
CacheQuote: Efficiently Recovering Long-term
Secrets of SGX EPID via Cache Attacks

Fergus Dall1, Gabrielle De Micheli2, Thomas Eisenbarth3,4, Daniel Genkin2,5,
Nadia Heninger2, Ahmad Moghimi4 and Yuval Yarom1,6

1 University of Adelaide
fergus@beware.dropbear.id.au,yval@cs.adelaide.edu.au

2 University of Pennsylvania
{gmicheli,danielg3,nadiah}@cis.upenn.edu

3 University of Lübeck
thomas.eisenbarth@uni-luebeck.de

4 Worcester Polytechnic Institute
amoghimi@wpi.edu

5 University of Maryland
6 Data61

Abstract. Intel Software Guard Extensions (SGX) allows users to perform secure
computation on platforms that run untrusted software. To validate that the compu-
tation is correctly initialized and that it executes on trusted hardware, SGX supports
attestation providers that can vouch for the user’s computation. Communication with
these attestation providers is based on the Extended Privacy ID (EPID) protocol,
which not only validates the computation but is also designed to maintain the user’s
privacy. In particular, EPID is designed to ensure that the attestation provider is
unable to identify the host on which the computation executes.
In this work we investigate the security of the Intel implementation of the EPID
protocol. We identify an implementation weakness that leaks information via a cache
side channel. We show that a malicious attestation provider can use the leaked
information to break the unlinkability guarantees of EPID.
We analyze the leaked information using a lattice-based approach for solving the
hidden number problem, which we adapt to the zero-knowledge proof in the EPID
scheme, extending prior attacks on signature schemes.
Keywords: SGX, Side-Channel attacks, EPID, hidden number problem, Zero-
Knowledge Proofs

1 Introduction
Mainstream processors have recently employed Trusted Execution Environments that allow
running sensitive computation on potentially-compromised computers owned by untrusted
third parties. The most prominent example is Intel Software Guard Extensions (SGX),
which is a set of extensions to the Intel x86 architecture that aims to reduce the level of
trust required of the platform owner at runtime. In particular, SGX is designed to enable
secure computation under the assumption that the whole software stack, including the
operating system (OS), is malicious. In order to achieve such strong security guarantees,
SGX introduces runtime environments known as enclaves that are isolated from the
software running on the computer. To ensure isolation, SGX strictly controls the entry
to and exit from enclaves and limits inadvertent state transfer from enclaves to the outer
untrusted software.

In order to allow the user to distinguish between legitimate and properly configured
hardware and potentially corrupted software emulators, SGX supports a remote attestation

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 2, pp. 171–191
DOI:10.13154/tches.v2018.i2.171-191

mailto:fergus@beware.dropbear.id.au,yval@cs.adelaide.edu.au
mailto:gmicheli@cis.upenn.edu,danielg3@cis.upenn.edu,naidah@cis.upenn.edu
mailto:thomas.eisenbarth@uni-luebeck.de
mailto:amoghimi@wpi.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i2.171-191

172 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

protocol that allows users to verify the legitimacy of the enclave before sending sensitive
data to the enclave. The remote attestation protocol can verify if the enclave is running
on a supported, and hence presumably trusted, processor and that the enclave has been
initialized correctly. Remote attestation has been implemented through a combination
of two architectural enclaves, the provisioning enclave and the quoting enclave, which
together implement the Enhanced Privacy ID (EPID) protocol of [BL11]. EPID generates
signatures that can be verified by a trusted attestation server. While the attestation server
is trusted to verify the signatures, it is not trusted to maintain users’ privacy. Consequently,
SGX uses blinded group signatures which are unlinkable, allowing the attestation server
to verify the signature’s validity without knowing the signer’s identity.

Microarchitectural side-channel attacks extract otherwise-unavailable secret information
by artificially creating observable contentions between different CPU execution units. Since
their introduction over a decade ago [Pag02, TTMH02, TSS+03, Per05, Ber05, OST06],
microarchitectural side channel attacks have been used to break the security of numerous
implementations, including attacks on cryptographic primitives [ASK07, AS08, BvdPSY14],
measurement of keystroke timings [LGS+16, LGS+17], website fingerprinting [GZES17],
attacks from within the target’s browser [OKSK15, AKM+15, GMM16], from inside
or against SGX enclaves [XCP15, LSG+17, VBWK+17, SWG+17, MIE17, BMD+17,
MES17], or even on third party compute clouds [LYG+15, IAES15, IGI+16]. More recently,
microarchitectural cache attacks have been combined with speculative execution in order
to read sensitive data across security domains, such as kernel data [LSG+18, KGG+18].

Much less is known, however, about the effects of side channel attacks on long term
privacy of SGX enclaves. In particular, while microarchitectural side channel attacks
can be used to extract information from third-party software running within SGX en-
claves [XLCZ17], the effects of side channel attacks on the enclave’s own attestation
mechanism have not been properly understood. Thus, in this paper we investigate the
following questions:

How do side-channel attacks affect SGX’s EPID attestation protocol? More specifically,
can side-channel attacks be used to violate EPID’s forward or backward privacy?

