default. Similarly, 𝑅2𝑤𝑜𝑟𝑑 requires either digits
or special characters; we select which based on class minimums
and 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 , selecting digits by default.

For modifying our admissible password, we replace all characters
of non-required classes with those of a required class (replacing

with lowercase letters if no class is required). If letters are required
at certain positions, we replace any letters of a non-required class
with letters of the required class (likewise between digits and spe-
cial characters). This modified password has the minimum number
of classes while adhering to other restrictive parameters, without
impacting length or permissive parameters (e.g., if𝑈𝑃𝑃𝑚𝑖𝑛 ≥ 1, Ad-
missible Password: Mx7-cS4@, Modified Password: MXZNCSZA).
If the modified password is accepted, we can determine the class
combination parameters given the required classes in the password
(in the prior example, there are no class combination requirements).

However, if not accepted, then an explicit class combination
requirement is in effect. We determine its configurations based on
the properties of the rejected modified password, as follows:
• All non-letters of one class (e.g., if 𝐷𝐼𝐺𝑚𝑖𝑛 ≥ 1, 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑎𝑙𝑠𝑒 ,
Admissible Password: Mx7-cS4@, Rejected Modified Password:
32729041). Here, the other restrictive parameters require a sin-
gle non-letter class. We test a new modification of the admissi-
ble password with only that non-letter class and letters of one
case, using lowercase by default (e.g., New Modified Password:
a2729041). If this new password is accepted, 𝑅𝑐𝑚𝑏23 = 𝑅𝑐𝑚𝑏24 =
𝑇𝑟𝑢𝑒 (and 𝑅𝑐𝑚𝑏34 = 𝐹𝑎𝑙𝑠𝑒), otherwise only 𝑅𝑐𝑚𝑏34 = 𝑇𝑟𝑢𝑒 .

• All non-letters of both classes (e.g., if 𝐷𝐼𝐺𝑚𝑖𝑛 ≥ 1, 𝑆𝑃𝑆𝑚𝑖𝑛 ≥ 1,
𝑅𝑙𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑎𝑙𝑠𝑒 , Admissible Password: Mx7-cS4@, Rejected Mod-
ified Password: 157-824@). Here, we can immediately infer that
only 𝑅𝑐𝑚𝑏34 = 𝑇𝑟𝑢𝑒 as a two-class password was rejected.

• All letters of one class/case (e.g., if 𝑈𝑃𝑃𝑚𝑖𝑛 ≥ 1, Admissible
Password: Mx7-cS4@, Rejected Modified Password: MXZNCSZA).
We test a new modified password with letters of both cases
(e.g., New Modified Password: MxZNCSZA). If accepted, only
𝑅𝑐𝑚𝑏24 = 𝑇𝑟𝑢𝑒 . If not, move to the following case.

• All letters of both classes/cases (e.g., if 𝑈𝑃𝑃𝑚𝑖𝑛 ≥ 1, Admissible
Password: Mx7-cS4@, Rejected Modified Password: MxZNCSZA).
If both letter cases are required, we know 𝑅𝑐𝑚𝑏23 = 𝑅𝑐𝑚𝑏34 =

𝑇𝑟𝑢𝑒 . Otherwise, we test a new modified password with letters
of only one case (whichever is required, defaulting to lowercase
letters) and digits (e.g., New Modified Password: M3ZNCSZA). If
accepted, only 𝑅𝑐𝑚𝑏23 = 𝑇𝑟𝑢𝑒 , otherwise only 𝑅𝑐𝑚𝑏34 = 𝑇𝑟𝑢𝑒 .

• Contains one non-letter class and one letter-class (e.g., if𝑈𝑃𝑃𝑚𝑖𝑛 ≥
1,𝐷𝐼𝐺𝑚𝑖𝑛 ≥ 1, Admissible Password: Mx7-cS4@, Rejected Modified
Password: MX71CS41). Here, we can immediately infer that only
𝑅𝑐𝑚𝑏34 = 𝑇𝑟𝑢𝑒 as the two-class password was rejected.
Step 3. Length Parameters: Having now determined the re-

strictive parameter values that constrain password structure, we can
construct passwords of different lengths that satisfy the restrictive
parameters (while implicitly satisfying all permissive parameters
by avoiding associated characters and sequences). We can then
determine the password length minimum and maximum through
using binary search to test the acceptance of passwords of varying
length (within the ranges 𝐿𝑚𝑖𝑛 ∈ [0, 32] and 𝐿𝑚𝑎𝑥 ∈ [6, 128]). For
example, to evaluate 𝐿𝑚𝑎𝑥 , we first construct and test a password of
length 67 (halfway point of our range). If accepted, we recursively
explore 𝐿𝑚𝑎𝑥 within the upper half [68, 128], otherwise we explore
the lower half [6, 66]), following the logic of binary search.

We detail our password construction algorithm in EV Appen-
dix B. At a high-level, the restrictive parameters provide a set of
required characters and positional constraints, and we satisfy these
constraints first before adding additional characters to construct
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a password of an evaluated length 𝑙 . We start constructing a pass-
word using characters required by the class minimums, then using
characters of other not-yet-used classes to satisfy class combination
requirements (adhering to 𝑅𝑛𝑜_𝑎_𝑠𝑝𝑠 ). If 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 and/or 𝑅2𝑤𝑜𝑟𝑑 are
true, we satisfy these positional constraints at the start of the pass-
word, again first using allowed characters of classes required by the
class minimums and combination requirements (and any remaining
required characters are added after the positional constraints). At
this point, our partially-constructed password is the shortest that
satisfies all restrictive parameters. If its length already exceeds the
evaluated length 𝑙 , we consider 𝑙 an unacceptable length. Otherwise,
we pad the password with arbitrary letters and digits to length 𝑙

(e.g., if 𝑈𝑃𝑃𝑚𝑖𝑛 = 𝐷𝐼𝐺𝑚𝑖𝑛 = 1 and other restrictive parameters are
false, Constructed Length-11 Password: M7ak3jCbE43).

Step 4. Permissive Parameters: Next, we determine the per-
missive parameters (i.e., what is allowed in passwords). To do so, we
inject the character(s) associated with a permissive parameter (e.g.,
emoji, dictionary word) into an admissible password, while still
satisfying restrictive, length, and other permissive parameters, and
test if the modified password is accepted. If so, then the permissive
parameter is true, and the associated characters are permitted.

