
Best of Both Worlds in Secure
Computation, with Low Communication

Overhead

Daniel Genkin1,3, S. Dov Gordon2(B), and Samuel Ranellucci2,3

1 University of Pennsylvania, Philadelphia, USA
danielg3@cis.upenn.edu

2 George Mason University, Arlington, USA
gordon@gmu.edu

3 University of Maryland, College Park, USA
samuel@umd.edu

Abstract. When performing a secure multiparty computation with a
few hundred parties, using the best protocols known today, bandwidth
constraints are the primary bottleneck. A long line of work demonstrates
that n parties can compute a circuit C of depth d while communicating
O(|C| log |C| + poly(d, n) field elements per party, as long as a majority
of parties are honest. However, in the malicious majority setting, a lot
less is known. The work of Nielsen and Ranellucci is the first to provide
constant-overhead in the communication complexity when a majority of
parties are malicious; their result demonstrates feasibility, but is quite
complex and impractical.

In this work, we construct a new MPC protocol in the pre-processing
model. We introduce a new middle-ground: our protocol has low commu-
nication and provides robustness when a majority of parties are honest,
and gives security with abort (possibly with higher communication cost)
when a majority of players are malicious. Robustness is impossible when
a majority of parties are malicious; viewing the increased communication
complexity as a form of denial of service, similar to an abort, we view
our result as providing the “best of both worlds”.

1 Introduction

After a decade of improvements in the computational cost of secure multiparty
computation, we have reached a point where the primary performance bottle-
neck is the communication complexity, even when computing with only a mod-
erate number of parties Most constructions require that n participants com-
municate a total of O(Cn2) field elements to compute a circuit of size C. The
n2 term stems from point-to-point communication at every multiplication gate,
which, at first glance, seems hard to avoid. Amazingly, when a majority of par-
ties are honest, there are several constructions that require communicating only
O(C) field elements.1 Very broadly, these constructions make use of two ideas to
1 Additionally, they have an additive term that is polynomial in n.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 340–359, 2018.
https://doi.org/10.1007/978-3-319-93387-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_18&domain=pdf


Best of Both Worlds in Secure Computation 341

lower communication cost. First, by using a randomly chosen dealer, they can
reduce the communication channels from O(n2) to O(n). This requires care, to
ensure that a malicious dealer cannot corrupt the computation. Second, by using
“packed secret sharing”, the participants can communicate just one field element
to compute O(n) multiplication gates. In a bit more detail, multiple wire values
are simultaneously encoded using a single threshold secret sharing scheme: to
encode � wire values, w1, · · · , w�, a random polynomial p is chosen such that
p(−j) = wj . As usual, p(1), · · · , p(n) define the secret shares of the n parties,
and, for a degree t + � polynomial, all � secrets remain perfectly hidden against
t colluding parties. Since t + � < n, this provides a tradeoff between security
and efficiency; as more values are packed into the secret sharing, the number of
corruptions that can be tolerated decreases. With a small blowup in the circuit
description, these polynomials can be used to compute � multiplication gates at
a time, cutting the communication cost by a factor of � = O(n) [9].

In the malicious majority setting, a lot less is known about reducing the
communication complexity. The recent work of Nielsen and Ranellucci is the
first and only protocol with constant communication cost per circuit gate [16].
The result of their work is exciting, as it demonstrates feasibility for the first
time. However, as the authors state, their protocol “is solely of theoretical inter-
est”; it has constants that are large and difficult to compute, and, conceptually,
it requires parsing a complex composition of player emulations and subprotocols.

In this work, we propose an optimistic approach to communication complex-
ity. Our protocol has constant expected communication complexity if a majority
of players are honest. However, unlike prior work in the honest majority setting,
we stress that our protocol also remains secure when a majority of players are
malicious, albeit with higher communication complexity. At a high level, the
variation in communication complexity stems from the following feature of our
approach. We choose a random dealer and hope that they are honest. If the
dealer happens to be malicious, he can force a re-start of the protocol, and if
O(n) consecutive dealers are malicious, then they can force the communication
complexity to blow up. Taking the view that this increased communication cost
is simply a form of denial of service, we view our result as providing “the best
of both worlds” with respect to denial of service; when a majority of parties are
malicious, it is impossible to prevent a denial of service attack, as the adversary
can always force an abort. While Nielsen and Ranellucci show that, technically,
it is possible to achieve low communication when a majority of players are mali-
cious, the benefit of our relaxation is that it allows us to construct a much simpler
protocol, both in concept and in concrete complexity.

The phrase “best of both worlds” has been used before in the MPC lit-
erature, referring to the more common notion of denial of service: guaranteed
output delivery [8,13,15]. With only a few exceptions, protocols for secure mul-
tiparty computation are usually designed with a particular corruption threshold
in mind. They either provide security with guaranteed output delivery when a
majority of parties are honest, but provide no security at all when a majority
are malicious, or they provide security with abort when a majority of parties are



342 D. Genkin et al.

corrupt, but allow a denial of service even if only a single party is corrupt. Our
protocol provides the best of both worlds in this sense as well, giving security
with guaranteed output delivery when the adversary fails to corrupt a majority
of parties, and security with abort when a majority are corrupt.