1.1 Our Contribution
A Side-Channel Attack on Intel’s EPID Protocol. In this work, we answer the
above question in the affirmative, by presenting the first cache attacks on Intel’s EPID
protocol, as implemented inside SGX’s quoting enclave. Our attack is able to recover
part of the enclave’s long term secret key, thereby allowing a malicious attestation server
operator to break the unlinkability guarantees of SGX’s remote attestation protocol.
Lattice Attacks on Zero Knowledge Proofs. As we show in Section 3, Intel’s
implementation of the EPID protocol partially leaks the length of the randomness used
for one of the zero-knowledge proofs used during EPID attestation. In order to recover
part of the target’s long term secret key, we use this information to build an instance of
the hidden number problem (HNP) [BV96], which we solve using lattices. While such
an approach was previously used [NS02, NS03, BT11, vdPSY15, GPP+16] for the case of
nonce leakage from digital signatures, in this paper we extend this approach from digital
signatures to zero-knowledge protocols. To the best of our knowledge, this is the first
application of side channels and lattice techniques beyond signatures, to the more general
case of zero-knowledge protocols.
Attack Evaluation and Error Handling. We evaluate the efficiency of our lattice
attack in this setting, including measuring the effects of different optimizations, the tradeoffs
involved in incorporating samples of different sizes into key recovery, and the robustness
of the lattice construction against the types of measurement errors we encountered in
our attack. In particular, we give experimental evidence that the lattice attack can still
succeed even when a small number of erroneous traces are included, for the type of error

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 173

we observed in our measurements, where the side channel observation undercounted the
true nonce length by several bits.

1.2 Targeted Software and Hardware
Attack Scenario. In line with previous attacks on SGX [LSG+17, MIE17], we assume
that the attacker has root access to a Linux machine. The attacker can control the OS
resources, including assignment of processes to cores, interleaved execution of SGX enclave
and a cache monitoring process, as well as configuring the processor power and frequency
scaling. While powerful, these are valid assumptions for attacking SGX enclaves as SGX
excludes the OS from its trusted computing base and assumes that the OS is malicious.

As a motivating example for the attack scenario, we look at Signal’s Private Contact
Discovery Service1. This service allows clients to probe their contact list without revealing
the probe results to any of the service operators. To protect the service, Signal implements
it in an SGX enclave, and employs secret, unlinkable provisioning which hides the identity
of the servers providing the service from the attestation provider. However, a malicious
attestation provider can use our side-channel attack in conjunction with the information
it gets as part of the EPID protocol to find the host’s private key. This private key can
then be used to link all attestation requests for services running on the host, exposing the
service to the attestation provider.

To the best of our knowledge, at the moment Intel is the only attestation provider
and thus our attack currently only allows Intel to break EPID’s unlinkability property.
However, in principle, SGX’s design also allows for (less trusted) third-party attestation
providers. Unless mitigated, our attack would apply to these parties as well.
Hardware. In principle, our attack is applicable to any CPU that supports Intel’s SGX
and EPID attestation. We empirically demonstrate our attack on a Dell Inspiron 5559
laptop with an Intel Skylake i7-6500U CPU featuring two hyper-threaded physical cores.
Each physical core has 32 kB of L1D cache, used as our side channel. The L1 cache is
8-way associative and consists of 64 sets.
Software. Our target laptop is running Ubuntu 16.04 and SGX Software Development
Kit (SDK) version 1.7. The targeted quoting enclave and EPID library matches between
the Intel prebuilt binaries and the SGX SDK source code2.

Because the EPID signatures in the quoting enclave implementation are encrypted to
a hard-coded RSA public key before being transmitted to the remote attestation provider,
as described in Section 3, we modified the quoting enclave to encrypt to our own public
key so that we could decrypt the messages. This extra encryption in the implementation
is not part of the EPID attestation protocol. Our threat model for this scenario is that
the remote attestation provider is the attacker.

We implemented the side-channel attack using CacheZoom3 [MIE17]. Our signal
analysis heuristics are developed using Matlab version R2017a and its signal analysis
toolbox.
Current Status. We notified Intel of our results in January 2018, and the vulnerability
has been assigned CVE-2018-3691.

2 Preliminaries
2.1 Prime+Probe
Cache attacks exploit contention on a shared cache to infer secret information from
unsuspecting processes. They can be harmful if an adversary and benign threads share
access to the same cache. By measuring access time to shared or its own data, a spy process

1https://github.com/whispersystems/ContactDiscoveryService/
2SGX SDK is accessible at https://github.com/01org/linux-sgx
3CacheZoom source code is accessible at https://github.com/vernamlab/CacheZoom

https://github.com/whispersystems/ContactDiscoveryService/
https://github.com/01org/linux-sgx
https://github.com/vernamlab/CacheZoom

174 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

can infer if a victim process has accessed some specific data or a related region of the cache.
The resulting side channel leaks information about the memory access patterns of the
victims which can be exploited to attack implementations of cryptographic schemes such
as AES [OST06], RSA [AS08], and (EC)DSA [BvdPSY14]. Prime+Probe is a cache attack
methodology that does not rely on any shared memory addresses between the attacker
and the victim [Per05, OST06]. Prime+Probe has been demonstrated to be effective at
stealing sensitive information, e.g. cryptographic keys, across virtual machines in cloud
environments [LYG+15, IAES15]. Similarly, the Prime+Probe methodology scales well to
the SGX threat model where an adversary, e.g. a malicious OS, shares the same cache
while being unable to access enclave memory pages. The Prime+Probe methodology works
as follows:

1. Prime. The attacker fills relevant cache sets by sequentially loading memory addresses
that map to the same set.

2. Victim Memory Access. The attacker waits for the victim to perform secret-
dependent memory operations. Memory operations by the victim evict some of the
Attacker’s cache lines from the targeted sets.

3. Probe. The attacker reloads the previously cached memory addresses and measures
the access times to each cache set. A longer access time to a set corresponds to a victim
access to that particular set. When the value of a secret variable affects the access
patterns to memory, these pattern reveal information about the secret.

The cache hierarchy of modern Intel processors consists of three levels, with each level
being larger and slower than the levels above it. The L1 cache at the top of the hierarchy
is split into two caches: the L1 Data (L1D) cache is used for the data the program accesses;
the L1 Instruction (L1I) cache stores the instructions that the programs execute. The L1D
cache is virtually indexed, i.e. the processor uses the virtual address to find the cache set
that stores the data. Consequently, by targeting the L1D cache in our attack, we avoid
the need to map the cache as was required for past works that target the next level and
larger caches [LYG+15, IGI+16, YGL+15].

