
A Large-Scale Measurement of Website Login Policies

Suood Al Roomi
Georgia Institute of Technology

Kuwait University

Frank Li
Georgia Institute of Technology

Abstract
Authenticating on a website using a password involves a multi-
stage login process, where each stage entails critical policy
and implementation decisions that impact login security and
usability. While the security community has identified best
practices for each stage of the login workflow, we currently
lack a broad understanding of website login policies in prac-
tice. Prior work relied upon manual inspection of websites,
producing evaluations of only a small population of sites
skewed towards the most popular ones.

In this work, we seek to provide a more comprehensive
and systematic picture of real-world website login policies.
We develop an automated method for inferring website login
policies and apply it to domains across the Google CrUX
Top 1 Million. We successfully evaluate the login policies on
between 18K and 359K sites (varying depending on the login
stage considered), providing characterization of a population
two to three orders of magnitude larger than previous studies.
Our findings reveal the extent to which insecure login policies
exist and identify some underlying causes. Ultimately, our
study provides the most comprehensive empirical grounding
to date on the state of website login security, shedding light
on directions for improving online authentication.

1 Introduction
Passwords remain the dominant mechanism for online ac-

count authentication today. While logging into a website using
a password may appear like a simple process, it actually in-
volves a multi-stage workflow where account security and
privacy are impacted by the website’s authentication policy
and implementation decisions. In particular, a website must
make various design decisions on managing password entry,
submission, storage, and validation, as well as handling login
failures (e.g., login failure messages and rate limiting).

Over the years, the security community has identified best
practices for promoting security and usability at each stage of
the login workflow (e.g., [1–3]). Ultimately though, websites
must implement these recommendations to improve online

authentication in practice. To date, we lack a large-scale under-
standing of the authentication policies that websites actually
employ during the login workflow. Prior work (e.g., [4–7])
has relied upon manual investigation to evaluate website lo-
gin policies, resulting in a limited characterization that is
skewed heavily towards top sites. It is vital for the security
community to develop a more comprehensive and systematic
understanding of how websites manage password logins, to
identify shortcomings in modern online authentication and
determine directions for driving better authentication.

In this work, we seek to fill this gap through a large-scale
measurement of website login policies, evaluating the policies
and implementation decisions at each stage of the login work-
flow. Doing so is challenging given the extraordinary diversity
of the web and that login policy decisions are rarely explic-
itly published. However, through systematically investigating
real-world websites and their login workflows, we develop a
web measurement technique for automatically inferring the
website login policies in a blackbox fashion. Our method
entails automatically creating test accounts on websites, and
systematically assessing each login stage to determine the au-
thentication policies enacted. We apply our technique across
domains in the Google CrUX [8] Top 1 Million, successfully
inferring login policies on between 18K and 359K websites
(varying depending on the login stage considered), which is
two to three orders of magnitude more sites than prior studies.

This large-scale measurement reveals several key findings:
• While HTTPS has been broadly deployed for login work-

flows, we detect a sizable population of sites still serve
login pages and transmit account credentials unencrypted,
including government and educational domains.

• We identify sites disallowing copy-pasting of login creden-
tials and storing passwords in plaintext, which are both
discouraged by modern recommendations [1, 3, 9].

• Previously, Facebook was the primary documented example
of a site deploying typo-tolerant password authentication,
where passwords with common typographical errors are
still accepted. We find hundreds of sites with typo-tolerant
password authentication, including a top 50 site (Pinterest).

1



• We uncover nearly 6K sites providing login failure mes-
sages that enable user enumeration attacks, and identify
popular web platforms (e.g., WordPress) driving this issue.

• We find that only a minority of sites employ login rate
limiting to prevent online brute-force password guessing
attacks, as commonly recommended [1, 2].
Ultimately, our study offers the most expansive survey of

modern website login security, establishing empirical ground-
ing on how sites secure their login workflows. Our results
highlight the extent to which login security concerns persist
today, and reveal avenues for improving online authentication.

2 Website Login Policies
Our study aims to characterize the various authentication

policies and implementation decisions made throughout the
account login process, which we generically refer to as login
policies. To clearly scope our investigation, we first dissect the
login workflow into individual stages and discuss the relevant
policy and implementation decisions that we investigate.

1. Login Page Visit: First, a user must visit the website’s
login page. The key implementation decision here is whether
this page and its resources are served over HTTPS, which is
necessary for providing a secure login environment.

2. Account Credential Entry: Next, a user enters their
username and password into the login form. Here, websites
can decide whether to allow copy-pasting into these form
fields. Modern guidelines [1, 3, 9, 10] recommend permitting
such copy-pasting to promote password security (by allowing
users to save long complex password to copy over, such as
with a password manager) and usability (by avoiding manual
password entry, which can result in typographical mistakes).

3. Password Transmission: Upon login form submission,
the account credentials are transmitted to the website. As with
the login page visit, the crucial implementation decision here
is whether this transmission is over a secure TLS channel,
otherwise the credentials may be compromised in transit.

4. Password Storage/Retrieval: At the web server, the ac-
count’s real password is stored in some form, and retrieved for
comparison with the user-submitted password. The core im-
plementation decision here is whether the password is stored
in plaintext (or some other recoverable format). Plaintext pass-
words are universally discouraged [1, 2] as a compromise of
the credentials database would result in leaked passwords.

5. Password Validation: If the user-provided password
matches the stored one, then the login completes success-
fully. Here, websites may support a typo-tolerant password
policy where certain common typographical errors (e.g., miss-
ing first or last character, reversed case of letter characters)
are permitted, still allowing for login success. Prior analysis
of such typo-tolerant schemes [11] demonstrated that typo-
tolerance results in improved login usability, with reduced
login friction and more successful logins. While the initial
security analysis concluded that typo-tolerance results in neg-
ligible degradation of authentication security, subsequent anal-

ysis [12] found that typo-tolerance’s security degradation is
significantly larger due to credential stuffing and tweaking
attacks. As a consequence, while typo-tolerance does provide
notable usability benefits, it also harms password security.

6. Login Failures: If the user-provided credentials do not
match a stored one, then the login fails. However, websites
can make multiple decisions in handling login failures.

The first decision is in the error message displayed to
users. Certain types of messages can leak whether the user-
name/account exists, potentially allowing attackers to enumer-
ate user accounts. Current guidelines advise against revealing
specifically whether the submitted username or the password
is incorrect, to avoid such user enumeration vulnerabilities [1].

The second decision is in rate limiting or blocking repeated
failed logins, to prevent online brute-force password guessing
attacks. Existing standards recommend enacting such policies
to prevent brute-force online attacks [1, 2].

3 Method
In this section, we describe our method to automatically

evaluate the different login policies of websites at scale (il-
lustrated in Figure 1). To design and evaluate our method
systematically, we randomly select a set of domains to manu-
ally analyze, collecting ground-truth data on website behavior
(Section 3.1). We design a process for discovering and com-
pleting the account authentication workflows on a domain,
which should results in a test account on the site that we can
successfully log into (Section 3.2). Then, we devise meth-
ods for interrogating each login policy component separately
for a domain, through automated tests during the authenti-
cation workflows (Section 3.3). In Section 3.4, we describe
how we piece together this automation to analyze websites at
scale (highlighting limitations and ethical considerations in
Sections 3.5 and 3.6, respectively).

3.1 Ground-Truth Analysis
Modern login workflows are diverse in their implementa-

tion and design. To develop methods for automatically identi-
fying and classifying relevant webpages and HTML elements,
we rely upon heuristics and machine learning models (similar
to prior work on automated online account analysis [13, 14]).
To ensure that our heuristics and models reflect the charac-
teristics of real-world websites, we randomly sample 2800
domains from across the Tranco Top 1M [15] (using the Dec
13, 2021 snapshot) and manually label domains and relevant
HTML elements. We refer to this dataset as the ground-truth
data. For keyword-based heuristics, we use the standard TF-
IDF ranking [16] to determine the most relevant keywords
across domains (as detailed in Appendix A). Machine learning
models are evaluated and tuned on this ground-truth dataset,
with the employed model trained on the full dataset (more
details on these models are provided in the following sec-
tions). Since each classification task is distinct, a different
model may be most suitable. Thus, for each task, we tested

2



Figure 1: Overview of our automated method for evaluating
a domain’s login policy. We first search for account signup,
login, and password reset pages. If a login page is found, we
assess the domain’s policy for the login page visit, account
credential entry, and password transmission. If a signup page
is also found, we create test accounts to assess the domain’s
handling of password validation and login failures (for both
user enumeration and rate limiting aspects). Finally, we infer
the domain’s password storage policy based on monitoring
the test accounts, performing a password reset if found.

different classifiers on our ground-truth data and selected
the best-performing one. We note that our data size (2800)
balanced the manual work needed to collect the data versus
having enough data to train accurate classifiers and heuristics

3.2 Discovering and Completing Account Au-
thentication Workflows

Before evaluating a domain’s login policy, we first require
identifying its account authentication workflows (if they ex-
ist), and proceeding through account creation to generate a
test account. Here, we describe each step of this process.

3.2.1 Detecting Account Signup, Login, and Password
Reset Forms

Our measurement method centers on automatically creating
and logging into a test account, to assess the login workflow.
To identify account signup and login HTML forms, we train
an SVM binary classifier. The classifier’s features include the
presence of relevant signup and login-related keywords in the
HTML form’s title, ID, class, and action (and in any child
HTML elements). Other features include the number of pass-
word inputs and the total number of form inputs. As training
data, we manually label all HTML forms in our ground-truth
dataset. We implement our model using Python’s sklearn [17],
selecting hyper-parameters through grid search and evalu-
ating models with 10-fold cross-validation. Our optimized

model exhibits an accuracy of 94.6% (precision = 77.1%, re-
call = 99.5%) and 94.0% (precision = 94.5%, recall = 96.3%)
for classifying account signup and login forms, respectively.
(Note, while our signup form classifier exhibited lower preci-
sion, its false positives do not propagate into our measurement
as we will fail to successfully create an account in such cases.)

We also proceed through the password reset process to
identify if passwords may be stored at a website in plaintext.
We found from our ground-truth data that we could reliably
identify password reset forms through the presence of relevant
keywords (selected using TF-IDF) in the HTML form’s title,
ID, class, and action (and in any child HTML elements), rather
than requiring a machine learning model.