Our construction relies on offline (data independent) preprocessing that, cur-
rently, we do not know how to compute with constant overhead (short of using
Nielsen and Ranellucci). While we hope this reliance can be removed in future
work, we note that there are settings where it might be very reasonable to use
such preprocessing. The obvious case is where the parties can afford to send
a lot of data prior to the arrival of their inputs, but another setting in which
preprocessing is available is where the parties have access to some trusted setup.

Formal Description of Our Result. For privacy threshold tp, and packing
parameter �, our protocol enables n players to compute any arithmetic circuit C,
guaranteeing security with abort when fewer than t < tp players are corrupt. It
achieves guaranteed output delivery (aka: robustness, full security) when t < tr,
where tr = (n− tp −2 ·�)/2. In addition, if t < tr and � ∈ Ω(n), then for a circuit
C of size |C| and depth d, our protocol has expected communication complexity
of O(|C| log |C| + poly(n, d)).

Related Work. Our work follows from two lines of work. The first line focuses
on achieving low overhead computation in the majority setting, this includes the
work of [2,14]. The paper of [3] achieved a sublinear overhead in the number of
players, but only in the computational setting and with overhead in the security
parameter that is not sublinear. The paper of [2] showed how by selecting � ∈
Ω(n), it was possible to construct a protocol for n parties with communication
overhead of O(|C| log |C| + poly(n, d)) for a circuit C of size |C| and depth d.

The second line of work, [8,13,15] focuses on finding MPC protocols with
tradeoffs between how many corruptions can be tolerated before privacy is com-
promised (tp), and how many corruptions can be tolerated before the robust-
ness guarantee is lost (tr). Ishai et al. demonstrated that this is possible when
there is some slack in the parameters: there exist n-party protocols where, for
tp + tr < n, the protocol maintains security with guaranteed output delivery
against tr malicious players and security with abort against tp malicious parties
[13]. In the same work, they demonstrated that this slackness is inherent, by
giving an example of a function that cannot be securely computed with these
same guarantees if t + s = n.

In parallel to our work, the work of [12] used the assumption that a certain
number of parties are honest to improve the efficiency of semi-honest GMW and
BMR-style MPC protocols. Other approaches that use preprocessing (such as [4,
6,7]) require each player to communicate one field element per multiplication
since they do not use packing.



Best of Both Worlds in Secure Computation 343

1.1 Technical Overview

In this section we present a high level overview of our protocol. We begin by
describing a semi-honest version of our protocol, in order to provide insight into
how we achieve low communication complexity. (Note that we never give a formal
description of this semi-honest version, and it is meant purely for intuition.)
Borrowing techniques from [2,3,5], we use a tp-private packed Shamir secret
sharing scheme with packing parameter �. These polynomials have degree tp + �,
and we will maintain this degree as we compute the circuit.

To compute multiplication gates, our protocol uses a special designated party
(called the dealer), and Beaver triples [a], [b], [c], which are secret sharings of
values a, b, c ∈ F

�, where a, b are randomly sampled and c = a · b (introduced
in [1]). These triples are shared using a tp-private Shamir packed secret sharing
scheme with packing parameter �. The packing parameter � allows players to
compute pointwise multiplication on vectors of field elements by having each
player compute and send a constant number of field elements to the dealer.

Our protocol evaluates an arithmetic circuit C in topological order from
the input to the output gates. Since packed Shamir secret sharing is linear, the
players can locally compute on their shares in order to evaluate the addition gates
of C. To compute the product [z] = [x] · [y], the players execute the following
steps, using a Beaver triple [a], [b], [c]. First, the players locally compute shares of
x − a and y − b and send them to the dealer. The dealer reshares x − a, y − b
and (x − a)·(y − b) using degree � polynomials. By resharing and packing those
values instead of sending them in the clear, we cut down the communication cost
by a factor �; the secret sharing in this step has nothing to do with privacy. The
players then compute shares of w ← y · (x − a) + x · (y − b) + r, where the
random mask r is sampled and secret shared during preprocessing, using a degree
tp + � polynomial. Since x and y are of degree tp + �, and (y − b) and (x − a)
are of degree �, it follows that w is of degree tp+2�. The players send their shares
of w to the dealer. The dealer re-shares w using a degree � polynomial, and the
players compute z = w − r. Since r is shared using a degree tp + � polynomial,
this results in shares of a degree tp + � polynomial, maintaining the invariant.

The use of a dealer allows each user to send secret shares to one party, instead
of n parties, cutting the cost per gate from O(n2) to O(n). Packed secret sharing
further reduces the complexity from O(n) to O(n/�). However, this also forces
us to increase the degree of the polynomial to tp + �, which creates a tradeoff
between privacy and efficiency: the closer tp is to n, the smaller � must be.

Attacks by Malicious Adversaries. The protocol above is only secure against
a semi-honest adversary. At a high level, an active adversary, which instructs the
players or the dealer to deviate from the protocol specification, can mount two
types of attacks.