2.2 Intel SGX
Intel Software Guard Extensions (SGX) are extensions of the Intel instruction set that
provide trusted execution environments (TEEs) in Intel processors. The extensions,
available since the Skylake processor generation [AMG+15], introduce secure execution
environments called enclaves, that only include the processor hardware in their trusted
computing base (TCB). Enclaves are protected through a combination of hardware measures
that encrypt the enclave memory and strictly control the processor state at entry to and
exit from the enclave.

Because SGX excludes the OS from its trusted computing base, the OS is assumed
to be malicious. This, combined with SGX’s lack of protection against side-channel
attacks [AMG+15, CD16], have paved the way for stronger attack models that include
adversarial control of the OS. Several side channels exploiting these adversarial powers have
been demonstrated, including attacks on the page tables [XCP15, VBWK+17], branch
target buffers (BTB) [LSG+17], caches [SWG+17, MIE17, BMD+17] and memory false
dependency [MES17].

One notable technique that has been used across multiple attacks [LSG+17, MIE17] is
exploiting the operating system’s power to interrupt the enclave frequently. The technique
allows the adversary to get information at a high temporal resolution and monitor memory
accesses of almost every single instruction performed by the victim enclave.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 175

Mechanisms to protect SGX enclaves against side channel attacks have also been
proposed: page table attacks can be mitigated through compiler-level page table mask-
ing [SCNS16] or through minor modifications to the mechanism of page table entries
(PTE) within the SGX hardware [SP17]. Other compiler-level protections have been
proposed based on software diversity and binary code retrofitting to mitigate cache at-
tacks [WWB+17, BCD+17]. Déjà Vu aims to detect excessive interruption introduced by
OS adversaries [CZRZ17]. However, none of these mitigations have been adopted by the
Intel provisioning enclave and quoting enclave. Further, the soundness and efficiency of
these ad-hoc solutions have not been verified in practice.

Using an untrusted OS implies that users of the enclave need some mechanism to ensure
that they communicate with a legitimate enclave that has been initialized correctly. To
achieve this, Intel provides support for remote attestation. Remote attestation relies on a
combination of secret keys stored within the processors and a cryptographic protocol which
allows users to verify that they communicate with an enclave (as opposed to communicating
with fake software set up by a malicious OS), that the enclave is running on a supported,
and hence presumed trusted, processor and that the enclave has been initialized correctly.
The protocol used for remote attestation, the Enhanced Privacy ID (EPID), is described
in Section 2.4.

2.3 Bilinear Maps
Following the notation of [BBS04], let G1 and G2 be prime order multiplicative cyclic
groups with generators g1 and g2 (respectively). We say that a mapping e : G1×G2 → GT

is an admissible bilinear map if the following properties hold.

1. Bilinearity. For all (u, v) ∈ G1 ×G2 and for all a, b ∈ Z, it holds that e(ua, vb) =
e(u, v)ab.

2. Non-Degeneracy. e(g1, g2) is a generator of GT and e(g1, g2) 6= 1.

3. Efficiently Computable. It is possible to efficiently compute e(u, v) for all (u, v) ∈
G1 ×G2.

As we focus on the EPID construction of [BL11], we now review two parameter choices
for G1, G2, GT . Indeed, in order to achieve 80-bit security level, [BL11] initialize G1, G2, GT

with a family of 170-bit non-supersingular elliptic curves defined by Miyaji et al. [MN01].
Next, for 128-bit security, [BL11] follows the suggestion of Koblitz and Menezes [KM05]
and uses a 256-bit elliptic curve which has a suitable admissible bilinear map. As only
the version offering 128-bit security is implemented in Intel’s SGX SDK, we focus on
this version of EPID which operates over the Fp256BN curve as standardized in [Int09].
However, our techniques are also applicable to the 80-bit version of EPID.

2.4 Enhanced Privacy ID
2.4.1 Overview
Enhanced Privacy ID (EPID) is a protocol proposed to allow remote attestation of a
hardware platform without compromising the device’s privacy [BL11]. EPID allows a
platform to sign objects without exposing the platform identity to the verifiers, and it
protects against adversaries who try to link multiple signatures to the same platform.
Following the notation of [BL11], an EPID scheme consists of four entities. An Issuer I, a
revocation manager R, a platform P and a verifier V. The revocation manager maintains
two revocations lists Priv-RL and Sig-RL. The scheme operates as follows:
Setup. First, the issuer I runs the scheme’s setup algorithm Setup, on input 1k, where
k is the security parameter, obtaining a group public key gpk and a issuer secret key isk.

176 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

That is,
(gpk, isk)← Setup(1k).

Join. Next, each platform Pi and the issuer I perform a Join protocol where I’s input is
(gpk, isk) and Pi’s input is gpk. The Join protocol terminates with Pi learning a secret key
ski which it will use to sign messages to the verifier V. More formally,

〈⊥, ski〉 ← JoinI,Pi
〈(gpk, isk), gpk〉.

Sign. In order to sign a message m, using a group public key gpk, a secret key ski, and
a signature based revocation list Sig-RL, the ith platform Pi runs the signing algorithm
Sign. If ski is not revoked (i.e., ski /∈ Sig-RL), Sign outputs a signature σ. Otherwise, Sign
outputs ⊥. Formally,

⊥/σ ← Sign(gpk, ski,m,Sig-RL).
Verify. To verify a signature σ on a message m using a group public key gpk, a private
key-based revocation list Priv-RL and a signature-based revocation list Sig-RL, the verifier
V executes the verification algorithm Verify. This algorithm outputs valid or invalid. The
invalid output indicates that either σ is not a valid signature on the message m or that the
platform Pi signing m has been revoked. Formally,

valid/invalid← Verify(gpk,m,Priv-RL,Sig-RL, σ).