3.2.2 Discovering Account Signup, Login, and Password
Reset Pages

For a given domain, we search for account signup, login,
and password reset pages by looking for pages with the asso-
ciated HTML forms (detected as discussed in Section 3.2.1).
Specifically, our search process entails the following steps,
stopping once pages with the forms are discovered:
1. We first start with the landing page and look for account

signup, login, and password reset forms.
2. We next crawl candidate URL links on the landing page

with common signup, login, and password reset keywords
(selected by applying TF-IDF on our ground-truth data,
as discussed in Appendix A). On each linked page, we
again look for the relevant HTML forms. If the forms are
not all found, we do one final crawl of candidate URLs
on the pages linked to from the landing page. To avoid
excessively crawling a single domain, we limit the number
of candidate URLs crawled to four per page. (From our
ground-truth data, we observed that this threshold was
effective for discovering signup, login, and password reset
URLs, as most pages had few, if any, candidate URLs.)

3. Finally, we query the Google search engine for the do-
main’s account signup, login, and password reset pages
(using ScraperAPI [18]). The signup search query has the
domain name and “account OR register OR sign+up OR
create”, the login query combines the domain name and
”account AND signin”, and the password reset query uses
the domain name and “reset OR recover OR forgot OR
password OR lookup+credentials”. These queries were
constructed using the most relevant keywords (selected
using TF-IDF) in the HTML titles of signup, login, and
password reset pages in our ground-truth data. We crawl
and inspect candidate URLs (those with relevant keywords
in the URL, as done in the previous step) from the search
results, evaluating up to four candidate URLs (a threshold
observed as sufficient for our ground-truth dataset).
We briefly note that we avoid re-analyzing candidates

URLs previously evaluated (e.g., the same links at differ-
ent parts of a page or on different pages). Also, our crawling
method is non-interactive and does not simulate user actions

3



on pages (e.g., scrolling, clicking on different parts of the
page) besides form filling. While we observed some sites
requiring interaction for signup or login forms to appear, this
behavior was not widespread in our ground-truth data, and
automating the interaction is challenging (given the diversity
of potential actions involved).

3.2.3 Attempting Account Signup, Login, and Password
Reset

With account signup, login, and password reset pages found,
we can attempt to fill and submit signup, login, and password
reset forms automatically, starting with signup forms to create
a test account. Here there are two key challenges.
1. Signup form fields must be identified and filled with ac-

ceptable values/action. We classify the form fields based
on the HTML input element’s name, class, and ID, using
relevant keywords identified in our ground-truth data.
• Email Field: We supply an email under our control. We

setup and configure our own email server and email
domain, so for each evaluated domain, we dynamically
generate a brand new email specific for that test account.

• Password Field: We attempt two passwords
(“MxT7zcS4k5-@” and “MxT7zct41S”), similar
to prior work [13] (we avoided testing additional pass-
words to limit the account creation attempts.). Based
on prior analyses of website password composition
policies [4, 19–21], one of these passwords is likely
accepted by the vast majority of websites (99% of
websites as evaluated by Seitz et al. [21]) as they contain
multiple lowercase, uppercase, and digit characters
(with one containing multiple special characters),
and are 10-12 characters long (surpassing common
password length minimums without exceeding common
length maximums).

• Other Fields: For other common form fields (e.g., name,
address), we either use pre-selected values (not real user
data) or the Faker Python library [22] to generate syn-
thetic data. For unrecognized fields, we use Faker to
generate a random string as a last resort.

• Submit Button: For multi-button forms (e.g., signup and
single sign-on buttons), we identify the signup button
using keywords derived from our ground-truth data.

2. CAPTCHAs may be presented prior to or after submitting
the signup form. We identified the presence of CAPTCHAs
on 49% of signup forms in our ground-truth data. We de-
cided to solve these CAPTCHAs to significantly increase
the likelihood of successfully assessing a site. Given the
scale of our work and ethical concerns, we decided against
using human-driven CAPTCHA solvers and opted for an
automated CAPTCHA solver, AZcaptcha [23]. We iden-
tified CAPTCHAs in the signup form by fingerprinting
the HTML and JavaScript code associated with popular
CAPTCHAs handled by AZcaptcha, and pass the extracted
CAPTCHAs to AZcaptcha to solve.

Completing login and password reset forms also share these
two challenges. We identify the username/email field and the
password field (when logging in) using a similar keyword-
driven approach, and supply the appropriate values used dur-
ing the signup process. We use the same method as with
signup forms to handle CAPTCHAs.

3.2.4 Determining Account Signup and Login Success
While the process in Section 3.2.3 results in a submitted

account signup or login form, our provided data and actions
may be incorrect, resulting in failed signups/logins. Websites
also are diverse in what happens after submitting these forms
(e.g., some redirect to a new page, while others modify the
existing page). To avoid incorrectly analyzing sites that we
did not successfully submit these forms on, we developed
ensemble decision tree classifiers for signup/login success that
operates on page features returned upon form submissions.

The signup success classifier was trained using data from
manual signup attempts on a randomly selected 160 domains
in our ground-truth data. Our features include keywords in
the response page and URL, the similarity of the page and its
URL before and after form submission, and the presence of
the signup form. We trained an XGBoost decision tree ensem-
ble model with 100 trees, tuning hyperparameters using grid
search and using 4-fold cross-validation model. Our model
exhibited a 91.3% average accuracy during cross-validation
(precision = 94.3%, recall = 90.9%).

Similarly, the login success classifier used features such as
the presence of the login form after submission, the presence
of a page redirection, and keywords in the response page
and URL. Using the feature values collected from manual
logins on 250 domains1 in our ground-truth data, we trained
an XGboost decision tree ensemble model with 50 trees, again
using grid search to select hyperparameters, and evaluating
using 4-fold cross validation. Our cross-validation model had
an 94% average accuracy (precision = 98.4%, recall = 96.0%).

Note that we do not need to verify whether password resets
are successful as subsequent analysis is not dependent on
successful password resets (as discussed in Section 3.3.4).

3.2.5 Account Verification
Some websites require users to verify the supplied email

address, in order to complete the account signup process and
allow logins. In the accounts manually created on domains in
our ground-truth data, we observed 39% of domains sending
verification emails, all containing a verification URL that
once visited, completed the verification process. In all cases,
the verification email was the first email received from that
domain (expected as a site should not send additional emails
to an account before verifying it), and it arrived within 60
minutes of account signup (with all but two domains sending
the verification within 20 minutes).

1While we trained our signup success classifier first, using a smaller
training dataset, we found that we needed to collect more training data to
improve the accuracy of the login success classifier.

4



As mentioned in Section 3.2.3, we set up our own email
server and domain, and provide new email addresses when
creating a test account. Thus we have full visibility and control
over emails received. To complete account verification (if it
occurs), we monitor for emails sent by a domain within 60
minutes of account signup, and click the links in the emails.
We only verify accounts through email, and do not engage in
other verification processes (e.g., phone verification).

3.2.6 Sanity Checks
At this stage of our method, we should now have created

an account on a website that we can successfully log into.
However, as our automated method relied upon heuristics
and classifiers that are not perfectly accurate, we may have
introduced errors during the account creation process. False
negative cases may have arisen as our method did not suc-
cessfully identify and proceed through the account creation
workflow, resulting in sites missing that we could have later
analyzed. False positive cases are arguably more concern-
ing, as we believe we have an account on a site when we do
not, and thus may proceed with incorrectly analyzing login
policies. To reduce false positives in our dataset, we conduct
one final sanity check after account creation. We make two
login attempts, one with the correct credentials and another
with incorrect ones. We only proceed with evaluating a site
if our login success classifier classifies both the correct login
attempt as successful and the incorrect one as unsuccessful.

3.3 Login Policy Evaluations
For a given domain, we next evaluate the authentication

policies and implementation decisions at each stage of the
login workflow (if possible), as discussed in Section 2. Note
that for a given domain supporting online accounts, we may
not successfully complete all steps in the account authentica-
tion workflows (Section 3.2), which prevents evaluating all
login policy dimensions. However, partial completion of the
steps may still allow us to assess a subset of the policy aspects.
For example, if we can identify the login page and form, we
can still investigate how the website handles the first three
stages of the login workflow (i.e., login page visit, account
credential entry, and password transmission), regardless of
whether we are able to successfully register an account. When
analyzing a specific login policy aspect, we evaluate all do-
mains for which we possibly can, even if we cannot assess the
full login policy for some of those domains. This affords the
largest-scale measurement for each login policy component.

3.3.1 Login Page Visit
We assess this login policy component for all domains

where the login page is found. We crawl the login page using
both HTTP and HTTPS, recording any HTTP errors or redi-
rections. For login pages loaded over HTTPS, we monitor the
page for 60 seconds while recording the browser error log (in
this case, we use the Google Chrome browser), specifically
looking for mixed content errors (where some page resources

are loaded over HTTP). We categorize two types of mixed
content errors (as outputted by Google Chrome), “Warning”
where the browser was able to upgrade the resource load to
HTTPS, and “Severe” where the browser was not able to up-
grade the HTTP resource. We classify a mixed content login
page by the most severe warning observed.

3.3.2 Account Credential Entry
For all domains where the login page is found (which also

indicates that a login form was identified), we crawl the login
page with a full Chrome browser (closing any popups/dialogs
that appear, as we observed such activity on sites in our
ground-truth dataset). Using Selenium’s Actions API [24]
for emulating user actions during browser automation, we
identify the username/email and password fields in the login
form, clear any data in those fields if present, and attempt to
copy-paste distinct test values into each field. We then check
whether a field’s content now contains the test value, indicat-
ing that copy-pasting is allowed for that field (note, password
masking does not interfere with our assessment as we inspect
the content of the password form field itself).

3.3.3 Password Transmission
For domains with identified login forms, we see if the form

data is sent over HTTP based on the form’s action attribute.

3.3.4 Password Storage/Retrieval
We seek to identify if a website stores/accesses passwords

in plaintext. However, as storage is managed server-side, we
lack direct visibility. Instead, we attempt to discover sites
storing plaintext passwords by monitoring for sites sending
the plaintext password to the account email (which is under
our control, as discussed in Section 3.2.5), including after a
password reset. For all domains where we found the password
reset page and detected successful account signup, we initiate
the password reset by filling out and submitting the password
reset form (as described in Sections 3.2.3).

3.3.5 Password Validation
To assess a domain’s typo-tolerance policy, we test logging

in using passwords with typos. This evaluation requires do-
mains where we successfully completed the authentication
workflow steps (in Section 3.2), and have test accounts we
can log into.