Additive Attacks. The first class of attacks occur either when a corrupt dealer
re-shares the wrong value, or when malicious players send invalid shares to an



344 D. Genkin et al.

honest dealer, thereby causing the dealer to reconstruct and re-share the wrong
value. As we describe in our proof sketch in Sect. 4, these attacks are actually
instances of additive attacks, in which an adversary can tamper with the evalu-
ation of circuits by adding or subtracting values on individual wires, but cannot
impact the computation in any other way. See the full version of this paper for
more detail. By running the protocol on an additively secure circuit, obtained
from the compiler of Genkin et al. [10], we are able to construct a protocol for
MPC that renders such an attack ineffective. At a high level, the compiler of
Genkin et al. takes any circuit and transforms it into a new circuit that will
output ⊥ if the adversary applies an additive attack (i.e. tampers with the value
of any wire). By showing that any attack on our protocol is equivalent to an
additive attack, we can apply the protocol of [10] to make it secure. We note
that [10] has a constant overhead.

Divide and Conquer Attacks. The second class of attacks can only be per-
formed by a malicious dealer. At a high level, during the evaluation of mul-
tiplication gates, instead of re-sharing values using a degree-� polynomial, the
dealer can create two sets of shares, each consistent with a different degree-�
polynomial.

More formally, consider the following situation: let n be the number of parties,
let M be a set of corrupted parties, and let S1, S2 be distinct sets of honest parties
(not necessarily disjoint). The adversarial dealer sends shares to S1 such that
the secret recovered from those shares is x − a. He sends shares to S2 such that
the secret recovered from those shares is x − a + 1. Then, when the players try
to compute shares of (x − a) · y + r, where r is a random mask, note that both
S1 ∪ M and S2 ∪ M give the dealer enough shares to reconstruct the blinded
secret: from S1 ∪M , the dealer can recover (x− a) · y + r and from the shares of
S2 ∪M , the dealer can recover (x−a+1) ·y+r. By subtracting (x−a+1) ·y+r
from (x − a) · y + r the malicious dealer can recover y, even though the value of
(x − a) · y is supposedly hidden by a random mask.

The Degree-Test Protocol. Dealing with this second type of attack is one
of our main technical contributions. In Sect. 3 we present a novel degree-test
protocol that takes secret shares from the dealer and transmits them to the
players if only if the shares of the honest players are consistent with a polynomial
of degree-d. This degree test is also efficient, requiring each player to exchange
only a constant number of field of element with the dealer. The main idea behind
this protocol is as follows. During preprocessing, all parties learn a portion of a
secret that is encoded in a degree n−1 polynomial, w. Additionally, they receive
shares of a degree n − d − 1 polynomial, v, such that v(0) = 0. To prove that
he shared a degree d polynomial, the dealer collects n shares of z, defined as
z ← p · v + w. If p is of appropriate degree, this suffices to learn w(0), revealing
the secret value, while if the degree of p is too high, w(0) remains hidden and
the dealer fails to prove that he acted honestly.



Best of Both Worlds in Secure Computation 345

2 Best of Both Worlds Security

We prove our protocols secure under the ideal-world, real-world paradigm. We
define fC as the ideal functionality that takes an input x from the players and
outputs C(x). The functionality fA

C takes an input x from the players, and a
vector A from the adversary. It also evaluates C on x, but it allows an adversary
to tamper with the evaluation by adding values on individual wires; the variable
A specifies the values that are added to each wire.

Definition 1. Let tp ≤ n be positive integers, let SD denote the statistical dis-
tance, and let 0 ≤ ε ≤ 1. We say that an n-party protocol π (tp, ε)-securely
realizes a functionality F if for every PPT real-world adversary A which cor-
rupts at most tp players, there exists a simulator S such that

SD(Realπ,A, IdealF,S) ≤ ε.

We naturally extend this definition to protocol in the g-hybrid model by replacing
Realπ,A above with Realπ,A,g. In this case we say that π (tp, ε)-securely realizes
F in the g-hybrid model.

Definition 2. Let n ≥ tp ≥ tr be positive integers and let 0 ≤ ε ≤ 1. We
say that an n-party protocol π (tr, tp, ε)-robustly realizes (fC , fA

C ) if it meets the
following two conditions.

1. Security. If tp > t ≥ tr then π (tp, ε)-securely realizes fA
C as per Definition 1.

This property does not guarantee that players receive outputs, because the
adversary can cause the protocol to abort in the real world.

2. Robustness. If tr > t then π (tp, ε)-securely realizes fC , and it is guaranteed
that the protocol will successfully terminate, with each honest player receiving
output. More formally, if less than tr players are corrupt, the output gener-
ated in the real world is the same that is produced by the functionality fC

in the ideal world where (i) each honest player Pi provides input xi to the
functionality, and (ii) the ideal functionality selects a default input for each
corrupted player that does not provide an input xi.