Revoke. EPID supports two types of revocations. In case the revocation manager R
knows the private key of the platform Pi it wishes to revoke, it simply adds ski to the
private key-based revocation list Priv-RL by running the revoke algorithm. This results in
an updated private key-based revocation list. Formally, R performs

Priv-RL← Revoke(gpk,Priv-RL, ski).

Moreover, if R wants to revoke some platform based on a message-signature pair (m,σ) it
signed but without knowing its secret key, he can also execute the Revoke algorithm using
gpk,Priv-RL,Sig-RL,m, σ as inputs. This results in an updated signature-based revocation
list Sig-RL. Formally,

Sig-RL← Revoke(gpk,Priv-RL,Sig-RL,m, σ).

2.4.2 Security Properties of EPID
In this section we briefly overview the security properties of the EPID scheme of [BL11].
We refer the reader [BL11] for formal discussions and definitions.
Correctness. Informally, the correctness requirement states that every signature σ
generated by a platform Pi on a message m with a secret key ski is valid, unless Pi has
been revoked. More formally, let Σi be the set of all signatures generated by Pi. We
require that Verify(gpk,m,Priv-RL,Sig-RL,Sign(gpk, ski,m,Sig-RL)) = valid if and only if
ski /∈ Priv-RL and Σi ∩ Sig-RL = ∅.
Unlinkability. At a high level, EPID’s unlinkability requirement guarantees that it is
impossible to identify the platform that produced a signature σ on some message m, nor
is it possible to identify other signatures signed by the same platform. More specifically,
even in case a malicious issuer colludes with a malicious verifier (such as in the case of a
malicious remote attestation provider), knowing gpk, isk and a list of message signature
pairs (mi, σi)i=1,··· ,n is not sufficient for linking a pair m,σ to a specific secret key sk or
to other signatures signed by the same secret key.
Unforgeability. At a high level, EPID’s unforgeability requirement states that it is
impossible for the attacker to forge a valid signature on some previously-unsigned message,
without knowing a non-revoked secret key. This holds even in the case when the attacker
knows previously revoked secret keys, belonging to compromised platforms. We refer the
reader to [BL11] for a more formal discussion.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 177

2.4.3 The Signing Algorithm
In this work, we attack the signing algorithm used by P to sign a message m. We will
give a high-level description of EPID’s signing algorithm in order to motivate the attack.
We refer the reader to [BL11] for the full details.

Let p be the order of the bilinear group pair (G1, G2) and let e : G1 × G2 → GT be
an admissible bilinear pairing (as defined in Section 2.3). The secret key ski used by the
ith platform Pi to sign m consists of ski = (A, x, y, f), where f is a random element of Zp

and (A, x, y) is a BBS+ signature [ASM06] on f . Following [BL11] and [CS97], we use the
notation SPK{(a) : y = za}(m) to denote a signature on a message m where the signature
scheme used to sign m is derived from some interactive zero knowledge proof-of-knowledge
protocol via the Fiat-Shamir heuristic. In this notation, the parenthesized values (a) are
known to the platform Pi but not to the verifier V while all other values are public and
thus known to both Pi and V. Let Sig-RL be a signature-based revocation list, at a high
level the algorithm proceeds as follows:

1. Choose randomly B ← G3 and compute K := Bf , where G3 is a cyclic group of
order p defined as part of the scheme group public key gpk.

2. Choose a random a← Zp, and compute b← y+ ax , and T ← A · ha
2 where h2 ∈ G2

is also part of the scheme group public key gpk.

3. Run the following signature of knowledge protocol

SPK{(x, f, a, b) : Bf = K ∧ e(T, g2)−x·e(h1, g2)rf ·e(h2, w)ra = e(T,w)/e(g1, g2)}(m)

where

(a) rx ← Zp, rf ← Zp, ra ← Zp, and rb ← Zp are chosen uniformly at random.
(b) c← H(gpk, B,K, T,R1, R2,m), where H is a cryptographic hash function.
(c) sx ← rx + cs, sf ← rf + cf , sa ← ra + ca, and sb ← rb + cb where all

computations are performed over Zp.
(d) The values g1, g2, h1, h2 are specified in the group public key gpk.

4. Set σ0 = (B,K, T, c, sx, sf , sa, sb).

5. Let Sig-RL = {(B1,K1), . . . , (Bn2 ,Kn2)}. For all i, compute σi = SPK{(f) : K =
Bf ∧Ki 6= Bf

i }(m).

6. If any zero-knowledge proofs in Step 4 fails, then output σ = ⊥. Otherwise, output
the signature σ = (σ0, σ1, · · · , σn2).

Notice that if the attacker is able to leak the value of f by mounting a side-channel attack
on the exponentiation routine, he is able to break the unlinkability property of the EPID
construction by linking P to all its signatures, including past and future signatures. Next,
notice that in Step 3 of the above description, the platform P generates a random secret
nonce rf ∈ Zp and computes an exponentiation e(h1, g2)rf (where h1 ∈ G1 and g2 ∈ G2
were both published in gpk). The signature component σ0 includes the value sf = rf + cf
where c is the hash over several public values generated during the signing process.

As we show in Section 5, by recovering additional side-channel information about the
length of the nonce rf from several such signature operations, we are able to mount a
lattice attack on the EPID construction and completely recover the value of f . Since the
values of B and K are also part of σ, we are able to break the unlinkability property of
the EPID construction by checking weather Bf equals K.

178 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

3 SGX EPID Provisioning and Attestation
Intel implements the EPID attestation through a combination of two enclaves, collectively
known as the architectural enclaves, and deployed as part of the SGX SDK. The provisioning
enclave is responsible for performing the EPID Join operation, effectively verifying the SGX
hardware to the Intel key facility and obtaining the attestation key. The quoting enclave
implements the EPID Sign operation. It uses the previously obtained attestation key to
generate the signature attestation on each request. Note that the provision operation only
needs to be performed once when a trusted environment is being prepared.