1) Permitted Characters (𝑃𝑠𝑝𝑎𝑐𝑒 , 𝑃𝑢𝑛𝑖𝑐𝑑 , 𝑃𝑒𝑚𝑜 𝑗𝑖 , 𝑃𝑠𝑝𝑛1 - 𝑃𝑠𝑝𝑛4):
We first generate an admissible password of maximum length (de-
scribed in Step 3). We then test a modified password where a non-
essential character (i.e., one not used to satisfy a restrictive pa-
rameter) is replaced with the evaluated character (if not possible,
then the parameter value is inherently false) (e.g., for 𝑃𝑠𝑝𝑛4, Gener-
ated Password: Mx7-a1p5b2, Modified Password: Mx7-a1p5b#). For
𝑃𝑠𝑝𝑎𝑐𝑒 , we require that the whitespace character is not at the start
or end of the password. This modified password remains adherent
to restrictive, length, and other permissive parameters. If accepted,
the permissive parameter value is true.

2) Permitted Sequences (𝑃𝑟𝑒𝑝 , 𝑃𝑠𝑒𝑞 , 𝑃𝑑𝑖𝑐𝑡 , 𝑃𝑖𝑑 ): Here, we construct
a password with the evaluated sequence and test for acceptance. For
repeated characters (𝑃𝑟𝑒𝑝 ) the sequence is three repeating consecu-
tive characters (e.g., 111, aaa, or AAA), and for sequential characters
(𝑃𝑠𝑒𝑞) it is abc, 123, or ABC. For both parameters, we select one as
permitted by other policy parameters.

For dictionary words (𝑃𝑑𝑖𝑐𝑡 ), we identify the longest word (up to
8 characters) permitted in a password as constrained by other policy
parameters, and test the inclusion of the most common English
word [36]. For personal identifiers (𝑃𝑖𝑑 ), the evaluated sequence is
a subset of the username used during account creation. We choose
our usernames to be a 3-letter names followed by 5 random digits,
and the sequence is the 3-letter portion of the username (e.g. if the
registered username is joe31426, we evaluate the acceptance of the
sequence "joe" in the password)

We first construct the shortest password 𝑃 that satisfies the re-
strictive requirements (as done in Step 3). If the evaluated sequence
can be added to the end of 𝑃 while remaining within 𝐿𝑚𝑎𝑥 , we
simply test this augmented password, padding if necessary to reach
𝐿𝑚𝑖𝑛 (e.g., to test for 𝑃𝑠𝑒𝑞 if 𝐿𝑚𝑖𝑛 = 6, 𝐿𝑚𝑎𝑥 = 64 and the shortest
password satisfying restrictive parameters is: AQ16-@, Modified
Password: AQ16-@abc). This augmentation does not affect restric-
tive parameters (nor length and other permissive constraints).

However, it is possible that appending the sequence to 𝑃 does
not fit within 𝐿𝑚𝑎𝑥 . In such cases, 𝑃 must already be near 𝐿𝑚𝑎𝑥 -
length (as we only require appending 3 characters). Instead, we
must construct the evaluated sequence using characters already
existing in 𝑃 . We find the most common class 𝐶 in 𝑃 amongst low-
ercase letters, uppercase letters, and digits (for 𝑃𝑑𝑖𝑐𝑡 and 𝑃𝑖𝑑 , we
only consider the two letter classes). We then rearrange the char-
acters in 𝑃 to cluster 𝐶 characters together. If three (or more) 𝐶
characters are consecutive, we replace them with the evaluated
sequence. Otherwise, we add the 𝐶 characters necessary to form
a 3-𝐶-character substring, again replacing this with the evaluated
sequence. By using the most common class, we minimize the addi-
tional characters that may need to be added (e.g., to test for 𝑃𝑠𝑒𝑞 if
𝐿𝑚𝑎𝑥 = 8 and the shortest password satisfying restrictive parame-
ters is: AQ16-@, Modified Password: ABC16-@). If the password
cannot be constructed within length 𝐿𝑚𝑎𝑥 , it is inherently false.

If restrictive parameters do not specify positional constraints,
the rearrangement of 𝑃 ’s characters does not violate any restrictive
parameters (nor length or other permissive parameters). If 𝑅𝑙𝑠𝑡𝑎𝑟𝑡
or 𝑅2𝑤𝑜𝑟𝑑 specify positional constraints, we handle each specifi-
cally. We ensure that the rearranged password starts with a letter
if 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 = 𝑇𝑟𝑢𝑒 . If 𝑅2𝑤𝑜𝑟𝑑 = 𝑇𝑟𝑢𝑒 , then 𝑃 contains a two-word
structure, which must have at least 3 characters of one letter class.
We cluster three letters of this class as one of the 3-letter words,
and replace it with the evaluated sequence.

3) Long and Short Digit Passwords (𝑃𝑙𝑜𝑛𝑔𝑑 , 𝑃𝑠ℎ𝑜𝑟𝑡𝑑 :) We gener-
ate digit-only passwords of lengths 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 , respectively
(without sequences/repetition). Here, restrictive parameters are ig-
nored to explore exceptions for all-digit passwords (e.g., if 𝐿𝑚𝑖𝑛 = 6,
Attempted Password: 147036).

4) Breached Passwords (𝑃𝑏𝑟 ): With other parameters determined,
we test the highest-ranked breached password [8] satisfying them
(e.g. if 𝐷𝐼𝐺𝑚𝑖𝑛 ≥ 1, 𝑅𝑙𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑎𝑙𝑠𝑒 , 𝐿𝑚𝑖𝑛 ≥ 6, all other restrictive
parameters are false and permissive parameters are true, Attempted
Password: 123456, the most popular password in [8] satisfying
policy parameters). If accepted, 𝑃𝑏𝑟 = 𝐹𝑎𝑙𝑠𝑒 , otherwise true.

Step 5. Sanity Check:Given an inferred policy, we test one final
password that should not succeed (e.g., too short, violates restrictive
parameters), as a sanity check. A detected success indicates a policy
inference error, which we can filter out. (We also filter out other
errors, where all attempts are successes or failures, and those where
trailing attempts all fail, as discussed later.)