3 Degree Test

Our degree test protocol is an interactive proof between a single prover (dealer)
and multiple verifiers (players). The dealer sends a field element to each player,
and proves that these elements are consistent with a polynomial p of degree at
most d. We construct a proof where the prover can only convince a given verifier
with probability 2(−4s/n−tp−�). The aim is that at least n − tp − � verifiers will
not be convinced by a cheating prover. The protocol proceeds as follows. The
preprocessing functionality randomly samples a binary string of size 4s

n−tp−� ,
encodes it as secret ∈ F, and sends a portion of secret to each player. After
sharing the polynomial p, the players will interact with the dealer in a manner



346 D. Genkin et al.

that allows the dealer to learn this secret if and only if p is of degree d or
less. The dealer then proves that he learned secret by sending to each player
the portion of the binary string that they received during the preprocessing. If
some player does not receive the correct part of the secret that was given to him
during preprocessing, the player complains about the dealer.

In more detail, the preprocessing phase will generate a random degree-(n −
d − 1) polynomial v such that v(0) = 0. Additionally, the preprocessing phase
generates a random string, encodes it in F, and shares secret ∈ F using a
random degree-(n − 1) polynomial w (that is, w(0) = secret). Finally, the
individual bits of the binary string are distributed among the n participating
players (we assume a large enough field F to facilitate this). Upon receiving p(i)
from the dealer in the online phase, the player Pi computes z(i) ← p(i)·v(i)+w(i)
and sends it to the dealer. In case (p(1), · · · , p(n)) are not consistent with any
degree-d polynomial, the dealer cannot reconstruct the value secret since the
degree of z is larger than n − 1. As a result, the dealer would only be able to
break soundness with a small number of players. The remaining players will
complain, and conclude that the dealer is a cheater. On the other hand, if the
dealer shared a low degree polynomial, the dealer can reconstruct secret by
interpolating z(1), · · · , z(n), and can then use secret as a proof that indeed
(p(1), · · · , p(n)) define a degree-d polynomial. This can be done by sending each
Pi its portion of the binary string encoded as secret.

Attack on Shares by Corrupt Players. Even if the dealer gives shares
p(1), · · · , p(n) consistent with a low degree polynomial, it may be that corrupt
players would send back bad shares to prevent the dealer from reconstructing the
correct secret, or by refusing to send shares altogether. To solve this problem,
we allow the dealer to verify shares and eliminate players that send bad shares.

We allow the dealer to verify that Pi sent a share that equals p(i) ·v(i)+w(i)
by (1) having the preprocessing phase authenticate the shares v(i), w(i) that it
sends to each player Pi, (2) using the linearly homomorphic MAC from SPDZ,
and (3) by giving the verification keys to the dealer. When a dealer complains
about a player, the player will be eliminated and will no longer take part in any
future degree tests with that dealer.2 We use E to denote the set of eliminated
players.

Properties About the Set of Eliminated Players. We need certain guar-
antees about the set of eliminated players. First, if the dealer is honestly sharing
a low degree polynomial, then no honest player will complain about the dealer.
Second, if the dealer is malicious and does not share a low degree polynomial,
then a large number of honest players will eliminate themselves. Third, we must
ensure that every player has a consistent view of the set of eliminated players.
We satisfy this last property using a secure broadcast anytime a player is elim-
inated. If a large number of players are eliminated, then the dealer is replaced
2 If the protocol re-starts because the dealer is thrown out, the party will rejoin the

computation.



Best of Both Worlds in Secure Computation 347

and protocol restarts with a new dealer. We can safely remove the dealer in this
case, because, either the dealer is corrupt, or there are enough corrupt players
that we can give up on robustness.

Recovering from Eliminated Players. The fact that the dealer can eliminate
players creates a new problem: how does the dealer reconstruct secret when a
few players have been eliminated? Recall that secret is shared using a degree-n−
1 polynomial, and that eliminated players no longer provide shares to the dealer.
In order to replace the eliminated players, we have the non-eliminated players
send additional information that will allow the dealer to recover the missing
shares of z. A natural approach for this is to have each remaining player send
the dealer a share (generated during the preprocessing phase) of the eliminated
player’s share. While this solution works, it is too costly, as it introduces a
quadratic overhead in the number of players. This overhead stems from two
facts: first, a linear number of players could be eliminated, and second, for each
execution of the degree test, for each eliminated player, each non-eliminated
player would have to send one share to the dealer.

Reducing Recovery Overhead. We employ a couple of strategies to reduce
the communication required of the honest players when they help the dealer
to reconstruct the shares of eliminated players. First, we will reuse the same v
for each execution of the degree test. Now, when a player Pi is eliminated by
the dealer, each player will only need to send a share of vi to the dealer once,
ensuring that the dealer learns vi for all further executions of the degree test
protocol. Next, we notice that the dealer recovers secret from the shares of z
by performing Lagrange interpolation, which is a linear operation. That is, the
dealer computes secret =

∑n
i=1 αizi =

∑n
i=1 αi(p(i) ·vi +wi) where α1, · · · , αn

are the Lagrange interpolation coefficients. Rewriting the above equation,

secret =
n∑

i=1

αizi =
∑

Pi /∈E

αizi +
∑

Pi∈E

αizi =
∑

Pi /∈E

αizi +
∑

Pi∈E

αi(p(i) · vi + wi)

=
∑

Pi /∈E

αizi +
∑

Pi∈E

αip(i) · vi +
∑

Pi∈E

αiwi.