3.1 Provisioning and Quoting Enclave Implementations
The provisioning enclave is signed by Intel and has a special attribute that allows it
to derive the permanent provision key from the hardware fused provision secret. Intel
SGX supports multiple keys for different operations that can be retrieved using a special
CPU instruction. Two of these keys, the provision key and the provision seal key, are
only accessible to the provisioning enclave. The provisioning enclave uses an ECDSA
operation and the provision key to sign a message that authenticates the SGX hardware
to the Intel provisioning servers. However, the signing operation does not directly use
the 128-bit provision key. Instead, a key-wrapping operation using AES-CMAC [SPLI06]
over a hardcoded plaintext generates the 256-bit ECDSA key. We skip the explanation of
the entire authentication protocol between the provisioning enclave and Intel provisioning
server. After the authentication, the provisioning enclave obtains the private attestation
key f . The provisioning enclave uses the provision seal key to store f on the disk in an
encrypted form.

The quoting enclave unseals the attestation key stored by the provisioning enclave on
each attestation request. The attestation process follows the EPID scheme and results
in an EPID signature. However, in the quoting enclave implementation, this signature is
encrypted using a hybrid RSA-AES-CMAC based on a hardcoded RSA public key. While
this operation is not part of the EPID scheme it does add a layer of security to the EPID
signatures used in SGX.

From an attacker perspective, this encryption hides the otherwise public EPID signature.
Consequently, to be able to mount the attack we describe below, the attacker needs to be
able to decrypt the EPID signatures. To allow us to decrypt the signatures, we modify
the quoting enclave to use our own public key, for which we know the private key. We
then sign the modified enclave. In order to avoid potential changes due to differences in
the build environment, the change is applied to the binary file, rather than to the source.
Hence, aside from the RSA public key and the enclave metadata, our quoting enclave is
identical to the original.

We note that to perform the EPID verification, the attestation provider must be able
to decrypt the EPID signatures. Hence, a real attack is only possible from a malicious
attestation provider. Nevertheless, one of the main aims of the EPID protocol is to protect
the privacy of the users and prevent a malicious attestation provider from linking signatures
to the hosts that signed them. Hence, our attack enables a malicious attestation provider
to break one of the main objectives of using the EPID protocol.

3.2 Scalar Multiplication in the Quoting Enclave
To perform a scalar multiplication, the quoting enclave recodes the scalar s using an
extension of the Booth recoding [Boo51] and uses a fixed-window algorithm with a window
size of 5 and the recoded scalar. Recoding with a window size w represents the scalar as a
sequence of digits si such that −2w−1 ≤ si ≤ 2w−1 and s =

∑
i 2wisi.

The algorithm (see Algorithm 1) precomputes the values Pi = P i for an input point
P and 0 ≤ i ≤ 2w−1. It then scans the scalar from the most significant non-zero digit
to the least significant digit. For each digit, it performs w squaring operations of an

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 179

Algorithm 1 Scalar Multiplication in the Quoting Enclave
1: procedure MulPoint(point P , window size w, scalar s represented as s0 . . . sn using

the Booth recoding)
2: P0 ← O
3: for i← 1 to 2w−1 do
4: Pi ← P · Pi−1
5: end for
6: i← max{j : sj 6= 0}
7: r ← P|si|
8: i← i− 1
9: while i ≥ 0 do

10: r ← r2w

11: t← P|si|
12: r ← r · ctSelect(t, t−1, isNegative(si))
13: i← i− 1
14: end while
15: return r
16: end procedure

intermediate result r followed by a multiply of the precomputed value matching the value
of the digit or its inverse (Line 12). To protect against cache attacks, the algorithm uses a
constant-time select operation for the decision whether to use the precomputed value or
its inverse. Furthermore, it uses the scatter-gather approach [GGO+09, BGS06] to mask
the cache fingerprint of accesses to the precomputed values. For simplicity, we omit this
scatter-gather operation from the algorithm.

Despite the countermeasures taken, the algorithm leaks the length of the recoded
representation of the scalar. More specifically, Algorithm 1 starts from the most significant
non-zero digits (Line 6), leaking the length of the Booth representation of the scalar. The
length of the recoded representation corresponds to the number of leading zero bits in the
scalar. A full-length recoded scalar has 52 digits and the main loop of Algorithm 1 iterates
51 times. When both bits 255 and 256 of the scalar are 0, the recoded scalar has 51 digits
and the loop iterates 50 times. Each additional five clear bits correspond to shortening
the recoded scalar by one digit and to a resulting decrease in the number of iterations
through the loop. Thus an adversary who can count the number of iterations through the
main loop of Algorithm 1 or accurately measure the time it takes to perform the scalar
multiplication can recover the values of some of the most significant bits of the scalar.

4 Short Scalar Leakage via High Resolution Side Channels
In order to extract the key leakage of EPID from an SGX quoting enclave we monitor the
number of loop iterations via the L1 data cache, which is a convenient channel providing
high measurement resolution.

4.1 Controlled Prime+Probe Attack
In this attack, we follow the scenario of [MIE17] and apply a high-resolution Prime+
Probe attack in a controlled environment with respect to the OS adversarial model. More
specifically,

1. The processor is configured to operate on a constant frequency to avoid dynamic changes
of frequency. This reduces noise by making time measurements more accurate.