Prior work [11, 12] identified five common typos suitable
for correction by a typo-tolerant scheme: incorrect letter cas-
ing for only the first password character, inadvertent caps lock
resulting in inverted letter casing in the entire password, an
extraneous character at the password start, an extraneous char-
acter at the password end, and a missing shift key applied to
the last character. However, we observe that the behavior of
caps lock differs between OSes when combined with the shift
key (i.e., when typing an uppercase letter with the caps lock
on). On Mac OS, the character will remain an uppercase letter,
while on Windows, the character will be lowercase (as the
shift key reverses the caps lock). Thus, we expand the caps

5



MxT7zcS4k5-@ MxT7zct41S
1. Incorrect Case (first) mxT7zcS4k5-@ mxT7zct41S
2. Cap Locks: Inverted Case mXt7ZCs4K5-@ mXt7ZCT41s
3. Cap Locks: All Uppercase MXT7ZCS4K5-@ MXT7ZCT41S
4. Extra Character (front) NMxT7zcS4k5-@ NMxT7zct41S
5. Extra Character (end) MxT7zcS4k5-@1 MxT7zct41S1
6. Missing Shift Key (last) MxT7zcS4k5-2 MxT7zct41s

Table 1: We test the six typos permitted by typo-tolerant
password policies in prior work [11]. We list the original pass-
words used in our measurements (bolded), and show examples
of each typo on those passwords.

lock typo into two different incorrect passwords, resulting in
six total passwords with typos that we consider. Table 1 lists
the six typos considered, and what the passwords we used to
create accounts would be with each typo.

For each typo, we apply that typo to an account’s actual
password on a domain (as shown in Table 1), and attempt
logging in. Note that when adding an extra character, we
only use a letter or a number character, rather than a special
symbol character, to avoid violating any password composi-
tion constraints. If the login succeeds (as classified by the
login success classifier, described in Section 3.2.4), we con-
clude that the domain employs a typo-tolerant policy, and
track which typos are accepted. Note that as this evaluation
requires multiple login attempts, we structure our large-scale
measurement such that each login attempt is at least an hour
apart (in practice, much longer), as described in Section 3.4.

3.3.6 Login Failures: User Enumeration
We test for user enumeration vulnerabilities only on do-

mains where we successfully created an account and could
log in. On these domains, we collect login failure messages
by attempting two logins with incorrect credentials, one using
the correct username/email but the wrong password, and an-
other using a wrong username/email (generated by appending
a random string to the start of the real username/email used
for the account). We then save the response HTML pages
for both failed login attempts to analyze their error messages.
(Note, our sanity check in Section 3.2.6 already attempts one
login with the correct username/email but the wrong pass-
word, so in practice, we generate only one additional login
attempt here with an incorrect username/email.)

The login error messages are extracted from the HTML
page using keywords found in the ID, Class, and Name at-
tributes (selected from our ground-truth data). The error mes-
sages are then normalized by 1) removing any HTML tags,
2) translating non-English messages (as detected by Python’s
langdetect library [25]) to English (using the Python Trans-
late library [26]), 3) replacing the account email, username,
and password strings in the message with entity labels (e.g.,
“[email]”), and 4) lowercasing all letters.

To classify whether a login error message enables user
enumeration, we first manually collect and label the error

messages on 250 domains in our ground-truth data. We then
used a pre-trained sentence encoder (all-DistilRoBERTa [27])
to generate sentence embeddings for our error messages as
input features, and trained a XGBoost decision tree model,
again using grid search to select hyperparameters, and evaluat-
ing using 5-fold cross-validation. Our cross-validation model
exhibited an 88% average accuracy (precision = 63.0%, re-
call = 93.6%). As our model exhibited high recall but lower
precision, our results may overestimate the vulnerable popula-
tion, serving more as an upper bound. However, our analysis
of the top error messages (Section 4.7) correctly found those
with user enumeration vulnerabilities, so our conclusions are
largely unaffected by the model’s inaccuracies.

3.3.7 Login Failures: Rate Limiting
Websites may use various techniques for classifying suspi-

cious login attempts. Attempting to reverse-engineer exactly
how they do so is beyond the scope of this work. Instead,
we aim to identify which websites do not employ login rate
limiting, even for clearly inorganic repeated login attempts.

To analyze these domains, we require that we successfully
created and could log into an account. We then execute 15
consecutive login attempts using the correct username/email
but an incorrect password, waiting only one second between
each attempt (all from the same browser on the same host,
without clearing browser cookies between login attempts). Af-
ter all 15 failed login attempts, we then immediately attempt
a login using the correct credentials, recording if we are able
to successfully log in. If not, we followed up with one final
valid login attempt (using the correct credentials) one hour
later. We chose 15 logins to balance between triggering rate
limiting and inducing load on a domain.

3.4 Large-Scale Measurement Implementation
The method discussed in Sections 3.2 and 3.3 produces

the login policy evaluations for a specific domain. For each
site, evaluating the login page visit, account credential entry,
and password transmission (Stages 1-3 of the login workflow)
does not require creating an account on the site. For evaluating
the remaining login policy dimensions, we create two test
accounts per domain. One account is used to first evaluate
password validation and login failure user enumeration issues,
then we finally evaluate password storage/retrieval (as the
password reset could potentially result in lost access to our
account). We then use the other account to evaluate login
failure rate limiting, as the rate limiting can also result in lost
account access (note, we create this second account from a
distinct IP address, to avoid associating our two test accounts).

We conducted our large-scale measurement in December
and January 2023, applying this method across the top 1M
domains from the November 20, 2023 snapshot of Google’s
Chrome User Experience Report (CrUX) [8], which notably
contains only website domains visited by browser users
(rather than non-web domains derived from other datasets,

6



such as passive DNS)2. For web crawling, we use Selenium
browser automation [28] with headless Chrome instances3.
For each page crawled, we allow 30 seconds for the page to
fully load, before analyzing or recording (this threshold was
based on observing page load times in our ground-truth data).

To minimize the computational load induced on websites
and to also reduce the chance that anti-bot measures are en-
acted on our test accounts, we rate limit our crawling to at
most one page load every 30 seconds per domain and dis-
tribute our crawling traffic across a set of proxies within our
organization’s network for IP diversity. We also heavily rate
limit login attempts per domain, such that we wait at least one
hour between each login attempt, except for the login failure
rate limiting experiment (which requires a burst of login at-
tempts). Due to this rate limiting, we highly parallelize our
site evaluation method (Sections 3.2 and 3.3) across domains,
such that for each step in our method, we round-robin through
all domains first before proceeding to the next step. As a re-
sult, in practice, the inter-arrival times between page loads
and login attempts on each domain is significantly higher than
that enforced by our rate limits.

3.5 Limitations
Our study is a best-effort measurement of website login

policies. Performing such a measurement at scale required
extensive engineering, but given the diversity of website de-
signs and implementations, our method is still imperfect. We
do not believe that alternative non-blackbox measurement
approaches would be more effective though, as login policy
parameters are rarely published by websites, many policy pa-
rameters are handled server-side so they cannot be inferred
from client-side analysis, and manual investigations of web-
sites or user studies with website operators do not scale (as
done in prior work).

Our measurement has false negatives for sites where we
failed to detect and successfully complete authentication
workflows, including those with complex workflows (e.g.,
multi-page forms, unique form fields), registration fees, or
offline membership. Thus, prevalence amongst our observed
populations does not necessarily generalize to all websites
with accounts. However, the set of domains found exhibiting
insecure login policies serves as a lower bound on the vul-
nerable population size. Furthermore, our collected dataset
is still orders of magnitude larger and more diverse across

2While we started our ground-truth analysis with randomly sampled web-
sites from Tranco [15], our full measurement used CrUX as that list contains
purely websites. However, CrUX does not provide fine-grained rankings
(only ranking buckets) so we still use Tranco for fine-grained rankings.

3While websites may detect and block headless browser crawler, we
did not observe higher crawling success when using full browser instances
while debugging our method on our ground-truth dataset. We suspect that
many sites either do not block crawlers or apply anti-bot techniques that
are similarly effective on full browsers. Thus, we avoid using full instances
as they require more compute resources and execution time (except for
evaluating account credential entry, which required a full browser GUI to
enumate user actions on).

rankings than prior studies, which we argue serves as a more
generalizable empirical grounding.

Our measurement could potentially also generate false pos-
itives on sites where our heuristics and machine learning mod-
els misclassify successful authentication workflows. How-
ever, such false positives would require errors by multiple
distinct classifiers, and we additionally apply a sanity check
(discussed in Section 3.2.6) to further reduce the chance of
false positives. To instill further confidence in our findings, for
each login policy dimension, we randomly sampled and man-
ually analyzed at least 20 domains that our method outputted
the policy configuration for. Across our entire measurement,
we did not observe any false positive results, signally that the
rate of false positives in our data should be low.

One unexpected issue we encountered was with automati-
cally solving CAPTCHAs during repeated login attempts,
which resulted in errors analyzing certain policy dimen-
sions for some domains (particularly rate limiting and typo-
tolerance). We observed that while our automated CAPTCHA-
solving workflow was accurate for the CAPTCHAs observed
in our ground-truth dataset, on some evaluated domains, it
could fail continuously. For other evaluated domains, it could
fail probabilistically (e.g., due to randomization with the
CAPTCHA appearance and challenge), so the probability
of one login attempt failing across multiple attempts was
high enough to prevent analyzing certain policy parameters
correctly. We opted not to re-measure sites that we erred on
as 1) we are not aware of a more reliable way to automate
CAPTCHA-solving (without using human solvers, which en-
tail ethical concerns [29]), and repeated measurements are
likely to result in similar outcomes, and 2) we did not want
to increase our measurement’s footprint on domains through
generating additional accounts and login attempts (as will be
discussed in Section 3.6 on our ethical considerations).

Appendix B provides a detailed manual evaluation of all
stages of our measurement on a random sample of domains.

3.6 Ethical Considerations
As our study involves a large web measurement, there are

several important ethical considerations. Our method requires
automated account creation and login. Prior studies have per-
formed similar automated account creation [13, 14], and we
adopt similar measures as these works to minimize risk/harm
in our method. We only create up to two test accounts, and
test up to 29 login attempts across both accounts (up to 19
logins on the account used for evaluating login failure rate
limiting, and 8 logins on the other account). To avoid inducing
computational load on websites and triggering anti-bot mea-
sures, we heavily rate limit our crawling and login attempts
(as discussed in Section 3.4). In particular, we do not visit
pages on a domain faster than once every 30 seconds, and lo-
gin attempts are at least one hour apart, typically much longer
(except for the rate limiting experiment). We believe that for
websites supporting online accounts, this rate of crawling and

7



login attempts should incur minimal costs, and should not tax
even small websites. Furthermore, the research community
has established precedence for creating and analyzing a small
number of test accounts for measurement purposes (we note
that existing measurement studies on authentication policies
also created test accounts, but did so manually [4, 6, 30, 31]).
As part of our method, we solve CAPTCHAs with an auto-
mated solver. We avoid human-driven CAPTCHA solving
services due to ethical concerns previously identified [29].