Since the dealer knows p(i) for all players, knows vi for all eliminated players,
and has the shares zi for all non-eliminated players, he only needs to learn
c̄ =

∑
i∈E αiwi. Thus, each non-eliminated player can locally compute a single

share of c̄, using a share of wi for each Pi ∈ E. Sending just this single share to
the dealer, instead of one share for every eliminated player, allows us to avoid
the linear overhead that arose in the naive approach previously suggested.

3.1 Formal Description of the Degree Test Protocol

In this section we formally present and analyze our degree test protocol. Let H
be the set of honest players and let E denote a global, shared variable, indicating



348 D. Genkin et al.

the set of eliminated players. We denote the inputs to the degree test protocol by
p(1), · · · , p(n). For some honest player, Pi, we let η denote the probability that
a malicious dealer wrongly convinces Pi that p is of degree less than or equal
to d. Finally, we denote the set of parties complaining about the dealer by C.
The ideal functionality, Fdt, is formally described in Fig. 1, and the degree test
protocol realizing this functionality is described in Fig. 2. Consider the following
theorem.

Fig. 1. Degree test functionality Fdt

Theorem 1. πdt securely realizes Fdt in the preprocessing-hybrid model.

In order to prove Theorem 1, we provide two simulators, one simulator for
the case when the dealer is honest, and a second simulator for the case when
the dealer is corrupt. In each case the simulator simply follows the description
of the protocol, determines if players or the dealer needs to complain, and adds
players to the set of eliminated players E that would be eliminated. We recall
that H denotes the set of honest players. E denotes the set of eliminated parties.
The point vi ∈ F is a share of a degree n − tp − � polynomial that evaluates to
zero at zero. The point wi ∈ F is a share of a polynomial that evaluates to a
random value secret. The share vi,j is a resharing of vi that will help the dealer
to reconstruct vi if Pi is eliminated.

Degree Test Simulation Honest Case. The simulator queries the ideal func-
tionality and receives p(i) for each Pi ∈ H̄.

1. The simulator simulates the preprocessing by following its description.
2. The simulator sends p(i) to each non-eliminated corrupt player Pi ∈ Ē ∪ H̄



Best of Both Worlds in Secure Computation 349

Fig. 2. Degree test πdt



350 D. Genkin et al.

3. The simulator await that corrupted non-eliminated player Pi ∈ Ē ∪ H̄ sends
(zi,m(zi)) and ai to the dealer.

4. The simulator computes k(zi) ← p(i) ·k(vi)+k(wi), assigns to S the subset of
corrupted non-eliminated players Pi who either did not send a zi with a valid
mac tag or who did not send an ai. All players in S are added to E. If any
players were added to E, he runs the player elimination simulation (below).

5. Send secretm·(i−1)+1,··· ,m·i to each non-eliminated corrupt playerPi

6. For each player Pi who complains about the dealer, the simulator sends
(bad proof complaint, i) to the functionality and then add Pi to E. The
simulator then runs the Player elimination simulation (below).

Honest Dealer Elimination Simulation. Whenever a player is eliminated,
we require that the simulator do the following. After a set S of players are added
to E, the simulator awaits (i, j, v′

j,i) from each non-eliminated corrupt player for
each Pj ∈ S. The, for each Pj ∈ S, the simulator tries to reconstruct vj from
the v′

j,i that come from non-eliminated corrupt players, and the vj,i that were
generated in the preprocessing for the honest players. If the simulator does not
reconstruct a valid share vj , the dealer broadcasts failure, and the full set of
players is added E. The simulation then halts.

Description of the Simulator When Dealer Is Corrupt

1. The simulator simulates the preprocessing by following its description.
2. The simulator await that the dealer send p(i) to each non-eliminated honest

player Pi.
3. The simulator computes zi ← p(i) ·vi +wi, ai ← ∑

Pj∈E αj ·wj,i (local shares
of

∑
Pj∈E αjwj), m(zi) ← p(i) ·m(vi)+m(wi) and sends (zi,m(zi)) and ai to

the dealer.
4. For each non-eliminated player Pi that the dealer complains about, the sim-

ulator send (bad proof complaint, i) to the functionality. The simulator exe-
cutes the player elimination simulation.

5. The simulator await secretm·(i−1)+1,··· ,m·i from the dealer for each honest
non-eliminated player Pi.

6. For each non-eliminated honest player Pi ∈ Ē ∪ H, if the dealer did not
send the same value of secret that would have been to Pi, the simulator
sends (bad proof complaint, i) to the functionality. The simulator executes
the player elimination simulation.

Corrupt Dealer Elimination Simulation. Whenever a player is eliminated
players we require that the simulator do the following. After a set S of players
are added to E, the simulator sends (i, j, v′

j,i) for each eliminated player Pj ∈ S
and non-eliminated honest player Pi. If the corrupt dealer broadcasts failure,
then E is set to be the set of all players. The simulation then halts.