2. The thread running the quoting enclave and the Prime+Probe code is isolated on one
physical core, while all other tasks of the system are placed on other physical cores of

180 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

Start End

500 1000 1500 2000 2500

Observations

0

2

4

6

8

10

12

14

16

L
1

D
 C

a
c

h
e

 S
e

ts

Figure 1: Heatmap of 16 different cache sets for the scalar multiplication. Each cache set
that has a repetitive memory pattern, for example sets 7, 9 and 13, shows 48 repetitions,
indicating that the ephemeral key bit size is less than (48 + 1) · 5 = 245 bits. The red lines
mark the start and the end of the repetitive memory pattern.

the system. This removes noise caused by memory activities of irrelevant operations
from the monitored core and its L1 caches.

3. The timer interrupt handler on the attack core is configured to be triggered with a very
high frequency. Thus, the quoting enclave thread can only execute a few instructions
between each interrupt. In the interrupt handler, we perform Prime+Probe on the 64
L1D cache sets. As the target quoting enclave is only able to perform a few memory
operations in each time frame between two consecutive interrupts, the Prime+Probe
reveals all memory accesses of the enclave with high temporal and spatial resolution.

Figure 1 shows the observations of 16 different cache sets for the quoting enclave Booth
multiplier. Each loop of the multiplier executes several memory operations affecting
different cache sets at different times in a periodic way. As a result, we can count the
number of iterations of the main loop of Algorithm 1 by looking at any cache set that has
a periodic memory access pattern. Because the main loop performs one iteration for each
w-bit digit following the first non-zero digit, counting the number of iteration provides
information on the bit length of the scalar.

70
75
80
85

C
y
c
le

s

55
60
65
70

C
y
c
le

s

70
75
80
85

C
y
c
le

s

50 100 150 200 250

Observations

70
75
80
85
90

C
y
c
le

s

Figure 2: Cache access patterns on four different sets during the computation of the main
loop of Algorithm 1. Each set features a different repeating pattern of the same length
that can be used to count the number of loop iterations executed by the quoting enclave.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 181

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Observations

65

70

75

80

85

90

95

100

C
y

c
le

s
48

Brf Loop Count

Figure 3: Counting loop iterations on set 02: The number of equally spaced high peaks
within a defined signal pattern reveals the number of loop iterations to be 48 in this
example.

4.2 Loop Counting Analysis
Our goal is to determine the loop count for the Booth recoding of the scalar rf using
the above-described side-channel setup and to detect signatures that have been generated
using short scalars. Our attack setup is configured to start the interrupted Prime+Probe
measurement right before the call to the quoting enclave and to finish right after the
enclave exits. The observations are stored in a circular buffer capable of recording 50,000
samples. The loop repetition leakage affects several cache sets in different ways, as shown
in Figure 2.
Automatically Counting Loop Iterations. To automate the extraction of the number
of loop iterations, we implemented several heuristics using the Matlab signal processing
toolbox. A first layer locates the window for the start and end of the multiplier within
the trace of 50,000 sample points. A second filter counts the number of repeated cache
access patterns within the relevant window, which directly corresponds to the number of
executed loops of the scalar multiplication. This information can be extracted from the
periodic leakage in several of the cache sets. As depicted in Figure 2, the signal pattern
from the main loop of Algorithm 1 is unique for each cache set. We use five different loop
counters that use the information from four cache sets to count the number of loops on
each signature. The first four counters detect periodic behavior to each of the four cache
sets separately, while the last counter performs a reverse check on set 02. Figure 3 shows
a successful loop counting on set 02 that returns a count of 48 iterations, thus revealing
the 12 most significant bits of the scalar are clear.
Handling Measurement Noise. Even though the L1D cache channel has a very high
resolution, there is still some noise that can result in a failure to count the correct number
of loop iterations for each of the five counters. Common sources of error are failing to
accurately detect the beginning and the end of the multiplier window, under-counting short
peaks and over-counting occasional noises that introduce unexpected peaks or pattern
within the sampling of a multiplier window. However, our experimental results show that
if four of the five loop counters agree on the number of loop iterations, the loop counting
would be error free. We automatically analyzed 11,080 signature operations and found
1214 50-loop, 39 49-loop and 2 48-loop short keys without any error.
Further Reducing the Number of Signatures via Manual Processing. Although
the fully automated approach returns enough short-key signatures to recover the key, it
discards many samples that carry valuable information. Scalars resulting in a 49-loop
occur with a probability of 1/128. Thus, the automated approach, while ensuring no false
positives, only detects about 45% of such occurrences. The number of required signature
observations can be reduced by combining the automatic loop counting with manual
verification. By returning all traces where three or more counters agree, the automatic

182 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

loop counting returns 1723 50-loop, 54 49-loop and 5 48-loop candidates, with 0.4%, 5.0%
and 0.0% error, respectively. Further reducing to the minimum of two matching counters
yields 2155 50-loop, 117 49-loop and 7 48-loop candidates, with 5.7%, 52% and 14% error,
respectively. In this case, manual post-processing is necessary, but certainly tractable, e.g.
for the 117 49-loop candidates. We manually verified 59 of the 49-loop candidates, thus
increasing the ratio of found occurrences of 49-loop candidates to 68%.

5 A Lattice Attack on EPID
The side channel gives us information about the length of rf used to compute the signature
component sf = rf + cf mod p, where sf and c are public information, p is the 256-bit
order of the elliptic curve, and f is the platform’s secret membership key. We will use this
information to solve for f .

5.1 The Hidden Number Problem
In the hidden number problem (HNP) [BV96], there is a secret integer α, and the attacker
is given many samples from the l most significant bits of random multiples of α mod p.
For a given prime p and a fixed l, Boneh and Venkatesan showed how to recover the
secret α in polynomial time with probability greater than 1/2, under the assumption that
|αti − ui| < p/2l, where ti are uniformly and independently randomly chosen integers
in Z∗p and the ui are integers representing the knowledge of the most significant bits of
αti mod p.