We additionally consulted our organization’s general coun-
sel to evaluate the legal risk of our measurement method, as
some of our methods may be contrary to a website’s terms
of service, which we are unable to explicitly check for all
sites in our study. General counsel reviewed this study and
determined that the legal risk is minimal, as there is support
from judicial precedence and there is a lack of reasonable
damages/harm incurred by websites. Our organization’s ad-
ministration also reviewed and approved this study. Finally,
there are no human subject concerns with this study, as no real
user data was used or collected, nor were there interactions
with any individuals.

4 Results
Here we describe the dataset collected and our analysis of

website login policies. We will make our data available to
researchers upon request (due to the data’s sensitivity).

4.1 Dataset Collected
As shown in Figure 2, crawling the domains in the Google

CruX Top 1 Million [8], we found an account login page on
358.9K domains, a signup page on 258.2K domains, and a
password reset page on 27.3K domains4. After our automated
account signup process (which includes the sanity check dis-
cussed in Section 3.2.6), we were able to create an initial test
account on 45.0K domains5. When creating a second account
(for assessing rate limiting), we succeeded on only a subset
of 37.3K domains. We suspect that for the 17% of domains
where we failed to create a second account, the site detected
and blocked our subsequent automated signup attempt.

Our evaluated domains are distributed across the rankings
(note that Google CruX only ranks domains in buckets [8]).
Domains that we found login pages for were evenly dis-
tributed throughout the top 1M, with 3,344 sites in the top 10K
and 36.9K domains in the top 100K. The distribution of do-
mains that we were able to successfully create a test account
on was also spread throughout the top 1M, but more heavily
skewed towards lower-ranked domains: 271 domains in the
top 10K and 3,416 domains in the top 100K. (Domains with

4Our process for automatically finding password reset workflows was
less successful as reset pages reside in deeper parts of websites, may require
interaction, may not exist, or may require a different non-form workflow.

5Our results exceed other automated account creation works in the lit-
erature [13, 14]. For comparison, [14] most recently successfully created
accounts on 25K domains out of 1.5M, a 1.7% success rate, compared to our
4.5% success rate.

Figure 2: Funnel diagram of our initial 1M domains as they
are processed by each stage of our measurement method.

both test accounts created were similar, with 237 domains in
the top 10K and 2949 in the top 100K.).

We evaluate the login page visit, password entry, and pass-
word transmission policies on all domains where the login
form and page were identified. The remaining policy dimen-
sions required domains with test accounts created. In subse-
quent sections, we analyze each specific policy. (Additionally,
Appendix C provides a preliminary characterization of third-
party scripts on login pages, which prior work found could
exfiltrate login credentials [32].)

4.2 Login Page Visit
As shown in Table 2, across the 358.9K domains with a

login page found, we found nearly 2K domains where the
login page was served only over HTTP, meaning all user
logins occur in an insecure environment. We identified an
additional 21.2K domains that offered the login page over
HTTP, in addition to HTTPS. In such cases, sites should
redirect HTTP visitors to HTTPS, lest they authenticate under
insecure conditions.

For domains serving login pages over HTTPS, we also
looked at whether the login page contained mixed-content
served over both HTTP and HTTPS (as HTTP-loaded re-
sources are retrieved over an insecure channel, potentially
compromising the secure login environment). Of the 356.9K
domains supporting HTTPS login pages, we found 10.3K

8



HTTP Login Page HTTPS Login Page
Mixed Content

Login Form
Submission

HTTP
Only

HTTP +
HTTPS Warning Severe HTTP Total

Analyzed
10K 14 123 28 16 14 3,197
100K 143 1,855 487 370 176 35,458
1M 1967 21,195 5020 5292 2235 358,900

Table 2: The number of domains serving HTTP login pages (HTTP-only and in addition to HTTPS), hosting mixed content
HTTPS login pages (only warning-level versus severe mixed content), or submitting login data over HTTP.

domains with mixed content. Of those, half contained only
less severe mixed content cases where the browser could auto-
matically upgrade the resource load to use HTTPS, negating
mixed content’s risk in practice. However, the remaining 5.3K
domains exhibited severe mixed content, where some page
resources could only be loaded over HTTP.

Differences across Rankings. Across ranking ranges, we
observe that the prevalence of insecure login page HTTPS
configurations is slightly higher for lower-ranked sites. While
0.41% of top 10K domains had HTTP-only login pages,
0.55% of the top 1M domains were likewise. Meanwhile,
3.7% of the top 10K domains served login pages over both
HTTP and HTTPS, compared to 5.9% for top 1M. Mixed con-
tent domains shared a similar trend; 1.3% of top 10K domains
had mixed content login pages, versus 2.9% for the top 1M.

This observation suggests that lower-ranked sites are more
likely to exhibit insecure login page TLS configurations. How-
ever, top-ranked sites are not devoid of these security concerns.
By manually investigating the 14 domains within the top 10K
supporting only HTTP for logins, we found a diverse set of
domains, including online forums, adult sites, video streaming
platforms, the official government site for a state in India, an
electricity utilities payment portal, and a Taiwanese news site.

Case Study: Government and Educational Domains.
Among domains serving login pages only over HTTP, we
identified two interesting sets of domains based on their SLDs
and TLDs: government and educational domains. We found
11 government domains (with .gov in the domain SLD or
TLD). Based on the country code TLD (ccTLD), 5 of these
domains were for India and 3 were for Brazil. We also found
9 educational organizations (with .edu in the domain SLD or
TLD) serving HTTP-only login pages, including university
login portals and educational exam centers.

When expanding to domains supporting HTTP and HTTPS
login pages, we found 643 government domains and 820
educational ones. Based on the ccTLD of government do-
mains, the top countries involved were India (204), followed
by Brazil (42), Bangladesh (41), and Vietnam (40). For edu-
cational domains, many did not include a ccTLD, limiting our
country-level association. However, we did observe that the
most common ccTLDs were Vietnam (57), Argentina (50),
Brazil (46), and Peru (46). Government and educational user

User Pwd Both Either Total
Analyzed

10K 23 42 20 45 3,197
100K 253 341 206 388 35,458
1M 2192 2866 1805 3253 358,900

Table 3: The number of domains disallowing pasting of user-
names or passwords into login forms.

accounts are often particularly sensitive, so these sets of do-
mains with insecure login pages are notably problematic (e.g.,
in the US, student data is specially regulated by FERPA [33]).

4.3 Password Entry
Our results on domains disabling login form copy-pasting

is shown in Table 3. Out of 358.9K domains with login pages
found, we detected 3.2K of the domains disallowed copy-
pasting either the email/username or the password field. While
most of these domains (1.8K) disallowed pasting both fields,
domains were more likely to disallow pasting passwords than
usernames (with 1K domains only disallowing password past-
ing), presumably exhibiting the now outdated [1] mentality
that permitting password pasting is insecure.

Differences across Rankings. Across ranking ranges (as
shown in Table 3), we observed similar proportions of ana-
lyzed domains disallowing pasting, although top 10K domains
disabled pasting slightly more often (1.4%) compared to top
100K domains (1.1%) and top 1M domains (0.9%).

Case Study: Indian Domains. Of the top 10K domains
observed disabling pasting, we note that 20% were in India’s
ccTLD (the most common TLD besides .com). Nearly all
were government sites (.gov.in), hinting that this practice may
be broadly adopted amongst Indian government websites.

Case Study: Disabling Pasting. For domains disallowing
login form pasting, we analyzed their HTML login forms
for the onpaste HTML attribute. Only 178 domains (5.6%)
used this attribute. Randomly sampling 15 other domains,
we identified that they included JavaScript code that created
a pasting event listener, preventing the paste event with the
preventDefault() method. Thus, most sites use JavaScript for
disabling pasting (and that analysis of HTML forms only
would mischaracterize pasting allowance for most sites).

9



Upon
Reg.

After
Verif.

After
Reset

Total
w/ Plaintxt

Total
Analyzed

10K 3 1 - 4 263
100K 27 14 2 43 3383
1M 410 134 43 570 44,703

Table 4: The number of domains sending plaintext passwords
in emails either upon registration, after email verification, or
after password reset.

4.4 Password Transmission
Analyzing the 358.9K domains with login pages found, we

uncovered 2.2K domains that could transmit the password
over HTTP, as shown in Table 2. These domains are primarily
those with HTTP-only login pages; over 96% of such domains
(1894) submitted login form data over HTTP. We did find 73
HTTP-only login domains sending credentials over HTTPS
though, demonstrating partial HTTPS deployment but not for
securing the login page itself. For the remaining 341 domains,
we identified that they were domains hosting login pages on
both HTTP and HTTPS, and that the login form data was sent
to a relative URL. Thus, accessing the login page over HTTP
would result in the password also being transmitted in the
clear, highlighting the danger of HTTP login page access.

Differences across rankings. As with HTTP-only login
pages, we see a slight increase in HTTP password submission
for lower-ranked: 0.44% of top 10K domains transmitted pass-
words in the clear, compared to 0.50% of top 100K domains
and 0.62% of top 1M domains.

Case Study: HTTPS Password Transmission on HTTP
Login Pages. Manually inspecting a random sample of the
HTTP-only login domains sending login credentials over
HTTPS, we observed that these domains were typically part
of a larger online service, and sent the login credentials to an
HTTPS endpoint of the service. For example, several domains
were for departments within universities or local governments
(similar with Section 4.2) that, while serving the login page
over HTTP, sent passwords to a central organization authenti-
cation URL. Thus, we hypothesize that in many cases, these
are domains for organizations that operate in a distributed
fashion, such that while individual sub-organizations config-
ure their local login page (e.g., using only HTTP), the authen-
tication itself is centrally managed (e.g., using HTTPS).

4.5 Password Storage/Retrieval
Recall that on the 45K domains where we successfully

created an account, we analyzed all email communications
with the account email, monitoring for our account password
in emails. We were able to automatically proceed through the
password reset on 27.3K of these domains as well (for others,
we were unable to automatically locate the password reset
workflows, although we also observed that some sites do not
seem to publicly support this functionality). In total, we ob-
served 570 domains that sent an email containing our plaintext
password, as shown in in Table 4. Appendix Figure 4 shows

examples of emails that we received with plaintext passwords.
Note that as insecure password storage is a server-side imple-
mentation, we lack visibility into a site’s configuration unless
it sends the plaintext password via email. Thus, our results
serve as a lower bound on insecure password storage.

For most of these domains (410, or 72%), one such email
came immediately upon account signup, before any action
on the account’s part (such as email verification). Upon man-
ual inspection, we observe that these are primarily welcome
emails providing the account login details. While it is possi-
ble that these domains store the password securely, and only
transmitted the plaintext password during account creation,
this practice is insecure as 1) email is often sent across the
Internet over unencrypted channels [34], 2) user inboxes now
contain the password in the clear, potentially accessible to
email providers or anyone else who obtains access to the
emails (e.g., email compromise).