Best of Both Worlds in Secure Computation 351

3.2 Properties of the Degree-Test Protocol

We already know that the degree test protocol securely realizes the degree test
functionality. Within the context of our main protocol, we want to show that
our degree test protocol has more features than what is directly provided by the
functionality. The first is that the online cost of the degree test is low, namely
that if we use the protocol many times, the overhead of the degree test per player
will be small. The second condition that we want is that if the dealer is honest,
and less than some threshold of players are dishonest, then in each execution of
the degree test, either it succeeds, or some malicious party is eliminated.

The third condition that we are interested in is that if a corrupt dealer cheats
by sharing a high degree polynomial, and does not complain about the shares
and tags given to him by honest players, then less than half of the honest player’s
will accept the secret. (Recall, if he does complain about some of the shares and
tags that he was given, then all parties are eliminated and the protocol re-starts
with a new dealer.)

Lemma 1. The total communication cost of running m executions of the degree
test with the same dealer is O(s · n · m + poly(n)) bits.

Proof. We enumerate over each item that is communicated and compute its
associated communication overhead. A player will broadcast a complaint about
the dealer at most once (O(n2)). The dealer will broadcast a complaint about a
player at most once. (O(n2)). Each player will send a constant number of field
elements to the dealer per execution of the degree test (O(s · n · m)). The dealer
will send a constant number of field elements to each player per execution of the
degree test (O(s · n · m)).

The communication complexity of all these items is O(s · n · m + poly(n)).
This completes the proof of this lemma.

Lemma 2. If the dealer is honest, and less than (n−tp−2�)
2 players are corrupt,

then both of the following conditions will be met (except with negligible probabil-
ity).

1. No honest player will be eliminated.
2. The degree test will succeed, or at least one corrupt player will be eliminated.

Proof. First, we show that an honest player will not be eliminated by an honest
dealer except with negligible probability. Since honest players always send correct
shares, the dealer would only eliminate an honest player if he reconstructs an
incorrect value for the secret in step 3.iii. This can only occur if the adversary
is able to successfully forge a mac tag in step 2.ii. Otherwise, the dealer would
complain about a corrupt player and the degree test would terminate. Since
forging a mac tag only succeeds with negligible probability, this completes the
first part of the proof.

Next we proceed to show that either the degree test will succeed, or at least
one corrupt player will be eliminated. If the dealer reconstructs the correct secret,
the dealer will send the correct part of the secret to each honest player in step



352 D. Genkin et al.

3.iii, and each honest player will accept the secret in step 4.i. This leaves only two
strategies for the adversary to prevent the degree test from succeeding: he can
either send bad shares, or not send shares at all. In either case, the dealer will
complain about corrupt players in step 3.i and the dealer will eliminate corrupt
players. This completes the second part of the proof.

Lemma 3. If less than tp players are corrupt and the following conditions all
hold, then more than n−tp−2�

2 honest players will be eliminated.

1. The dealer is malicious and does not complain about a player in step 3.i.
2. The degree of the polynomial p is greater than �.

Proof. First, we show that if all the above conditions hold then the dealer cannot
learn any information about the secret. Since by condition 2, the dealer shares
a polynomial p of degree higher than d, then the degree p · v is greater than n.
Since w was selected at random, and less than tp players are corrupt, then the
dealer cannot recover the secret from (p · v + w)(0).

By the first condition of the lemma, the dealer did not complain in step 3.i.
This means that the dealer, to convince an honest player that he is honest must
correctly guess the part of the secret given to that player. Since the probability
of correctly guessing the secret for a given player is 2− 4s

n−tp−� , we can finally
show that more than half the honest players will abort.

By combining the following two statements with the lemma below, we have
what we want: (1) the probability of correctly guessing a player’s secret is p = 1−
2−4s/(n−tp−�) and (2) the random variables associated to the dealer successfully
guessing players’ part of the secret are independent.

Lemma 4. Given s,m ∈ N, let X1, . . . , Xm be independant Bernoulli variables
with success probability p = 1 − 2−4s/m and let X =

∑m
i=1 Xi then

Pr
[
X < m

2

] ≤ 2−θ(s)

Proof. If m ≥ s, we can directly apply Chernoff’s bound to get this result. We
have that μ = m · (1 − 2−4s/m) and let δ = 1

2(1−2−4s/m)
. We note that δ ≥ 1

2 and
that μ · δ = m

2 and thus we have that

Pr
[
X ≤ m

2

]
= Pr [X < (1 − δ) · μ] ≤ e

−δ2μ
3 ≤ e− m

12 ∈ 2−θ(s)

This leaves only the case where m < s and we show that this also holds by
using the following combinatorial argument.