Algorithm Efficiency. Our algorithm systematically evaluates
a website’s password policy in an efficient fashion that avoids brute-
force guessing passwords. As we can pre-compute the safe sets for
our full range of explored lengths, and all policy parameters have a
limited range of values (including length, which is efficiently inves-
tigated through binary search), we can determine the bounds on the
number of passwords tested, as well as the bounds on the number
of successful passwords accepted by a website. Table 2 depicts these
bounds for each step of our inference algorithm, as well as for the
entire algorithm. In the worst-case, our method will create up to 37
accounts on a website, with at most 105 account signup attempts (in
most cases, the number of attempts and accounts created is signifi-
cantly lower). We note that we prioritized fewer accounts created,
as the impact of a failed account signup attempt on a website is
much lower. Also, there is precedence in the research community
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Algorithm Step # Attempts # Successes

Step 1: Admissible password [1, 65] [1, 1]
Step 2: Restrictive parameters [4, 13] [0, 9]
Step 3: Length parameters [11, 12] [0, 12]
Step 4: Permissive parameters [2, 14] [0, 14]
Step 5: Sanity check [1, 1] [0, 1]

Total: Whole algorithm [19, 105] [1, 37]

Table 2: Bounds on the number of account signup attempts
and successes required by our method, per domain.

for creating test accounts for measurement purposes; existing stud-
ies on password policies also created multiple accounts to evaluate
policy parameters, but did so manually [7, 13, 24, 28, 35, 39, 49].

Algorithm Correctness. EV Appendix B describes how each
parameter is correctly evaluated in isolation. To further ensure cor-
rectness, we tested our inference algorithm on a thousand randomly-
generated valid policies, observing only correct inferences.

3.7 Measurement Implementation
We implement our measurement method using Selenium browser
automation [4] with headless Chrome instances4 To minimize the
computational load we induce on websites, as well as avoid trigger-
ing anti-bot detection, we rate limit our crawling of a domain to
at most one page load every 30 seconds, and at most one account
signup attempt every 30 minutes. We also use a pool of 14 proxies,
switching to a new proxy for each signup attempt to provide IP
diversity. Given the rate limiting, we highly parallelize our analysis
across sites, such that sites are assessed in a round-robin fashion.

3.8 Limitations
Our measurement method is best-effort, relying on multiple heuris-
tics. It can exhibit false negatives, missing some sites with account
signups, such as those with complex workflows (e.g., multi-page
forms), user verification (email or phone) prior to signup form
submission, registration fees, or offline membership (details in EV
Appendix C.1). Furthermore, our evaluation may fail on sites that
can detect ourmeasurements (e.g., sites deploying anti-bot defenses)
or where our machine learning models misclassify. However, as our
method follows a consistent workflow for account signup attempts,
we can filter out errors where all attempts are detected as success-
ful or failures, which is infeasible, as well as those where trailing
attempts are all failures (as this is highly unlikely, as discussed in
Section 4). Also, our final method step involves testing the inferred
policy, further reducing the likelihood of false positives.

Our measurements also assume static policy parameters, rather
than dynamic rules, such as if a site were to enforce password
strength requirements. To evaluate whether password strength en-
forcement occurs at scale, we calculated the strength of all accepted
passwords on successfully evaluated sites using password strength
estimator zxcvbn [52]. We observe that for 94% of sites, the weakest

4When crawling with a headless browser, websites may detect and block such a crawler.
However, when debugging our method, we tested full browser instances and did not
observe higher crawling success, likely because many sites either do not block crawlers
or apply anti-bot techniques that are similarly effective on full browsers.

accepted password was rated 2 or lower (out of 4), which is con-
sidered a relatively weak password (ranging from “too guessable”
to “somewhat guessable”). Thus, it is unlikely that most sites are
enforcing high password strength requirements.

Due to our method limitations, our evaluated sites may skew
from domains with complex or unique workflows, as our analyzed
domains use single-step account creation workflows, specific com-
mon keywords, and do not require verification or payment for
signups. While our work does not comprehensively evaluate all
sites (similar to all prior automated account creation works, in-
cluding those investigating authentication [11, 12]), our dataset
(discussed in Section 4) is orders of magnitude larger and more di-
verse (including across rankings) than prior studies, serving as more
generalizable empirical grounding. Furthermore, as detailed in EV
Appendix C.3, we manually investigated the password policies of a
random sample of domains that our method does not handle, and
found that our study’s core findings generalize to these domains.

3.9 Alternative Measurement Approaches
While our automated account creation process is similar to prior
work [12], our task involves distinct challenges (e.g., password
policy inference), so we designed our method in a data-driven
fashion from scratch. In comparison, while prior work applied
rule-based heuristics for keyword selection, form detection, and
verification, we applied machine learning techniques for such tasks.
Our signup discovery process also uses search engine results to
improve discovery. Our efforts resulted in effective account creation
automation, even compared to prior work (see EV Appendix C.2).

We initially explored non-blackbox methods for assessing pass-
word policies, which could reduce website interactions. However,
we manually evaluated a random sample of 200 signup websites
and identified significant limitations.

Mining Textual Policy Descriptions: Only 25% of sampled
sites provided policy descriptions (prior work observed 22% [7], as
well as inconsistencies between policies and their descriptions [24]).
Such descriptions are also diverse, often displayed only upon user
action, and require natural language processing, yet often still do
not describe all policy parameters (e.g., password blocklisting).

Inspecting Client-Side Policy Checks: Only 10% of sampled
sites had client-side JavaScript password policy checks, which were
custom implemented per site, inhibiting automated analysis.

Analyzing Strength Meters: Only 11% of sampled sites dis-
played passwordmeters (recent work found only 19% on top English
sites [24]). Prior work has also observed widespread custom meter
designs [47], inhibiting automated analysis. Furthermore, sites typ-
ically use password meters as nudges instead of enforcing strength
requirements [16, 49], and various policy facets (e.g., blacklisting,
allowed characters) may not be factored into strength meters.