For 134 domains, we received an email with a plaintext
password after email verification. Unlike in the above case
where the password was immediately sent upon account reg-
istration, we believe here that there is stronger evidence of
plaintext password storage, as we performed account verifi-
cation at least an hour after account signup (as mentioned
in Section 3.2.5). Finally, for 43 domains, we received the
plaintext password via password resets, which provides clear
evidence of plaintext password storage. (For 17 such domains,
we also received the plaintext password in a prior email.)

Differences across Rankings. Across the ranking ranges,
we observed similar percentages of analyzed domains sending
emails with plaintext passwords (between 1.27–1.45%).

Case Study: European Websites. Of the 570 domains
found sending plaintext passwords in emails, we note that a
large portion (147, or 26%) were domains with a ccTLD for a
country in the European Union (35 domains in Bulgaria, 18 in
Italy, 14 in Poland, and 12 in both France and Germany). The
storage of plaintext password by these sites may potentially
violate the EU’s GDPR Article 32 [35], which requires that
European websites securely encrypt user data. In 2018, a
German website was fined under GDPR for a data breach
while storing plaintext passwords [36]. (We did not observe a
large portion of EU domains for other GDPR-related concerns,
such as with cleartext password submission.)

Case Study: Comparison with the Plain Text Offender’s
List. The Plain Text Offenders (PTO) project [37] is a crowd-
sourced compilation of domains found sending plaintext pass-
words through emails, collected since 2011 (thus many listed
domains may no longer store passwords in plaintext). As of
February 2023, the list has 5.8K domains, 2.2K of which are
in our top 1M dataset. Of these 2.2K domains, we created an
account on 933 domains, and did password resets on 927.

We found 26 of these overlapping domains still sending
their passwords in plaintext: 17 did so upon registration, while
most of the remaining domains (7) did so after a password
reset. Several domains were added to the PTO list in 2011,

10



Typos Permitted 10K 100K 1M
1. Incorrect Case (first) 5 36 264
2. Cap Locks: Inverted Case 5 36 264
3. Cap Locks: All Uppercase 4 35 251
4. Extra Character (front) 0 0 0
5. Extra Character (end) 1 1 14
6. Missing Shift Key (last) 0 2 20
Fully Case-Insensitive 4 35 251
Any Typo-Tolerance 5 36 273
Total Analyzed 103 1553 20,357

Table 5: The number of domains exhibiting typo-tolerant
password authentication, for different typo-tolerant policies.

suggesting that they have stored plaintext passwords for over
a decade. We also randomly sampled 10 domains on the PTO
list that we analyzed but did not observe emails with plain-
text passwords. We manually registered and verified accounts
on these sites and conducted password resets. Across the
sites, we received welcome, verification, and password reset
emails, but none contained our account password. This result
indicates that the PTO list has outdated data and that our mea-
surement did not exhibit extensive false positives. In addition,
our measurement identified 544 sites not in the PTO list.

4.6 Password Validation
We were able to fully analyze the typo-tolerance policy of

20.4K domains (103 in the top 10K, and 1553 in the top 100K).
On other domains, we encountered CAPTCHA-solving errors
after the repeated login attempts, a limitation discussed in
Section 3.5. As displayed in Table 5, we found 273 domains
exhibiting typo-tolerance during logins. This population of
sites is significantly larger than previously documents, as
discussed in Section 2. The most commonly accepted typos
were related to letter casing (typos 1–3 in Table 5), accepted
by between 251–264 domains. However, we saw 23 domains
supporting other typos (none accepted an extra character at
the front of the password).

A mean of 3 typo classes were accepted per domain, with at
most 5. The most common overall typo-tolerance policy was
accepting all three letter-casing typos (typos 1–3), employed
by 241 domains (88% of typo-tolerant domains). The next
most common policies were handling typos 1 and 2, and
allowing typos 5 and 6, each appearing on 9 sites.

Differences across Rankings. We observed a slightly
higher rate of typo-tolerance amongst top-ranked sites com-
pared to lower-ranked ones. Within the top 10K, 4.9% of the
analyzed domains accepted typos, compared to 2.3% within
the top 100K and 1.3% over the top 1M.

Case Study: Case-Insensitive Passwords. We investi-
gated the most common typo-tolerant policy that accepts
any letter casing errors. We randomly sampled 30 such do-
mains, manually verifying their typo-tolerance policies, and

Wrong
Username

Wrong
Password

Vuln to
User Enum

Total
Analyzed

10K 41 38 46 172
100K 308 362 418 2125
1M 3284 5343 5906 31,190

Table 6: The number of domains vulnerable to user enumer-
ation, revealing either that a username is wrong, or that the
password is wrong for a valid username.

inspected the webpage code, as well as dynamically mon-
itored website behavior while entering and submitting the
password. We observed that when entering the real password
with incorrect letter casing, the password value (as displayed
and as stored in the HTML input element) was not modified.
Upon form submission, we observe that the password was
still transmitted without change. Thus, we did not find any
client-side handling of the password letter casing. Instead, this
policy is seemingly implemented server-side, likely by server
functionality that modifies password letter casings (e.g., lower-
casing/uppercasing all password letters). We found examples
of such behavior in existing WordPress plugins [38].

Case Study: Pinterest. While prior work [11,12] has refer-
enced Facebook/Meta as the sole example of a top site employ-
ing typo-tolerant password authentication, we uncovered that
Pinterest is another top site (ranked 33rd in the Feb. 6, 2023
snapshot of the Tranco top list [15]). Our analysis concluded
that Pinterest accepts incorrect casing for the first password
character (if a letter), inverted letter casing throughout the
password (due to caps lock), and adding an extra character at
the end of the password. We manually validated that Pinterest
indeed supports this typo-tolerant policy (and again did not
observe client-side implementation of typo-tolerance).

4.7 Login Failures: User Enumeration
We collected and analyzed the login failure messages for

31.2K domains, failing to capture the messages on the re-
maining domains (in some cases, due to CAPTCHA errors
encountered, as discussed in Section 3.5, and in other cases,
we found that there was no message). We uncovered 5.9K
domains (19%) exhibiting some form of user enumeration vul-
nerability, as shown in Table 6. Nearly 3.3K domains reveal
that a username/email does not exist when given an incorrect
one (rather than reveal that the username/password combina-
tion is incorrect, which would not leak if the username exists).
Meanwhile, 5.3K domains reveal that the password is incor-
rect if the username/email exists for an account, allowing an
attacker to learn that the username/email is correct. Thus, a
sizable portion of domains are vulnerable to user enumeration.

Differences across rankings. We observe that higher-
ranked sites were more likely to exhibit user enumeration
vulnerabilities compared to lower-ranked ones. For top 10K
domains, 26.7% had login failure messages allowing for user
enumeration, compared to 19.7% for top 100K domains and
18.4% for top 1M sites. We hypothesize that as higher-ranked

11



sites often have larger user bases compared to lower-ranked
domains, they are more motivated to provide user feedback
upon login failures, often doing so in a vulnerable fashion.

Case Study: WordPress Login Failure Messages. We
looked at the most common login error messages vulnerable
to user enumeration, as shown in Appendix Table 8. We found
that over 18% of domains shared the same message leaking
username correctness when given the wrong password. We
discovered that this message is the default for WordPress [39],
even on the latest version (v.6.1.1). Likewise, we found ev-
idence [40] that the top message leaking that a username is
wrong, appearing on 4.4% of sites, is from the popular Word-
Press ProfilePress plugin [41] (with over 300K installations).
Thus, popular web platforms like WordPress can heavily in-
fluence the user enumeration vulnerability of websites.

Case Study: Sensitive Websites. Prior work [30, 31] sur-
veyed participants on sensitive online accounts, finding that
most had accounts on sites that they would not want others to
know about. Common site categories were adult, dating, and
financial sites. We classified the website categories for the
domains found vulnerable to user enumeration attacks, using
SimilarWeb [42]. While SimilarWeb classified only 38% of
domains, we still found 98 adult, 75 financial, and 24 dating
domains vulnerable to user enumeration, highlighting a set of
sites where user enumeration may be especially concerning.

4.8 Login Failures: Rate Limiting
On the 37.3K domains where we successfully created a test

account for the rate limiting experiment, we were able to fully
execute our experiment for 18.0K domains without error. For
the other domains, our automated login process failed on one
of the attempts due to CAPTCHA-related issues, preventing
us from correctly assessing a site’s rate limiting policy (a lim-
itation discussed in Section 3.5). Note that the 18.0K domains
successfully evaluated were not only those that were without
CAPTCHAs; 4.5K (25%) displayed CAPTCHAs during the
experiment that we were able to consistently solve correctly.

Across the 18.0K domains successfully evaluated, we ob-
served 4335 domains (24%) demonstrating some rate limiting
measure. For 2575 domains (14%), the site began blocking
our login attempt by redirecting away from the login page
or disabling the login page/form. For another 1760 (10%)
domains, we were able to complete our sequence of failed
login attempts, but the site blocked our subsequent valid lo-
gin attempt, signaling that these domains rate limited the
login attempts or locked the accounts. A quarter of these
1760 sites (456) continued to block our valid login an hour
after the consecutive failed logins.

For the domains whose rate limiting policy was correctly
assessed, we see that only a minority rate limit logins. How-
ever, given that we failed to analyze 52% of domains on which
we created an account, the true prevalence may be higher. To
better understand the domains we failed to evaluate, we ran-
domly sampled and re-evaluated the rate limiting policy of 10

domains, this time solving CAPTCHAs manually. We found
that only 3 domains rate limited our logins (with the other 7
domains allowing immediate login after our consecutive lo-
gin attempts), a proportion commensurate with that observed
on correctly tested domains. Thus, our results indicate that
login rate limiting’s deployment, as recommended by modern
guidelines [1, 2], is still limited to a minority of sites.

Differences across Rankings. Among domains success-
fully analyzed, we observe that rate limiting logins was more
prevalent amongst higher-ranked domains; 33.6% of the do-
mains in the top 10K and 26.7% of domains in the top 100K
demonstrated rate limiting, compared to the 24.1% for do-
mains in the top 1M. Thus, top-ranked sites appear more
likely to employ rate limiting, likely due to a combination
of increased risk of authentication attacks, more valuable ac-
counts, and more resources for implementing and supporting
rate limiting (both computational and human resources).

5 Comparison to Prior Work
Here we summarize the prior work on similar aspects of

website login policies, and compare their results with ours.