Pr
[
X < m

2

]
=

m/2∑

i=0

(
m

i

)
(
1 − 2−4s/m

)i(2−4s/m
)m−i ≤

m/2∑

i=0

(
m

i

)
(
2−4s/m

)m−i

≤
m/2∑

i=0

2m
(
2−4s/m

)m/2 ≤ 2−2s+m+log m ∈ 2−θ(s)



Best of Both Worlds in Secure Computation 353

4 Additively-Secure Protocol

We now construct a protocol which is secure in the preprocessing-hybrid model,
aside from allowing additive attacks. (Recall, these are then handled using the
compiler of Genkin et al. [10].) The players will randomly elect (without repe-
tition) a dealer that will be used to run the computation. If at some point too
many players claim the dealer is cheating, the protocol will be restarted with a
new dealer. During the evaluation phases (routing, multiplication and addition),
the players will add, multiply and subtract shares locally, and they will also
send and receive shares to and from the dealer. The dealer will be responsible
for receiving, reconstructing values and resharing them. In particular, the dealer
will be responsible for reconstructing values when less than tr shares are cor-
rupted. This will be done by having the dealer apply Reed-Solomon decoding to
the shares he receives. If at any point, the dealer fails to reconstruct the secret,
the dealer will eliminate himself and the protocol will be restarted with a new
dealer. The protocol employs the degree testing protocol to ensure that when
the dealer reshares values, he cannot use a polynomial of degree greater than �.
Since degree testing involves eliminating players, the protocol will need to keep
track of who has been eliminated.

At the beginning, the players will randomly elect a dealer. While that dealer
is active, each party will keep track of a set of eliminated players denoted by the
variable E. Players can eliminate themselves if they detect malicious behavior,
or they can be eliminated, either by an honest dealer for acting maliciously, or
by a malicious dealer, arbitrarily. If the set of eliminated players grows too big,
all parties kick out the dealer and rejoin the protocol with a new dealer (cho-
sen without replacement). To simplify exposition, we assume that the set E is a
global variable, and that all honest parties agree on its members. In practice, this
can be achieved using a broadcast channel, without impacting the claimed com-
munication cost. Our main protocol consists of four phases: the preprocessing
phase, the input phase, the evaluation phase, and the output phase. The input,
evaluation, and output phase will all rely on values generated by the prepro-
cessing. We will not describe the preprocessing phase in its entirety but rather
describe which values each of the other phases need from the preprocessing.

Throughout the computation, parties hold shares of wire values, encoded
using polynomials of degree t = tp + �. This ensures that tp parties cannot learn
anything about these values. Because we need to multiply these polynomials by
degree � polynomials that encode masked wire values, the degree of the polyno-
mials becomes tp + 2� during the evaluation. This allows us to error-correct in
the presence of less than n−tp−2�

2 corruptions, maintaining robustness as claimed
in our theorem. When we do not specify the degree of a sharing, we mean that
the polynomial has degree tp + � (Figs. 3 and 4).

Input Phase. In the input phase, a sender provides his input x, and the other
parties receive shares of that input, which can then be used in the evaluation
phase. The preprocessing functionality randomly samples r ∈ F

�, gives the value



354 D. Genkin et al.

Fig. 3. Preprocessing

to the sender, and provides [r] to the other players. The sender broadcasts y =
x − r. The players then compute [x] = [r]+y. Due to a lack of space, we provide
the full description in the full version of the paper.

Output Phase. In the output phase, parties take shares [x] of the output
and reconstruct x. We have to limit the adversary to an additive attack on
the revealed output, ensuring that the adversary cannot arbitrarily choose the
output. The preprocessing functionality creates two shares of a value r ∈ F

�,
once using packed Shamir secret sharing resulting, in [r], and once using a VSS,
resulting in [[r]]. The players will use [r] and [[r]] to mask and then unmask
x. That is, they locally, homomorphically add r to the output by adding their
shares of [x] and [r], and then reveal r by opening the VSS sharing. Because
VSS is binding, the adversary can only modify the value before it is unmasked.
As such, the only attack that can be done is an additive attack. Due to a lack
of space, we provide the full description in the full version of our paper.

Multiplication. The multiplication is the most complex operation, the goal is
to take shares [x], [y] and produce shares of [x · y]. To do so, we will use beaver
triple [a], [b], [a · b], and a sharing of a random r ∈ F

�, [r]. First the players will
send [x − a], [y − b]. The dealer will reconstructs values x−a, y−b, (x−a)(y−b),
and re-shares them using degree � polynomials. The players verify that the shares
given to them by the dealer are of degree �, using the degree test protocol. The
players will then compute [u] = [x − a]� · [y] + [y − b]� · [x] + [r] and send the
shares to the dealer. The dealer re-shares u using a degree � polynomial, and
the players again test that the degree is no more than �. Finally, the players will
compute [x · y] = [u] − [a · b] − [r].



Best of Both Worlds in Secure Computation 355

Fig. 4. Main protocol



356 D. Genkin et al.

Routing. The input is [x] and the output should be [ρ(x)]. The preprocessing
functionality generates shares [r], [r′] such that ρ(r) = r′. Then when provided
[x], the players will send [x + r] to the dealer who will reshare [ρ(x + r)]. The
players will then verify that the dealer reshared x + r using a low degree poly-
nomial via the degree test. The players will then compute [x] = [ρ(x + r)]− [r′].
Due to a lack of space, we provide the full description in the full version of our
paper.