Using Password Resets: One might assess password policies
through password reset workflows. However, we did not log into
accounts to avoid account activity (as discussed in Section 3.10).
Furthermore, many sites prevent choosing a new password simi-
lar to previous ones, which would interfere with policy inference.
Finally, sites exhibit diverse password recovery workflows, often
requiring user verification, complicating automated analysis.
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3.10 Ethics
As our study involves evaluating a large number of websites, there
are several important ethical considerations. It is impractical to
obtain consent from all sites. Furthermore, obtaining consent could
negatively impact the scientific validity of our study, as websites
may opt-out in a biased manner, may change their policies in light
of our investigation, or may specifically block our measurements.
Thus, we do not seek consent from the studied sites, and must care-
fully design our measurement methods. We extensively explored
various measurement methods (as detailed in Section 3.9). Here,
we discuss the concerns with our resulting approach, the potential
harm associated with our study, and our mitigations.

To assess the password policies on websites, we attempt multi-
ple account signups in an automated fashion, succeeding for some
attempts. Prior studies have performed similar automated account
creation [11, 12], and we draw inspiration from their ethical con-
siderations in designing our method. The potential harm that this
activity causes for websites includes the computational resources
incurred by the website in processing our signup attempts and cre-
ated accounts. To limit the resources that websites must expend due
to our study, we constructed our password inference algorithm to
reduce the number of attempts and successful accounts registered.
For successfully created accounts, we never access, verify, or use
those accounts.We also crawl websites and attempt account signups
in a heavily rate-limited fashion, ensuring that a website receives
at most one attempt every half hour (and in most cases, attempts
occur even less frequently). We believe that for websites supporting
account registrations, this rate of signup attempts and the num-
ber of accounts created requires a limited amount of storage and
load on websites, and should not tax even small websites. Further-
more, there is precedence in the research community for creating
small numbers of test accounts for measurement purposes; existing
studies on password policies also created test accounts to evaluate
policy parameters, but did so manually [7, 13, 24, 28, 35, 39, 49] (e.g.,
Seitz et al. [39] created up to 15 accounts per site). As part of our
account creation method, we solve CAPTCHAs using an automated
CAPTCHA solver. We avoid human-driven CAPTCHA solvers due
to ethical issues identified with such services [30].

From the legal perspective, we consulted our organization’s gen-
eral counsel, as our methods may be contrary to some websites’
policies and terms of services, which we are unable to explicitly
check for all sites in our study. General counsel reviewed this study
and determined that the legal risk is minimal, with support from
judicial precedence, and that there lacked damages incurred by
websites. Our organization’s administration also reviewed and ap-
proved this study. Finally, there are no human subjects concerns
with this study (as such, we were not reviewed by our organiza-
tion’s Institutional Review Board). No real user data was used for
this study, and our study did not interact with any individuals.

4 RESULTS
Here, we apply our measurement method to evaluate the password
policies of websites in the Tranco Top 1M. We analyze the top
password policies, the values of the various policy parameters,
adherence to modern guidelines, and differences across rankings.

Rank Policy %
1 𝐿𝑚𝑖𝑛 = 1 8.3
2 𝐿𝑚𝑖𝑛 = 6 7.1
3 𝐿𝑚𝑖𝑛 = 5, 𝐿𝑚𝑎𝑥 = 40 4.1
4 𝐿𝑚𝑖𝑛 = 8 3.4
5 𝐿𝑚𝑖𝑛 = 5 2.9
6 𝐿𝑚𝑖𝑛 = 12 2.8
7 𝐿𝑚𝑖𝑛 = 4 1.2
8 𝐿𝑚𝑖𝑛 = 8, 𝑅𝑐𝑚𝑏34 = 𝑇 0.8
9 𝐿𝑚𝑖𝑛 = 8, 𝐿𝑚𝑎𝑥 = 72 0.8
10 𝐿𝑚𝑖𝑛 = 7 0.7
11 𝐿𝑚𝑖𝑛 = 4, 𝐿𝑚𝑎𝑥 = 40 0.5
12 𝐿𝑚𝑖𝑛 = 8, 𝑃𝑙𝑜𝑛𝑔𝑑 = 𝐹 , 𝑃𝑠ℎ𝑜𝑟𝑡𝑑 = 𝐹 0.5
13 𝐿𝑚𝑖𝑛 = 8, 𝐿𝑂𝑊𝑚𝑖𝑛 = 𝑈𝑃𝑃𝑚𝑖𝑛 = 𝐷𝐼𝐺𝑚𝑖𝑛 = 1 0.4
14 𝐿𝑚𝑖𝑛 = 4, 𝐿𝑚𝑎𝑥 = 20 0.3
15 𝐿𝑚𝑖𝑛 = 6, 𝐿𝑚𝑎𝑥 = 100, 𝑃𝑒𝑚𝑜 𝑗𝑖 = 𝐹 0.3

Table 3: Top 15 password policies for all evaluated sites. For
each policy, unless specified otherwise, 𝐿𝑚𝑎𝑥 = 128, minimum
required characters of a class is 0, restrictive parameters are
false, and permissive parameters are true.

4.1 Aggregate Measurement Results
We conducted our large-scale measurement in Dec. 2021, evaluat-
ing password policies across Tranco Top 1M (Dec. 13). Appendix
Figure 3 visualizes the site population at each method stage.

Out of the 1M domains, we find signup pages on 141K domains
(14.12%). While we could successfully submit one signup attempt
(including CAPTCHA solving) on 59K domains, we were able to
fully evaluate (across multiple attempts) 26K domains. Finally, we
filter out domains where all signup attempts are reported as suc-
cesses or failures (as this is not feasible, especially with our sanity
check signup attempt), or where all trailing attempts are failures
(we test permissive parameters last, and as discussed shortly, it is
highly unlikely that any site truly does not permit all tested char-
acters/structures). This filtering leaves us with 20,119 domains for
which we successfully analyze password policies. We manually val-
idated our results are accurate on a random sample of 100 evaluated
sites. We note that this population is two orders of magnitude larger
than prior work (as discussed in Section 2), providing large-scale
data on password policies for the first time.

Our analyzed sites are also broadly distributed across rankings
(unlike prior work’s focus on top sites), with a slight skew towards
lower-ranked sites, as shown in EV Appendix Figure 3. Across
each 100K ranking interval, our final dataset contains between
1.4K–3.7K sites (and between 12.1K-19.2K signup sites found). In
the subsequent discussion of our results, we separately consider
our evaluated sites that are within the top 10K, 100K, and 1M (full
dataset). Here, our results for Top X sites represent only the domains
that we evaluated within the Top X ranking, rather than all Top X
sites (as we did not evaluate all sites).