5.1 HTTPS Usage during Logins
Bonneau and Preibusch [43] analyzed TLS deployment

on 45 websites in 2010, observing that 64% did not employ
TLS during account signup, and less than half (44%) did so
during account login. Parallel work [4] expanded examination
to 150 domains, finding only 39% of the domains consistently
submit passwords over TLS, and 41% did not use TLS at all.

Since these studies, HTTPS adoption has burgeoned [44].
Now 13 years later, one might hope for universal HTTPS
adoption on any security-sensitive site, including those han-
dling account signup and logins. We indeed found that TLS
use across login pages is significantly higher than what prior
work identified, although a non-trivial number of websites
still exhibit insecure HTTPS configurations for login pages.

5.2 Password Entry
To our knowledge, prior work has not analyzed the preven-

tion of copy-pasting on website logins in practice. Thus, our
study provides the first data on this policy.

5.3 Storage of Plaintext Passwords
In 2010, Bonneau and Preibusch [4] also evaluated plain-

text password storage on 150 domains, finding 16 domains
emailing passwords upon registration and 36 doing so after
password resets. In 2015, Bauman et al. [7] performed a sim-
ilar manual analysis of 398 sites within the Alexa top 500,
finding 11 cases of sites emailing plaintext passwords. In
comparison, we analyzed the emails sent for accounts on 45K
domains and conducted password resets on 27K sites. In total,
we observed 570 domains emailing plaintext passwords.

12



5.4 Typo-Tolerant Password Authentication
Prior work on typo-tolerant password authentication [11,

12] highlights Facebook as the prime example of a typo-
tolerant website [45, 46], while also referencing past reports
of typo-tolerance on a couple other sites [47, 48]. However,
we are not aware of prior work measuring the prevalence of
typo-tolerance at scale. Thus, our study provides the first data
on this practice, finding its use on hundreds of sites.

5.5 User Enumeration Vulnerabilities
Bonneau and Preibusch [4] examined login errors on 150

domains, finding 19% vulnerable to user enumeration. More
recently in 2019, Hasegawa et al. [30,31] evaluated 87 popular
and sensitive domains for user enumeration attacks, observing
that two-thirds were vulnerable. In comparison, our study
evaluates user enumeration across 31K sites, finding that a
fifth of domains were vulnerable, similar to Bonneau and
Preibusch [4], and identify sensitive domains affected.

5.6 Login Rate Limiting
In 2016, Golla et al. [5] manually analyzed rate limiting

for 12 domains, performing 25 consecutive incorrect logins
followed by a correct one. They observed rate limiting on
11 of 12 domains, with 10 domains locking the user account.
Bonneau and Preibusch [4] also evaluated rate limiting on
150 domains using a script that attempted 100 consecutive
incorrect logins. They found that the majority (127) did not
employ rate limiting. More recently, Lu. et al. [6] performed
similar rate limiting evaluations on 182 domains in the Alexa
Top 500, finding 131 domains did not rate limit logins. In
our study, we successfully evaluate the rate limiting policy of
18K sites, observing similarly that rate limiting is done by a
minority (∼25–30%) of sites.

6 Concluding Discussion
In this study, we conducted the largest evaluation of website

login policies to date, assessing 18K–359K sites across vari-
ous policy components (orders of magnitude more than prior
work). Our results establish empirical grounding on the state
of modern web authentication, characterizing the insecure lo-
gin policies that occur. Here, we synthesize our findings into
lessons for improving web authentication moving forward.

Importance of Large-Scale Web Authentication Mea-
surements. By measuring at scale, we uncovered unique as-
pects of online authentication, including varying login poli-
cies deployed by sites across different ranking ranges. For
example, while there was scant evidence of typo-tolerance
use in practice (Section 5.4), we found hundreds of sites de-
ploying typo-tolerance, and identified that policies primarily
account for letter casing typos (Section 4.6). This finding has
security implications as recent work [12] identified that typo-
tolerant schemes, while more usable, also are significantly
more vulnerable to credential stuffing attacks. These newly
identified domains, including a top 50 site, motivate further

investigation into typo-tolerance’s security-usability tradeoff.
We also observed certain subpopulations exhibiting insecure
practices, such as poor HTTPS configurations by government
and educational sites (Section 4.2), and frequent disabling
of login form pasting by top Indian domains (Section 4.3).
Having identified these subpopulations, community efforts to
inform affected parties and encourage remediation can drive
real improvements in online authentication.

However, conducting web authentication measurements at
scale is extremely challenging given the web’s heterogeneity
and the extensive engineering required for automation. Our
data and results will eventually become stale, and later in-
vestigations into web authentication will be needed. Future
work should refine existing measurement methods, such as
by developing more accurate classifiers or identifying ways
to better manage web diversity.

Influence of Popular Web Frameworks. We discovered
that several login security issues arose due to implementation
decisions by popular web frameworks. For example, about
a fifth of domains vulnerable to user enumeration appear to
simply use WordPress’s default login failure messages (Sec-
tion 4.7). Similarly, the most common typo-tolerance policy
likely arose due to how popular server-side software modified
passwords (Section 4.6). While these web frameworks may
be the cause of prevalent authentication issues, they can also
be the source of solutions. Software updates that address au-
thentication concerns could drastically reduce vulnerable pop-
ulations. Meanwhile, if popular web frameworks supported
recommended practices by default, such as rate limiting (de-
ployed by only a minority of sites, as seen in Section 4.8), we
would likely observe significantly higher adoption levels.

Improving the Web HTTPS Ecosystem. As discussed in
Section 5.1, our analysis of HTTPS use during web logins
indicates that TLS use has significantly improved compared
to prior observations. Community efforts to drive wider TLS
adoption have led to more secure online logins at large. How-
ever, work remains as some sites still use insecure communica-
tion channels. From Section 4.2, we found that mixed content
remains a relevant issue on login pages, and given the promi-
nence of websites still supporting login pages over HTTP,
further effort is needed to incentivize website operators to mi-
grate all sensitive pages (e.g., login pages) to HTTPS only. In
many cases, we hypothesize that the operators are not aware
that login pages are still available over HTTP, or are unaware
of the consequences of hosting HTTP login pages. Here, out-
reach campaigns may be effective at reducing this population
(as done by prior work in other security contexts [49–51]).

Combining Crowdsourced and Automated Approaches.
Our case study of the crowdsourced Plain Text Offenders
(PTO) project (in Section 4.5) highlights how even popular
crowdsourcing efforts have limited coverage (as we discov-
ered hundreds of new sites storing plaintext passwords) and
must deal with stale data (as many domains in the PTO list
no longer belong). Especially as such projects partly serve to

13



“name and shame” misbehaving sites, outdated data can unnec-
essarily besmirch sites that take corrective actions. However,
such efforts can identify insecure cases that automated meth-
ods cannot, and thus are highly complementary approaches.
We advocate for hybrid efforts moving forward, where crowd-
sourced data can be augmented by automated measurements,
as well as fed into the automation to allow for periodic re-
evaluations (producing fresh results).

Driving Adherence to Modern Standards. While modern
standards [1–3, 9] provide guidelines for secure and usable
policies at each login stage (except with typo-tolerance, which
warrants further investigation and incorporation into guide-
lines), we observe nonadherence by sizable populations of
sites throughout our findings. Further investigation is needed
into why website operators do not adopt these standards, to
determine the best avenues for affecting change. One possible
lever for driving improved authentication practices could be
through enforcing regulations. For example, we observed in
Section 4.5 that many domains we that expect are storing
plaintext passwords are in the European Union, where GDPR
could be leveraged to penalize such insecure practices. Such
enforcement could raise awareness and incentivize remedia-
tion of insecure website behaviors.

7 Acknowledgements
We thank the anonymous reviewers for their constructive

feedback. The first author was supported by the Kuwait Uni-
versity Scholarship. This work was also supported in part by
the National Science Foundation award CNS-2055549. The
opinions expressed in this paper do not necessarily reflect
those of the research sponsors.

References
[1] Paul Grassi, Michael E Garcia, and James L Fenton. Digital identity

guidelines. NIST Special Publication, 800:63–3, 2017.

[2] National Cyber Security Centre (NCSC). Password administration for
system owners. NIST Special Publication, 2018.

[3] Open Web Application Security Project. Authentication Cheat Sheet.
URL: https://cheatsheetseries.owasp.org/cheatsheets/A
uthentication_Cheat_Sheet.html.

[4] Joseph Bonneau and Sören Preibusch. The Password Thicket: Technical
and Market Failures in Human Authentication on the Web. In Workshop
on the Economics of Information Security (WEIS), 2010.

[5] Maximilian Golla, Theodor Schnitzler, and Markus Dürmuth. “Will
Any Password Do?” Exploring Rate-Limiting on the Web. Who Are
You?! Adventures in Authentication Workshop (WAY), 2016.

[6] Bo Lu, Xiaokuan Zhang, Ziman Ling, Yinqian Zhang, and Zhiqiang
Lin. A measurement study of authentication rate-limiting mechanisms
of modern websites. In Annual Computer Security Applications Con-
ference (ACSAC), 2018.

[7] Erick Bauman, Yafeng Lu, and Zhiqiang Lin. Half a century of practice:
Who is still storing plaintext passwords? In International conference
on information security practice and experience, 2015.

[8] Chrome Developers. Chrome UX Report. URL: https://develope
r.chrome.com/docs/crux/.

[9] National Cyber Security Centre. Let them paste passwords, 2017. URL:
https://www.ncsc.gov.uk/blog-post/let-them-paste-passw
ords.

[10] Google Cloud. Modern password security for system designers. URL:
https://cloud.google.com/solutions/modern-password-sec
urity-for-system-designers.

[11] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and
Thomas Ristenpart. pASSWORD tYPOS and how to correct them
securely. In IEEE Symposium on Security and Privacy (SP), 2016.

[12] Sena Sahin and Frank Li. Don’t Forget the Stuffing! Revisiting the
Security Impact of Typo-Tolerant Password Authentication. In ACM
Conference on Computer and Communications Security (CCS), 2021.

[13] Joe DeBlasio, Stefan Savage, Geoffrey M Voelker, and Alex C Sno-
eren. Tripwire: Inferring internet site compromise. In ACM Internet
Measurement Conference (IMC), 2017.

[14] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The cookie
hunter: Automated black-box auditing for web authentication and autho-
rization flaws. In ACM Conference on Computer and Communications
Security (CCS), 2020.

[15] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczyński, and Wouter Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. In Network and Dis-
tributed Systems Security Symposium (NDSS), 2019.

[16] Karen Sparck Jones. A statistical interpretation of term specificity and
its application in retrieval. Journal of documentation, 1972.