Formally, we prove that our protocol realizes two things. First, we show that
the protocol securely realizes fC with low expected communication overhead if
less than tr players are corrupt. Second, we prove that our protocol securely real-
izes fA

C (the functionality that allows the adversary to tamper with each wire
individually) if less than tp players are corrupt. Then, by running our protocol
on a circuit secure against tampering on individual wires, our protocol securely
realizes fC . The compilers of [10,11] allow us to compile any circuit into an
equivalent circuit that is secure against individual tampering with only a con-
stant blowup in circuit size. As a result, it is easy to see that by employing our
protocol with the results of [10,11], we achieve the desired security properties as
well as the desired level of efficiency (Fig. 5).

Theorem 2. For any number of players n, privacy threshold n ≥ tp ≥ n
2 , pack-

ing parameter � <
n−tp

2 , πmpc (tp, O(1/|F|))-securely realizes fA
C with abort in

the Fpre-hybrid model.

Theorem 3. For any number of players n, privacy threshold n ≥ tp ≥ n
2 ,

robustness threshold tr ≤ n−tp−2�
2 , � <

n−tp

2 . πmpc (tp, tr, O(1/|F|))-securely
realizes (fC , fA

C ) for arithmetic circuit C with depth d in the Fpre-hybrid model,
with full security, and expected communication overhead

O
(|C| log(|C|) · n

�
+ d2 · n + poly(n, s)

)
.

Due to space constraint, we only provide a short summary of how we prove
our main protocol secure. A more complete argument appears in the full version
of the paper.

Security Under Honest Dealer. Since our protocol is in a hybrid-model,
the simulator can simulate a run of the preprocessing functionality and store the
generated values. This allows the simulator to extract the adversary’s inputs. The
simulator runs the honest parties with dummy inputs and determines whether
the adversary causes the honest dealer to abort, or causes an additive attack.
We show that if the adversary sends bad shares to the dealer, then the simulator
can determine, based solely on these shares, which of these three things happen:
(1) the dealer aborts because he failed to reconstruct a secret, (2) the bad shares
can be ignored (which is the case if enough players are honest), or (3) the attack
by the adversary can be mapped to an additive attack. We prove the previous
statement by using the fact that Shamir secret sharing is a linear error correcting
code, and from the following fact about such codes.



Best of Both Worlds in Secure Computation 357

Fig. 5. Multiplication

Let (encode, decode) be a linear error-correcting, let c = encode(m) be an
encoding of m, and let be μ be an error vector. By linearity of the error-correcting
code, we have that decode(encode(m) + μ) = decode(encode(m)) + decode(μ).
In particular, this implies that decode(encode(m) + μ) = ⊥ if and only if



358 D. Genkin et al.

decode(μ) = ⊥. The error vector μ in this case represents the difference between
the shares the adversary should have sent, versus the shares it actually sent.

Security Under Malicious Dealer. At a high level, the simulation of a mali-
cious dealer is similar to that of an honest dealer. The main difference is that this
simulator must ensure that the dealer does not share a polynomial of too high
a degree. This is easily detected by inspecting the shares sent to the degree-test
functionality, and the dealer can then be replaced. If the dealer’s polynomial is
of the appropriate degree, the simulator can compute the value of an additive
attack by reconstructing the shared secret and comparing it with the secret that
the dealer should have sent.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grants No. #1564088, #1111599, #1514261, #1652259
and #1563722. Daniel Genkin was also supported by financial assistance award
70NANB15H328 from the U.S. Department of Commerce, NIST, the 2017–2018 Roth-
schild Postdoctoral Fellowship, and DARPA Contract #FA8650-16-C-7622.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

2. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

3. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

4. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

5. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

6. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

7. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 35

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35


Best of Both Worlds in Secure Computation 359

8. Dowsley, R., Müller-Quade, J., Otsuka, A., Hanaoka, G., Imai, H., Nascimento,
A.C.A.: Universally composable and statistically secure verifiable secret sharing
scheme based on pre-distributed data. IEICE Trans. 94–A(2), 725–734 (2011)

9. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, pp. 699–710 (1992)

10. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

11. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: Symposium on
Theory of Computing, STOC 2014, pp. 495–504 (2014)

12. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient MPC from syndrome
decoding (or: Honey, I shrunk the keys). IACR Cryptology ePrint Archive 2018:208
(2018)

13. Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achieving the
“best of both worlds” in secure multiparty computation. SIAM J. Comput. 40(1),
122–141 (2011)

14. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

15. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
pp. 11–20 (2007)

16. Nielsen, J.B., Ranellucci, S.: On the computational overhead of MPC with dishon-
est majority. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 369–395. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 13

https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-54388-7_13

	Best of Both Worlds in Secure Computation, with Low Communication Overhead
	1 Introduction
	1.1 Technical Overview

	2 Best of Both Worlds Security
	3 Degree Test
	3.1 Formal Description of the Degree Test Protocol
	3.2 Properties of the Degree-Test Protocol

	4 Additively-Secure Protocol
	References