4.2 Top Policies
To start, we group websites with identical password policy con-
figurations (across all policy parameters), and consider the top
password policies observed among our websites. Table 3 lists the
top 15 policies observed across our 20K websites (spanning the
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(a) Minimum password lengths

(b) Maximum password lengths

Figure 2: CDFs of password minimum and maximum length
requirements, for all sites in our dataset (Top 1M) as well as
those ranked in the top 10K and 100K.

Tranco top 1M sites), and the percent of sites using those policies.
Among the top policies, the majority (11 of 15) are simple policies,
only constraining the password length without further restrictions.
Surprisingly, the most popular policy (8.3% of sites) allowed pass-
words of any length without any constraints. Such a policy allows
even single character passwords (we manually verify this behavior
on a sample of sites), which are extremely weak passwords. Other
top policies allow short passwords (e.g., 4, 5, and 6 characters). In
addition, 5 top policies also cap the password’s length (including
one that limits passwords to only 20 characters). Other password
constraints are less prominent in top policies, with only 4 of the
top 15 policies applying any non-length constraints.

We find that policy popularity among sites exhibits a long-tail
distribution. While the most popular policy was seen on 8.3% of
sites, the top 10 policies cover only 32.1% of sites, with a total
of 11,184 distinct policy configurations. Most policies appear on
only one site, which highlights enormous diversity in the policies
deployed (with implications for guidelines, password usability, and
password managers, as will be discussed in Section 6).

4.3 Policy Parameters Values
Here, we evaluate individual password policy parameters. As the
top 15 policies (Section 4.2) capture only a third of our sites, their
parameters do not necessarily reflect an aggregate perspective.

Lower Upper Digit Special

0
10K 78.4 81.7 71.2 80.3
100K 79.2 79.4 76.3 82.5
1M 84.1 83.7 82.0 86.3

1
10K 10.6 10.1 20.7 14.9
100K 11.6 10.9 14.5 9.8
1M 8.3 8.7 10.0 7.0

2
10K 11.1 8.2 9.7 9.2
100K 9.2 9.7 9.2 7.7
1M 7.5 7.6 8.0 6.8

Table 4: For different character classes, we list the percent of
sites in the Tranco Top 10K, 100K, and 1M (full dataset) that
require a certain number of characters of that class.

4.3.1 Length. Figure 2a plots the CDF of the minimum password
lengths enforced by password policies across our websites (Top 1M).
As also seen with top policies, we find that a non-trivial fraction of
sites (∼12%) allow single-character passwords. The most prevalent
minimum length is 5, seen at nearly 40% of sites. Only 25% of sites
require passwords of length 8 or longer, as recommended by most
modern guidelines [10, 19, 20, 31, 37], and ∼10% require 10+ lengths.

Figure 2b similarly depicts the CDF of the maximum password
lengths allowed by our websites. We observe that 36% of sites do
not cap the password length (or allow at least 128 characters). The
most common cap was 40 characters, observed at about 10% of
sites. For other sites, the maximum length widely varied, although
we notice prevalent use of lengths 20, 72, and 100. Overall, nearly
60% of sites allowed passwords of at least 64 characters, as recom-
mended by many current guidelines [10, 20, 37]. We also find that
a small portion of sites (1.7%) do not allow passwords longer than
10 characters, which is shorter than some sites’ minimum lengths.

Case Study: 𝐿𝑚𝑖𝑛 = 1. We manually investigated 475 detected
sites and verified the correctness of our measurements. Through
analyzing the JavaScript libraries and links embedded on these
sites, we identified that the common pattern exhibited was simply
accepting any non-empty password field, without applying pass-
word length logic. Interestingly, while this logic was customized
for the majority of sites, we observed the prevalence of several
web frameworks across these sites that we manually confirmed
do not support password length constraints by default, such as
WooCommerce (19% of such sites) and XenForo (1%).

Case Study: 𝐿𝑚𝑖𝑛 = 5. We investigated the most common
minimum length of 5 (38% of sites). Manually investigating a sample
of 500 domains, we found 85% using the Shopify platform. We
confirmed with Shopify customer support that their default length
minimum was 5, indicating the influence a platform can have.

4.3.2 Restrictive Parameters. In Table 4, we display the percent
of sites requiring a minimum number of class characters, for each
character class.We see that the vast majority of sites (82-86%) do not
enforce such requirements, with special characters being least likely
to be required and digits being most likely. Of the remaining sites
that do, approximately half require one character of a class, while
another half require two (or more). We note that higher numbers
of required characters of a class increase the complexity in creating
passwords, which prior research has demonstrated can ultimately
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diminish the security and usability of passwords [41], and is no
longer recommended by many guidelines [20, 31, 37].

Similarly, Table 5 lists the prevalence of the remaining restrictive
requirements. Derived from these results, we observed a similar
prevalence of character class combinations (15% of distinct sites
have at least one required combination, considering all combina-
tion possibilities) as with character class minimums (with 11% of
sites using both character class minimums and class combination
requirements). Furthermore, as seen in Table 5, we note that a non-
trivial portion of sites (2.4%) require word structure in passwords,
while 2.9% of sites require passwords to begin with a letter. Thus,
many sites are not as permissive as recommended [20, 31, 37].

Case Study: Required Word Structure and Letter Start. We
manually investigated 100 domains requiring a two-word structure
as well as domains enforcing letter start, confirming our inference.
We did not identify common platforms or frameworks, but many
sites used form validation JS libraries (e.g., jQuery Validation, Form-
Check.js, Knockout Validation) to enforce a password regex.

4.3.3 Permissive Parameters. Finally, we evaluate the prevalence
of permissive parameter values for our sites, as shown in Table 5.
Two widely recommended password policies [10, 19, 20, 31, 37]
are disallowing users to choose dictionary words and common
breached passwords. We observe limited deployment of such pass-
word blocking though, as 72% of sites permit dictionary words as
passwords and 88% allow breached passwords. Certain password
structures are also often discouraged [20], however we detect lim-
ited prevention of these patterns as well. Approximately 71% of sites
permit sequences, repeating characters, and personal identifiers
(e.g., username) in passwords, and 78% allow all-digit passwords.
Recent password guidelines [20, 37] also recommend allowing vari-
ous types of characters. We observe over 30% of sites do not support
spaces, Unicode, or emojis in passwords, and about 30% disallow
one of the four most popular special characters (“.”, “!”, “_”, and “#”).