[17] Scikit-learn. sklearn.svm.SVC. URL: https://scikit-learn.org
/stable/modules/generated/sklearn.svm.SVC.html.

[18] ScraperAPI. The Proxy API For Web Scraping. URL: https://www.
scraperapi.com/.

[19] Ding Wang and Ping Wang. The emperor’s new password creation
policies. In European Symposium on Research in Computer Security
(ESORICS), 2015.

[20] Kevin Lee and Sten Sjöberg and Arvind Narayanan. Password policies
of most top websites fail to follow best practices. In Symposium on
Usable Privacy and Security (SOUPS), 2022.

[21] Tobias Seitz, Manuel Hartmann, Jakob Pfab, and Samuel Souque. Do
differences in password policies prevent password reuse? In SIGCHI
Conference Extended Abstracts on Human Factors in Computing Sys-
tems, 2017.

[22] Daniele Faraglia. Welcome to Faker’s documentation! URL: https:
//faker.readthedocs.io/.

[23] AZcaptcha. Auto Captcha Solver Service and Cheap Captcha Bypass
Service Provider - AZcaptchas. URL: https://azcaptcha.com/.

[24] Selenium. Actions API - Selenium. URL: https://www.selenium
.dev/documentation/webdriver/actions_api/.

[25] Michal Danilk. langdetect 1.0.9. URL: https://pypi.org/project
/langdetect/.

[26] Terry Yin. translate 3.6.1. URL: https://pypi.org/project/tra
nslate/.

[27] Hugging Face. sentence-transformers/all-distilroberta-v1 - Hugging
Face. URL: https://huggingface.co/sentence-transformers/
all-distilroberta-v1.

[28] Selenium. URL: https://www.selenium.dev/.

[29] Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon
McCoy, Geoffrey M. Voelker, and Stefan Savage. Re:
CAPTCHAs—Understanding CAPTCHA-Solving Services in
an Economic Context. In USENIX Security Symposium, 2010.

[30] Ayako Akiyama Hasegawa, Takuya Watanabe, Eitaro Shioji, and Mit-
suaki Akiyama. I know what you did last login: inconsistent messages
tell existence of a target’s account to insiders. In Annual Computer
Security Applications Conference (ACSAC), 2019.

14

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://developer.chrome.com/docs/crux/
https://developer.chrome.com/docs/crux/
https://www.ncsc.gov.uk/blog-post/let-them-paste-passwords
https://www.ncsc.gov.uk/blog-post/let-them-paste-passwords
https://cloud.google.com/solutions/modern-password-security-for-system-designers
https://cloud.google.com/solutions/modern-password-security-for-system-designers
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.scraperapi.com/
https://www.scraperapi.com/
https://faker.readthedocs.io/
https://faker.readthedocs.io/
https://azcaptcha.com/
https://www.selenium.dev/documentation/webdriver/actions_api/
https://www.selenium.dev/documentation/webdriver/actions_api/
https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/
https://pypi.org/project/translate/
https://pypi.org/project/translate/
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://www.selenium.dev/


[31] Ayako Akiyama Hasegawa, Takuya Watanabe, Eitaro Shioji, Mitsuaki
Akiyama, and Tatsuya Mori. Addressing the Privacy Threat to Identify
Existence of a Target’s Account on Sensitive Services. Journal of
Information Processing, 28:1030–1046, 2020.

[32] Asuman Senol, Gunes Acar, Mathias Humbert, and Fred-
erik Zuiderveen Borgesius. Leaky Forms: A Study of Email
and Password Exfiltration Before Form Submission. In USENIX
Security Symposium, 2022.

[33] US Department of Education. Family Educational Rights and Privacy
Act (FERPA). URL: https://www2.ed.gov/policy/gen/guid/fp
co/ferpa/index.html.

[34] Zakir Durumeric, David Adrian, Ariana Mirian, James Kasten, Elie
Bursztein, Nicolas Lidzborski, Kurt Thomas, Vijay Eranti, Michael
Bailey, and J. Alex Halderman. Neither Snow Nor Rain Nor MITM...:
An Empirical Analysis of Email Delivery Security. In ACM Internet
Measurement Conference (IMC), 2015.

[35] Intersoft Consulting. Art. 32 GDPR Security of processing. URL:
https://gdpr-info.eu/art-32-gdpr/.

[36] Ionut Ilascu. First GDPR Sanction in Germany Fines Flirty Chat
Platform EUR 20,000. URL: https://www.bleepingcomputer.c
om/news/security/first-gdpr-sanction-in-germany-fines
-flirty-chat-platform-eur-20-000/.

[37] Aviem Zur Igal Tabachnik, Omer van Kloeten. Plain text offenders.
URL: https://plaintextoffenders.com/.

[38] Lew Ayotte. Case-Insensitive Passwords. URL: https://wordpress.
org/plugins/case-insensitive-passwords/.

[39] WordPress Foundation. Build a Site, Sell Your Stuff, Start a Blog &
More. URL: https://wordpress.com/.

[40] Osama Ibrahim. Unable to login with email address as the username -
WordPress. URL: https://wordpress.stackexchange.com/ques
tions/374158/unable-to-login-with-email-address-as-t
he-username-wordpress.

[41] ProfilePress. Modern Ecommerce, User Profile & WordPress Member-
ship Plugin. URL: https://profilepress.com/.

[42] SimilarWeb. URL: https://similarweb.com/.

[43] Joseph Bonneau and Sören Preibusch. The privacy jungle: On the mar-
ket for data protection in social networks. In Economics of information
security and privacy, pages 121–167. Springer, 2010.

[44] Google. HTTPS encryption on the web. URL: https://transparen
cyreport.google.com/https/overview?hl=en.

[45] Emil Protalinski. Facebook passwords are not case sensitive, 2011.
URL: www.zdnet.com/article/facebook-passwords-are-not
-case-sensitive-update/.

[46] Josh Hendrickson. Is Vanguard Making It Too Easy for Cybercriminals
to Access Your Account?, 2019. URL: https://www.howtogeek.co
m/402761/facebook-fudges-your-password-for-your-conve
nience/.

[47] Dylan Tweney. Amazon.com Security Flaw Accepts Passwords That
Are Close, But Not Exact, 2011. URL: https://www.wired.com/20
11/01/amazon-password-problem/.

[48] Zack Whittaker. Surprise! Your online banking password might not
be as secure as you thought, 2017. URL: https://www.zdnet.com/
article/surprise-online-bank-passwords-may-not-be-cas
e-sensitive/.

[49] Eric Zeng, Frank Li, Emily Stark, Adrienne Porter Felt, and Parisa
Tabriz. Fixing HTTPS misconfigurations at scale: An experiment with
security notifications. In Workshop on the Economics of Information
Security (WEIS), 2019.

[50] Max Maass, Alina Stöver, Henning Pridöhl, Sebastian Bretthauer, Do-
minik Herrmann, Matthias Hollick, and Indra Spiecker. Effective No-
tification Campaigns on the Web: A Matter of Trust, Framing, and
Support. In USENIX Security Symposium, 2021.

[51] Frank Li, Grant Ho, Eric Kuan, Yuan Niu, Lucas Ballard, Kurt Thomas,
Elie Bursztein, and Vern Paxson. Remedying web hijacking: Notifi-
cation effectiveness and webmaster comprehension. In International
Conference on World Wide Web (WWW), 2016.

[52] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. Auto-
matic keyword extraction from individual documents. Text mining:
Applications and Theory, 1:1–20, 2010.

[53] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2004.

A Keywords Extraction Details
To identify relevant keywords and phrases for our method,

we manually analyzed a random sample of domains and ap-
plied the ranking algorithm Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) [16]. TF-IDF ranks the importance
of a word by its frequency in a document, logarithmically
scaled by the number of documents it occurs in. The top words
and phrases produced from the method are then manually in-
vestigated and keywords are selected. We initially explored
two other approaches, Rapid Automatic Keyword Extraction
(RAKE) [52] and Text Rank [53], but found TF-IDF to be the
most effective.

B Manual Evaluation of Method Performance
To better understand how our method (from Section 3)

performs, we investigate a random sample of domains and
manually evaluate how our method executed on these domains
at each stage of the measurement. We conduct our evaluation
in two phases. In the first phase, we randomly sample 100
domains from our full population of 1M domains, and evaluate
our method’s steps to find forms and create accounts. As our
method ultimately created accounts on a small fraction of
sites, we expect that only a small number of domains in the
first phase’s sample will have successfully created accounts,
inhibiting meaningful evaluation of our method’s login policy
evaluation. Thus, in a second phase, we randomly sampled 75
domains where our method successfully created an account,
and evaluate how well it inferred the login policies.

B.1 Phase 1: Finding Forms and Creating Ac-
counts

In this first phase, we focus on our method’s ability to
find the account login, signup, and password reset forms, and
successfully complete the account creation workflow.
• Account Signup Forms + URLs: We manually found 40

out of 100 domains providing a URL for account creation.
Our method missed 23 of these domains (FNR = 58%). Of
these, 9 domains had multi-stage account creation work-
flows (which our method was not designed to handle), and 8
domains lacked the relevant keywords in their signup URL
or form (Section 3.2.2). The remaining cases involved the
signup page not being in our method’s site search explo-
ration (i.e., deeper within a site than we explored), false
negatives by our form classifier, or user interaction required

15

https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html
https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html
https://gdpr-info.eu/art-32-gdpr/
https://www.bleepingcomputer.com/news/security/first-gdpr-sanction-in-germany-fines-flirty-chat-platform-eur-20-000/
https://www.bleepingcomputer.com/news/security/first-gdpr-sanction-in-germany-fines-flirty-chat-platform-eur-20-000/
https://www.bleepingcomputer.com/news/security/first-gdpr-sanction-in-germany-fines-flirty-chat-platform-eur-20-000/
https://plaintextoffenders.com/
https://wordpress.org/plugins/case-insensitive-passwords/
https://wordpress.org/plugins/case-insensitive-passwords/
https://wordpress.com/
https://wordpress.stackexchange.com/questions/374158/unable-to-login-with-email-address-as-the-username-wordpress
https://wordpress.stackexchange.com/questions/374158/unable-to-login-with-email-address-as-the-username-wordpress
https://wordpress.stackexchange.com/questions/374158/unable-to-login-with-email-address-as-the-username-wordpress
https://profilepress.com/
https://similarweb.com/
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.howtogeek.com/402761/facebook-fudges-your-password-for-your-convenience/
https://www.howtogeek.com/402761/facebook-fudges-your-password-for-your-convenience/
https://www.howtogeek.com/402761/facebook-fudges-your-password-for-your-convenience/
https://www.wired.com/2011/01/amazon-password-problem/
https://www.wired.com/2011/01/amazon-password-problem/
https://www.zdnet.com/article/surprise-online-bank-passwords-may-not-be-case-sensitive/
https://www.zdnet.com/article/surprise-online-bank-passwords-may-not-be-case-sensitive/
https://www.zdnet.com/article/surprise-online-bank-passwords-may-not-be-case-sensitive/


before displaying the form. Our method also had 6 false
positives (FPR = 10%) due to the presence of relevant key-
words in URLs or page forms (but this does not result in
false positives during account creation, as discussed below).