Boneh and Venkatesan originally formulated the hidden number problem to prove the
existence of hardcore bits for the Diffie-Hellman key exchange [BV96]. Their work has since
been extensively used for different attacks. Nguyen and Shparlinski used HNP to attack
the DSA and ECDSA signing algorithms [NS02, NS03]. They use the Boneh-Venkatesan
lattice construction. Since their work, a number of papers have demonstrated attacks on
the OpenSSL implementation of the ECDSA digital signature algorithm [FWC16, ABF+16,
BT11]. Researchers have also introduced new variants of the HNP, such as the modular
inversion hidden number problem [BHHG01] and the extended hidden number problem
that considers chunks of known bits [HR06]. The problem we consider fits into the original
hidden number problem setting. We begin by explaining how to convert our problem to a
hidden number problem instance.

5.2 Conversion to a Hidden Number Problem
In the following, we will drop the subscript f from the signature component, and use a
subscript i to index the sample number. We obtain many samples {(si, ci)}i satisfying

si ≡ ri + cif mod p, (1)

as well as information about whether the number of most significant zero bits in ri is 0, 2,
7, or 12. That is, we learn that |si − cif | < p/2li where li is the number of 0 bits we learn
from ri; this is identical to the hidden number problem as described above.

Recentering the Nonces. Naively, the number of bits of ri that we learn is 2 bits for
a 50-loop sample, 7 bits for a 49-loop sample, and 12 bits for a 48-loop sample. However,
these ri values are positive, while the lattice construction works with both positive or
negative values for ri. Since we know the length of the ri, ri ≤ 2ni , where ni = 256− li
in our application, we can recenter the ri around 0 to reduce the size of our solution by
one bit. That is, we can rewrite Equation 1 as s′i − r′i ≡ cif mod p, with s′i = si − 2ni

and r′i = ri − 2ni . In this way, we obtain a new problem with −p/2li+1 ≤ ri ≤ p/2li+1.
(See [NS02, NS03] for more details.) The effect of recentering the nonces on the success
probability of the attack can be seen in Figure 4.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 183

5.3 Solving the Hidden Number Problem
There are two standard approaches to solving the hidden number problem: via lattices or
via Fourier analysis [IEE00, MHMP13]. We use the lattice-based approach in this paper,
since it is quite efficient in the case of relatively large numbers of bits known (2, 7, or 12
in our attacks) and relatively few samples.
5.3.1 Lattice Preliminaries
A lattice is a discrete additive subgroup of Rn. The set of vectors in a lattice is closed
under addition and multiplication by integers. The discreteness property ensures that there
is some λ > 0 such that the length of the shortest vector v1 in the lattice satisfies |v1|2 = λ.
More generally, we will use λi to denote the ith successive minimum of the lattice. Any
n-dimensional lattice can be specified by a basis of at most n linearly independent vectors
{bi}n

i=1. A convenient representation for a lattice basis is in the form of a matrix B
whose rows are the basis vectors bi. A lattice basis is not unique; one lattice basis can be
transformed to a different basis for the same lattice by means of integer row operations.

The BKZ algorithm [Sch87, SE94] runs in time exponential in a block size k and
polynomial in the lattice dimension n, and gives a reduced lattice basis whose vectors bi

satisfy the approximation |bi|2 ≤ iγ(n−i)/(k−1)
k λi [Sch92], where γk is the Hermite constant.

In practice, Chen and Nguyen [CN11] observe that BKZ typically returns vectors satisfying
b1 ≤ (1 + εk)nλ1 where εk depends on the block size; for random lattices they obtain
1 + εk = 1.01 for a block size of 85.
5.3.2 Solving the Hidden Number Problem via CVP embedding
The lattice-based approach to the hidden number problem was introduced by Boneh and
Venkatesan [BV96] and recovers the nonces ri and the secret f by solving a closest vector
problem (CVP) in a given lattice. The idea is that given Equation 1 and the bound
|ri| < p/2li , a vector obtained from the si will be particularly close to a vector containing
the secret f .

However, current lattice algorithm implementations for solving the shortest vector
problem (SVP), and more generally, computing a reduced basis for a lattice, are much
better than implementations of CVP algorithms, so most practical attacks using these
techniques embed the Boneh-Venkatesan lattice basis into a basis one dimension larger so
that the desired closest vector solution in the original lattice corresponds to a particularly
short vector in the new, slightly larger lattice. For example, given m recentered samples,
Benger et al. [BvdPSY14] hope to recover the secret key by computing a short vector in
the (m+ 2)-dimensional lattice generated by the following basis. The northwest quadrant
is a scaled version of the basis given by Boneh and Venkatesan, and the left portion of the
bottom row vector is the target for CVP.

Bcvp =

2l1+1p . . . 0 0

0 2l2+1p 0
...

. . .
2lm+1p 0

2l1+1c1 2l2+1c2 . . . 2lm+1cm 1 0
2l1+1s1 2l2+1s2 . . . 2lm+1sm 0 p

. (2)

Benger et al. note that the shortest vector in this lattice is actually (0, . . . , 0, p, 0) and
hope that the second-shortest vector in a suitably reduced basis is the target v2 =
(2l1+1r1, · · · , 2lm+1rm, f,−p). (v2 = zB for some z = (z1, . . . , zm, f,−1) with zi ∈ Z.) We
can use LLL or BKZ to compute a reduced basis. We have detL(B) = 2m+

∑
i

li · pm+1

and |v2|2 ≈
√
m+ 2p, and we hope to find v2 when |v2|2 ≤ (1+ε)m+1(detB)1/(m+2) where

1 + ε is the approximation factor achieved by the lattice basis reduction algorithm we use.

184 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0

0.5

1

7 bits known12 bits known

Number of samples

S
u
cc
es
s
p
ro
b
ab

il
it
y recentered

not recentered

Figure 4: We show the success probability of key recovery using 49-loop samples, which
reveal the 7 most significant bits of the nonces, and 48-loop samples, which reveal the 12
most significant bits learned, for different numbers of samples. Recentering the nonces has
a noticeable impact on the number of samples required for key recovery.