Case Study: Accepting Popular Passwords. We assess
whether sites accept popular passwords using the top four pass-
words in a password breach dataset [8]. We list these passwords
and their acceptance by sites across ranking ranges in Table 6: 39%
of sites accepted the top password and nearly half accepted one of
the top four passwords. These sites may be vulnerable to password
spraying attacks [29, 49] as their policies permit users to choose
popular passwords. We note that most restrictive parameters and
password blocklisting would disallow such passwords.

4.4 Adherence to Standards and Guidelines
Over time, various organizations have released password policy
guidelines. Here, we assess the extent to which sites adhere to these
guidelines. In Table 7, we list 9 prominent guidelines in order of
publication year, including different security levels offered by some.
Appendix Table 9 summarizes these recommendations. While we
can determine if a site’s policy adheres to a standard, we do not
know if the site’s owners explicitly chose to follow the standard.

We observe that NIST’s 2004 guidelines have been most widely
adopted, with 42.1% of sites adhering. Meanwhile, 30.8% of sites’
policies satisfy NIST 2017’s guidelines, although 16.7% of sites ex-
hibit policies that follow NIST’s old 1985 recommendation. These
results indicate the staying power of recommendations, as old NIST

10K 100K 1M
Restrictive Parameters

Requires 2 Words 4.8 3.9 2.4
Requires No Arbitrary Special 4.3 3.0 1.8

Any 3 of 4 Classes 6.7 6.4 7.4
Any 2 of 4 Classes 14.9 11.0 9.1

Any 2 of 3 General Classes 10.1 10.0 9.3
Starting With a Letter 1.7 2.0 2.9

Permissive Parameters
Dictionary Words 83.7 80.1 72.0

Sequential Characters 84.1 79.1 71.7
Repeated Characters 82.2 79.8 71.1
Short Digit-only 38.9 66.2 78.0
Long Digit-Only 57.2 69.4 78.2
Personal Identifier 84.6 78.9 71.4

Space 75.5 73.3 69.0
Unicode 69.7 71.3 67.7
Emoji 59.6 65.8 64.4

Breach Password 84.1 84.8 88.2
1st Popular Special = . 82.7 78.5 70.0
2nd Popular Special = ! 83.7 77.7 69.6
3rd Popular Special = _ 84.1 78.3 69.7
4th Popular Special = # 82.2 76.4 69.4

Table 5: Policy parameter values for all sites within the
Tranco Top 10K, 100K, and Top 1M (full population). For
both restrictive and permissive parameters, we list the per-
cent of sites where the parameter value is True.

Password Rank 10K 100K 1M
123456 1 21 39 39

123456789 2 26 46 40
qwerty 3 22 38 42
password 4 27 49 48

Top 4 27 51 53
Table 6: Percentages of signup sites accepting the top four
most popular passwords (based on a breach dataset [8]).

guidelines are still observed on most sites, even more than 5 years
after updated guidelines were released. Similarly, fewer websites
adhere to Germany BSI’s latest guidelines compared to older ones.

Across NIST and DISA guidelines, we also observe that stronger
security levels are significantly less adopted. For example, only 5.5%
of sites have policies satisfying NIST 2004 Level 2, compared to
42.1% for Level 1. We also see low adoption of stricter password
guidelines, such as those of US CERT, NCSC, and OWASP. No-
tably, these guidelines and higher security levels generally required
stricter length requirements (particularly 𝐿𝑚𝑖𝑛 = 8), and checks
against dictionary words and breached passwords. This suggests
incentives to adopt stronger policies are ineffective and the costs
of deploying these strong policy parameters are non-trivial.

4.5 Variation by Website Rankings
Here we consider how password policies differ across websites
ranked within the Tranco Top 10K, 100K, and 1M.
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Standard Name 1M 100K 10K
NIST 1985 (Low) 16.7 22.1 27.4
NIST 1985 (Med) 7.6 12.8 15.4
NIST 1985 (High) 3.8 7.4 9.1
NIST 2004 (Lvl 1) 42.1 65.3 77.9
NIST 2004 (Lvl 2) 5.5 7.5 6.7

BSI 2005 4.8 6.7 6.7
US CERT 2009 0.3 0.4 0.5

DISA 2014 (Med) 4.7 8.8 10.1
DISA 2014 (High) 0.1 0.1 0.5
NIST 2017 (Should) 30.8 40.8 34.6
NIST 2017 (Shall) 1.8 3.16 3.9

NCSC 2018 0.7 1.2 2.4
BSI 2019 14.6 22.3 32.7
BSI 2020 5.9 7.5 7.2
OWASP 1.3 2.9 4.3

Table 7: Percent of sites satisfying different guidelines, across
the Tranco Top 10K, 100K, and 1M (full population).

Length. Figure 2 shows the CDFs of minimum and maximum
passwords lengths, respectively, for all three groups. We observe
that in all graphs, the CDFs for top-ranked sites skew towards
longer lengths, which is recommended for stronger passwords. The
median minimum password length for top 10K sites is 8 characters,
compared to 5 and 6 characters for the top 100K and all sites, respec-
tively. Similarly, while about 40% of all sites allow long passwords
that are at least 128 characters, 50% and 55% of top 100K and top
10K sites do, respectively (although a higher portion of top-ranked
sites cap passwords at 20 or fewer characters than among all sites).

Restrictive and Permissive Parameters. Table 5 depicts the
parameter values for all three ranking ranges, showing the per-
cent of sites within each population where a parameter value is
true. We observe that overall, top sites are more likely to enforce
restrictions on the password (e.g., 𝑅𝑐𝑚𝑏24 is true for 15% of top 10K
sites, compared to 9% of all sites). Top sites are generally more per-
missive in which special characters they accept, including periods,
exclamation marks, underscores, pound signs, space, and Unicode
characters (although slightly fewer top sites accept emojis com-
pared to all sites). Surprisingly, top sites also are more permissive
of oft-discouraged password patterns, including dictionary words,
sequential and repeated characters, and the inclusion of personal
identifiers. However, top sites are significantly less likely to accept
all-digit passwords, accepted by only 39-57% of top 10K sites com-
pared to 78% of all sites. Top sites are also slightly less likely to
allow breached passwords compared to all websites though (84%
of the top 10K versus 88% for all). Overall, top sites apply more
password composition requirements but also permit more charac-
ters/structures (except all-digit passwords).