• Login Forms + URLs: We manually found 54 domains
with login URLs (note, this number is higher than the num-
ber of domains with account signup URLs as a number of
sites do not seem to provide public account creation, such as
educational and financial institutions). Our method missed
the login page on 17 domains (FNR = 31%). The most com-
mon issue (8 domains) was a lack of relevant keywords in
the URL or login form. The remaining domains either em-
bedded the login page further within a site than our method
searched, required user interaction before displaying the
login form, deployed multi-step login forms, or caused a
false negative classification from our form classifier. Here
we had no false positives.

• Password Reset Forms + URLs: We manually found 25
domains with password reset URLs. Our method missed 22
domains (FNR = 88%), of which the majority (13) were due
to missing keywords in the URL or form. We also found 5
domains with reset forms requiring user interaction before
displaying. The remaining issues were reset URLs not in
our method’s site search exploration, multi-stage forms,
and non-form-based resets. Here, we had 1 false positive
(FPR = 1%) due to the presence of relevant keywords (but a
false positive would not result in a false positive password
storage policy inference later on).

• Account Creation: Of the 17 domains where we found
the signup URL, we successfully created accounts on 3 do-
mains (with 14 false negatives). We note that several sites
required phone or ID verification, which is not handled by
our method. For 6 false negative domains, we provided
non-accepted values during the form filling process. Other
errors included CAPTCHA-solving failures and misclas-
sifications by the signup success classifier. We observed
no false positives (where we believed we had created an
account but had not).

From our analysis above, we believe that a promising direction
for improving our automated method in the future would be
to implement support for identifying and completing multi-
stage forms. In addition, keyword heuristics for forms and
URLs can be further refined, and other page features could be
incorporated for form detection (which would likely aid with
multi-stage form detection). We also struggled with providing
acceptable form values, so future work can improve upon the
classification and completion of form fields.

B.2 Phase 2: Login Policy Evaluation
To evaluate how well our method inferred login policies,

in this second phase, we manually analyze a sample of 75
domains which our method successfully created accounts on.
• Login Page Visit / Password Transmission: These poli-

cies only required finding the login page, which our method

did so with high accuracy (see Appendix B.1). We did not
identify false positive or false negative policy inferences on
these sites.

• Account Credential Entry: Upon manual investigation, we
did not find any of the 75 domains disabling copy-pasting.
Our method likewise did not exhibit any false positive or
false negative detections. Note that we randomly sampled
20 domains that our method detected as disabling copy-
pasting, and manually confirmed that these inferences were
correct (no false positives). Thus, our policy inference here
is highly accurate.

• Password Storage/Retrieval: We manually found that 2
of the 75 domains sent a plaintext password in an email
upon account registration. Our method observed the same
on both domains as well. However, we manually found that
1 domain sent a plaintext password during a password reset,
which our method missed as it did not find that domain’s
password reset URL (see Appendix B.1). Thus, as discussed
in Section 4.5, the number of sites that our method detected
storing plaintext passwords is a lower bound.

• Password Validation: Our method fully evaluated typo-
tolerance on 29 (39%) of the domains. On the other do-
mains, our automated CAPTCHA solving failed for one
of the repeated attempts. Upon manual investigation, we
found 1 out of 75 domains exhibiting a typo-tolerant policy,
which was also correctly detected by our method. There
were no false positives where our method incorrectly in-
ferred typo-tolerance for a site. Thus, our results provide a
lower bound on sites deploying typo-tolerance.

• User Enumeration: Upon manual investigation, we found
23 domains exhibiting a user enumeration vulnerability in
their login error message. Our method correctly extracted
error messages on 55 out of 75 domains (73%), and cor-
rectly identified 16 domains exhibiting user enumeration
issues. The 7 missing domains (with user enumeration is-
sues) did not have their error message extracted correctly
due to a lack of relevant keywords or the error message
appearing outside of the login form. Our method also mis-
classified 5 domains as false positives, thus as discussed in
Section 3.3.6, our results provide an approximation of the
prevalence of this vulnerability.

• Rate Limiting: We evaluated rate limiting through the same
experiment as described in Section 3.3.7, but performing
the repeated logins manually within a browser. Note that
as we conducted our logins manually, rate limiting results
can differ, such as due to anti-bot/anti-automation mecha-
nisms or detection of organic human behavior. In total, we
detected rate limiting on 15 domains (20%).
Our method fully analyzed the rate limiting policy of 30
domains (40%), failing on other domains due to our auto-
mated CAPTCHA solver failing during one of the login
attempts. Among these missed domains were 11 manually
found to do rate limiting. Of the successfully-analyzed do-
mains, our method found 6 domains deploying rate limiting.

16



Figure 3: CDF of the number of unique third-party domains
that script resources are loaded from on the login pages of
our 358.9K investigated sites.

Four of these domains were confirmed manually. For the
remaining two, we believe that rate limiting did occur, but
likely due to anti-bot/anti-automation mechanisms that did
not trigger during our manual login attempts. While we
were unable to analyze rate limiting across all domains, our
findings in Section 4.8 are commensurate with those from
this manually-analyzed sample. Thus we believe our rate
limiting observations hold generally (as discussed also in
Section 4.8).

Improving the discovery of login pages and password reset
forms, as well as automated account creation, would naturally
expand our password policy evaluation (as discussed in Ap-
pendix B.1). Beyond those directions, improved automated
CAPTCHA solving would significantly enhance our policy
analysis, as CAPTCHA solving issues hindered our analy-
sis of password validation and rate limiting on many sites.
Related, more steathy web crawling may reduce the number
of CAPTCHAs encountered, similarly improving policy in-
ference. Finally, future work can develop a more effective
user enumeration vulnerability classifier, as our current model
exhibits a high false positive rate.

C Third-Party Scripts on Login Pages
Prior work uncovered third-party JavaScript on login pages

exfiltrating credentials from login forms, primarily for track-
ing, marketing and analytic purposes [32]. Here, we perform
an initial analysis of the extent to which login pages are po-
tentially vulnerable due to third-party script inclusion. For
the login pages we identified, we extract the src attribute of
all script elements. We then characterize whether the script is
loaded from the same domain as the login page (i.e., first-party
script) or another domain (i.e., third-party script).

Out of the 358.9K sites with login pages collected, we
found that the vast majority (98.3%) of login pages included
at least one script tag. In total, 296.9K (82.7%) sites had
a login page with a third-party script. Among these sites,

Rank Script Domain # Sites (% Sites)
1 googletagmanager.com 181,597 (50.6%)
2 google-analytics.com 180,306 (50.2%)
3 connect.facebook.net 105,514 (29.4%)
4 googleads.g.doubleclick.net 60,707 (16.9%)
5 gstatic.com 55,318 (14.4%)
6 google.com 49,650 (13.8%)
7 ajax.googleapis.com 44,827 (12.5%)
8 cdnjs.cloudflare.com 37,387 (10.4%)
9 cdn.jsdelivr.net 27,478 (7.7%)

10 static.hotjar.com 23,265 (6.5%)

Table 7: The 10 most common third-party script domains
observed on the login pages of our 358.9K analyzed sites.

Figure 3 depicts the CDF of the number of distinct third-party
script domains on login pages. We found that login pages
loaded scripts from a median of 4 third-party script domains,
and about a fifth of login pages had at least 10 third-party
script domains. The sites with the most diverse third-party
script sources (up to 77 domains) were primarily e-commerce
and online services.

In total, there were 155K unique third-party script domains.
The 10 most common script domains are shown in Table 7.
We found that the most common script domains were related
to analytics and advertisement services (e.g., from Google),
e-commerce (e.g., Shopify), content distribution networks
(CDNs), social media (e.g., Facebook, Tiktok), and search
engines. The remaining script domains exhibit a long-tail
distribution, with 145K script domains (93.4%) observed on
five or fewer sites, and 129K (82.9%) domains observed on
only one site.

Overall, the vast majority of login pages are potentially
vulnerable to credential exfiltration by malicious third-party
scripts (although we leave an exploration of how third-party
scripts truly interact with login credentials for future work).

17



Figure 4: Examples of emails received with plaintext passwords upon account registration, after email verification, and after
password reset.

Rank Wrong
Username % Sites Wrong

Password % Sites

1
Unknown email address. Check again or try

your username. 4.4%
Error: The password you entered for the email

address [Email] is incorrect. Lost your password? 18.1%

2 Incorrect email address specified 0.7% Incorrect Password 1.2%
3 User does not exist. 0.6% Wrong password 0.9%

4
You have specified an incorrect username. Please check

your username and try again. If you continue to have
problems please contact the Board Administrator.

0.5% Invalid password 0.7%

5 Username not found. 0.5% Incorrect password. Please try again. 0.7%

Table 8: The top 5 login failure messages observed across analyzed sites that allow for user enumeration, either by revealing a
username is wrong, or that a password is wrong (but the username is correct).

18


	Introduction
	Website Login Policies
	Method
	Ground-Truth Analysis
	Discovering and Completing Account Authentication Workflows
	Detecting Account Signup, Login, and Password Reset Forms
	Discovering Account Signup, Login, and Password Reset Pages
	Attempting Account Signup, Login, and Password Reset
	Determining Account Signup and Login Success
	Account Verification
	Sanity Checks

	Login Policy Evaluations
	Login Page Visit
	Account Credential Entry
	Password Transmission
	Password Storage/Retrieval
	Password Validation
	Login Failures: User Enumeration
	Login Failures: Rate Limiting

	Large-Scale Measurement Implementation
	Limitations
	Ethical Considerations

	Results
	Dataset Collected
	Login Page Visit
	Password Entry
	Password Transmission
	Password Storage/Retrieval
	Password Validation
	Login Failures: User Enumeration
	Login Failures: Rate Limiting

	Comparison to Prior Work
	HTTPS Usage during Logins
	Password Entry
	Storage of Plaintext Passwords
	Typo-Tolerant Password Authentication
	User Enumeration Vulnerabilities
	Login Rate Limiting

	Concluding Discussion
	Acknowledgements
	Keywords Extraction Details
	Manual Evaluation of Method Performance
	Phase 1: Finding Forms and Creating Accounts
	Phase 2: Login Policy Evaluation

	Third-Party Scripts on Login Pages