Adherence to Guidelines. Table 7 lists the adherence to com-
mon guidelines across ranking ranges. We observe that across all
guidelines, higher-ranked sites generally exhibit higher adherence,
suggesting that they are more likely to follow recommendations.
However, the most recent guidelines are still only adopted by a
minority of sites across all three ranking ranges (see Section 4.4).

5 COMPARISONWITH PRIOR FINDINGS
Prior works on assessing website password policies are small-scale
and largely dated [7, 13, 15, 16, 23, 27, 35] (see Section 2). Here,
we compare our results with prior findings, to understand how
policies may have changed over time, and the insights afforded by
a large-scale perspective.

Top Policies and Parameter Values. Prior work assessed pol-
icy parameter values, rather than top policies, likely due to small
sample sizes. In comparison, our large-scale study identified the top
policies, most of which enforced only length constraints, as well as
a long tail of policies which are mostly unique to a site.

Length: A recent 2022 analysis of 120 top English sites observed
that a minimum length of 8 was most frequently enforced, followed
by lengths 6 and 5 [24]. We observe the same for our top 10K sites,
with 40% of sites requiring length 8 passwords, 30% requiring length
6, and 7% requiring length 5. However, when considering the top
1M sites, length 5 was the most prevalent, on nearly 40% of sites.
Meanwhile, length 6 and length 8 passwords were required by
approximately 15% of sites each. Further, [7, 28] observed few sites
without length requirements, but at scale, we observed this policy
at nearly a quarter of the sites. Thus, our large-scale measurement
identified shorter password length minimums on most sites than
reported by recent studies focused on top sites.

Prior work observed widespread use of length caps (note, [24]
did not investigate length maximums). Seitz et al. [39] observed an
average max length of 43 characters, and Wang et al. [49] did not
observe any max lengths greater than 64. In contrast, we observe
over a third of all sites allowing 128+ character passwords, with a
median length cap of 86 (with even fewer sites using length caps
among top-ranked sites). As these prior studies are over a half
decade ago and of limited scale, it seems likely that sites today have
broadly shifted towards accepting longer passwords.

Restrictive and Permissive Parameters: Few works systematically
characterized restrictive and permissive parameters, with most
highlighting case studies rather than comprehensive analysis. How-
ever, prior work [7, 24, 49] observed between 30-50% of sites en-
forced several restrictive parameters. We observe a smaller fraction,
with only 1.8-9.3% of sites employing any given restrictive param-
eter, although top-ranked sites employed restrictive parameters
more. Thus when considering websites at scale, restrictive parame-
ters are less prevalent overall. Earlier work from 2010 [7] also found
few sites performing dictionary checks. However, we observed a
modest rate today, at 28% ([24] observed 41% on top English sites).

Adherence to Standards and Guidelines. Prior work mostly
predates modern password guidelines [7, 13, 15, 16, 23, 27, 35]
(e.g., NIST 2017, BIS 2019), and did not identify comprehensive
comparisons of password policies with the standards prevalent at a
study’s publication.

Variation by Website Ranking. Prior work [13, 28] looked at
several US university websites, and found that top-ranked sites had
weaker policies than lower-ranked ones, although policies were
evaluated using an entropy metric with notable limitations [20, 51].
In contrast, our site population is orders of magnitude larger and has
substantially broader ranking coverage, and we observe stronger
policy characteristics for top sites (e.g., longer length requirements,
broader adherence to modern recommendations).
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6 CONCLUDING DISCUSSION
In this study, we conducted the largest evaluation of website pass-
word creation policies to date, assessing over 20K sites (∼135x more
sites than prior work). Our results revealed the state of modern
web authentication, and identified insecure policies deployed (es-
pecially outside of the top sites). Of note, we observed that 75%
of sites allow shorter passwords than the recommended 8 charac-
ters [10, 19, 20, 31, 37] (with 12% allowing single-character pass-
words) and 40% cap password lengths below the 64 characters
recommendation [10, 20, 37]. Meanwhile, 15% of sites enforce char-
acter constraints, which is no longer recommended [20, 31, 37].
Only 12%-28% of sites employ password blocking, as widely advo-
cated [10, 19, 20, 31, 37]. Finally, a third of sites did not support
certain password characters as suggested [20, 37], including whites-
paces needed for passphrases. Ultimately, only a minority of sites
adhered to modern guidelines overall. Here, we synthesize our
findings into lessons for moving web authentication forward.

Improving Software Defaults and Implementation Sup-
port. Our case studies in Section 4.3 identified that insecure pass-
word policy decisions were closely aligned with the default con-
figurations of popular web software (such as WooCommerce and
Shopify). These findings demonstrate the influence of software de-
faults on web authentication, but also illuminate a potential reme-
diation path: if popular web software implemented recommended
password policy configurations by default, many websites could be
moved to stronger password policies. For example, nearly half of
our sites with password length minimums below the 8 characters
recommended [10, 19, 20, 31, 37] use the Shopify platform and its
default 5 characters minimum. Thus, if Shopify increases its default
length to 8 characters, potentially a third of our sites would become
newly aligned with modern guidelines. We are currently in the
process of communicating with platforms identified offering weak
default configurations to encourage such changes.

Related to defaults are the feature support by popular web soft-
ware. We observed in Section 4.3.3 that only a minority of sites
blocked passwords with certain characteristics, which is widely rec-
ommended [10, 19, 20, 31, 37]. We hypothesize that this arises partly
because many popular web platforms do not provide full support for
such blocking, so web developers would need to custom implement
such functionality. For example, both Python’s Django library 5

and the WordPress CMS 6 by default do not support all password
checks. By implementing such features (and enabling by default)
for popular web frameworks (many of which are open-source), our
community can meaningfully improve web authentication.

PromotingModern PasswordGuidelineAdoption.Our anal-
ysis in Section 4.4 revealed thatmany sites exhibit policies satisfying
password guidelines, but primarily more dated versions. This result
provides evidence that password guidelines do generally inform the
policy decisions of many websites. However, there must be barriers
inhibiting the adoption of more recent recommendations.

A lack of awareness may be one barrier. Here, education and
outreach efforts can help inform websites about current guide-
lines. Prior work on web administrator notifications [25, 26, 44, 45]

5https://docs.djangoproject.com/en/4.2/topics/auth/passwords/
6https://www.wpbeginner.com/plugins/how-to-force-strong-password-on-users-in-
wordpress

demonstrated that such outreach efforts can drive the remediation
of security issues at scale. Future work can also investigate the
resources available about web authentication, and identify informa-
tion sources that should be updated with current recommendations.

In addition, in Section 4.4, we saw different guidelines from vari-
ous organizations, with sometimes conflicting recommendations.
For example, NIST 2017 [20] and OWASP [37] guidelines avoid
password complexity requirements, unlike BSI 2020 [19]. A uni-
fied password guideline would provide more consistent and clear
recommendations to web administrators around the world. We
also uncovered that some guidelines (e.g., OWASP, NCSC 2018) are
rarely adopted, suggesting that these guidelines are overly strict or
lack visibility and incentives to drive adoption.

Even if adopting a new policy, a remaining challenge is the policy
update process. How should websites handle passwords created
under the old policy? If old passwords are left as is, the new policy’s
benefits are not realized. Meanwhile, forced password resets are
often onerous to users (as seen with the password resets during
data breaches). Future work should investigate effective processes
for upgrading password creation policies, and integrate them into
existing web software. Organizations releasing password guidelines
also must be cognizant of the high burden imposed upon websites
when adopting new policies, and guidelines must be released with
care (e.g., BSI released two guidelines only one year apart [18, 19]).

Standardizing Password Creation Policies to Promote Us-
ability. In Section 4.2, we observed that websites exhibit wildly
diverse policies, with many policies unique to one site. This het-
erogeneity is likely a usability burden during password creation,
where users do not know what constraints are enforced on chosen
passwords across different sites. This is especially true as we found
that few sites explicitly document their password policies (from
Section 3.9). Standardizing password policies would significantly
reduce this user friction, providing a unified policy across the web.

Such standardization would benefit password managers as well,
as many password managers assist users by automatically generat-
ing random and strong passwords. To do so correctly, they must
generate a password valid under a site’s policy, which is inhibited
by the diversity of real-world site policies. For example, some sites
disallow long passwords or require certain character compositions
(from Section 4), which may not be satisfied by a password man-
ager’s randomly generated password. We note that even with the
absence of standardization, our results help inform password man-
agers of the common policy constraints enforced by most sites. For
example, we found that passwords of length 12–16 are the most
likely to be accepted, permitted by 96-98% of sites. Our measure-
ment dataset can also be inputted directly to password managers
to provide the specific constraints on the sites that we analyzed.

Future Research Directions. Our study highlights avenues for
future investigation. One direction is in improving upon our mea-
surement techniques. While our collected dataset is significantly
larger than those of prior work [7, 13, 15, 16, 23, 24, 27, 28, 35, 39, 49],
we still successfully analyzed only a minority of sites with account
signups. Expanding measurement coverage would allow for more
generalizable findings and more extensive analysis of authentica-
tion policies across different site characteristics. Similarly, longi-
tudinal measurements could afford insights into policy evolution.
Future work could also investigate which website characteristics
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correlate with secure and usable password policies, such as website
categories, geographic regions, and languages.
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A APPENDIX
An extended version (EV) of this paper with additional appendices
is at https://arxiv.org/abs/2309.03384.

Paper Year # Websites
S. Furnell [15] 2007 10
Mannan and Van Oorschot [27] 2007 5
Kuhn et al.[23] 2009 69
Florencio et al. [13] 2010 75
Bonneau et al. [7] 2010 150
Preibusch and Bonneau [35] 2010 150
S. Furnell [16] 2011 10
Wang et al. [49] 2015 50
Seitz et al. [39] 2017 83
Mayer et al. [28] 2017 137
Lee et al. [24] 2022 120

Table 8: Summary of prior work investigating real-worldweb-
site password policies. We list the paper with its publication
year and the number of websites analyzed.

Figure 3: Funnel chart of the one million domains as they
flow through the main stages of the framework.

Reference Year Country Guidelines and Recommendations

NIST [33] 1985 USA
Low Security Level:Min Length>=4, Requires Digits

Medium:Min Length>=4, Requires Uppercase, Lowercase, and Digits
High: Min Length>=6, Requires Uppercase, Lowercase, Digits, and Symbol

NIST [9] 2004 USA Level 1: Min Length>=6, Allows Special Character
Level 2: Min Length>=8, Allows Special Character, Dictionary (Common) Check, Has composition rules

BSI [17] 2005 DE Min Length>=8, Requires a digit or a symbol, dictionary (Common) Check

US-CERT [10] 2009 USA Min Length>=8, Max Length>=64, Dictionary (words) Check, No Personal Information,
Requires Uppercase, Lowercase, Digits, and Symbol

DISA [14] 2014 USA High Severity:Min Length>=15
Medium Severity: Requires Uppercase, Lowercase, Digits, and Symbol

NIST [20] 2017 USA Shall:Min Length>=8, Dictionary (Breach) Check, Dictionary (Words) Check, No Repetitive, No Sequential
Should: Max Length>=64, Accepts Space, all Printable ASCII, Unicode including Emoji, No other Composition Rules

NCSC [31] 2018 UK Dictionary (Common) Check, No Complexity Requirements, No Short Passwords*
BSI [18] 2019 DE Minimal length = Sufficient*, Complexity = Sufficient*
BSI [19] 2020 DE Minimal length = Sufficient*, Complexity = Sufficient*, Dictionary (Common) Check

OWASP [37] 2022 - Min length>=8, Max length>=64, Allow Unicode, Allow Space, Dictionary (Breach) Check
Table 9: Summary of the password policy recommendations provided by multiple organizations. *We interpreted short length
by NCSC to be less than 8 characters, sufficient length by BSI 2019 and BSI 2020 to be at least 8 characters long, and sufficient
complexity to have at least 2 character classes present.

https://arxiv.org/abs/2309.03384
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