Figure 4 shows the experimental success probability of the attack for 49-loop samples,
where 7 most significant bits of the nonce are known, and 48-loop samples, where 12 most
significant bits of the nonce are known.

5.4 Performance Tradeoffs
5.4.1 Using Samples of Different Lengths
Benger et al. [BvdPSY14] describe how to take advantage of different length samples using
the CVP embedding construction by using different values for each li in the lattice basis
given in Equation 2. Similarly, for our attack, this allows us to reduce the total number
of samples we need to collect by using samples with different loop lengths. This results
in a performance tradeoff: we can decrease the signature sampling time at the cost of
increasing the time spent running lattice basis reduction to recover the secret key.

Using only 49-loop samples in the lattice, corresponding to learning 7 most significant
bits of the nonce, we needed 38 samples to achieve above a 50% success rate in the lattice
construction; when we added 30 50-loop samples (in which we learn 2 most significant bits)
to the lattice, we had above a 50% success rate with 30 49-loop samples. We show the
improvement as the number of samples increases in Figure 5. Each point represents 100
trials using BKZ with block size 30; for the 73-dimensional lattices containing 31 49-loop

24 26 28 30 32 34 36 38 40

0

0.5

1

7-bit samples

S
u
cc
es
s
p
ro
b
ab

il
it
y 0 2-bit samples

5 2-bit samples
10 2-bit samples
20 2-bit samples
30 2-bit samples
40 2-bit samples

Figure 5: We can reduce the total number of signatures needed to carry out a successful
attack by including samples of different sized nonce observations in the lattice. We
constructed different sized lattices by including both samples that had revealed 7 bits of
the nonce and samples that had revealed 2 bits of the nonce. The lattice dimension for
each experiment is the total number of samples + 2. We measured the success probability
over 100 trials on random problem instances, solved using BKZ-30.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 185

35 40 45 50 55 60 65 70 75 80 85

0

0.5

1

49-loop samples (7 bits known)

S
u
cc
es
s
p
ro
b
ab

il
it
y 0 errors

1 1-loop error
2 1-loop errors
1 2-loop error
2 2-loop errors

Figure 6: The lattice still finds the correct solution some fraction of the time, even in the
presence of collection errors for the error model in our attack. We show the probability of
successful recovery when the lattice contains a number of randomly generated samples
whose actual nonce sizes are one or two windows, or 5 bits or 7 bits larger than the
bound given in the lattice. Each point represents 100 randomly generated trials of random
problem instances, solved using BKZ-30.

samples and 40 50-loop samples (corresponding to a 100% success rate) the BKZ algorithm
took 52 seconds on average to complete on a single core of our test machine.

5.4.2 Error Correction

It is quite common in a side-channel attack that there is some error during the collection
process. In the case of our attack, an error while counting the number of loops during the
modular exponentiation would result in an incorrect bound on the size of one or more
of the ris being collected. If the loop count is higher than the actual value, this is not a
problem: either the sample would be excluded from the key recovery process, or the size
of the ri is still correct for the bound we use in the lattice and we expect to still find the
correct solution. However, if the error happens in the other direction and the measurement
process undercounts the number of loops, we will incorporate samples into the lattice
whose nonce sizes are larger than the bounds we assign for them. In this case, the lattice
construction can fail, because the vector may no longer correspond to the correct key.

Much of the prior work on side-channel attacks with errors for similar constructions
either ignored this issue entirely, dealt with it via signal processing, or subsampled different
subsets of samples until an error-free sample is obtained [GPP+16, ARAM17].

However, we find experimentally that when the lattice includes more samples than
necessary, key recovery may still be possible in the presence of the types of errors we
encountered in our attack. In our measurements, an error corresponds to an incorrect
loop count. To model this in experiments, we generated instances of 49-loop samples, and
inserted errors corresponding to samples that should have been measured as 50-loop or
51-loop samples. Recall that the nonce in a 49-loop sample is contained in the interval
[2244, 2249); we generated 50-loop errors uniformly from the interval [2249,2254) and 51-loop
errors uniformly from the interval [2254, p), inserted these into our samples, and attempted
key recovery. Figure 6 shows the success probability of our lattice construction when the
lattice contains different numbers of errors. Each plotted sample represents 100 randomly
generated trials with the specified type of error run with BKZ-30. The recovery rate with
errors whose most significant bits are 1 is similar to the error rates for the 51-loop samples.

As a concrete example, a 75-sample lattice with 2 1-loop errors succeeded 42% of
the time in our experiments. This corresponds to a 2.9% error rate. We would expect a
39-sample lattice (which succeeded with 100% probability in our experiments) to achieve
0% errors with probability 0.9739 = 0.35, or 35% of experiments.

186 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

5.5 Recovering f

Using the automatically classified data from the side-channel attack described in Section 4,
we were able to recover f using BKZ-30 on 37 error-free 49-loop samples, corresponding
to 7 most significant bits of each ephemeral ri known. It took 10,600 total signature
samples to collect this data. Next, by using samples of different loop lengths we can
further reduce the total number of signatures required. More specifically, in Table 1 we
show some different strategies for successful key recovery given our empirical signature
data. For the row corresponding to n signature data points, we used all of the 48-loop
(corresponding to 12 bits known) and 49-loop (corresponding to 7 bits known) samples
that were detected during the first n signature measurements in our data, and then added
50-loop (corresponding to 2 bits known) samples from the first n signatures to the lattice
until key recovery succeeded.

As decribed in Section 4.2, fewer signatures are required if manual inspection is used
to help classify the signals. In that case, we would only need less than 7,500 observed
signatures to obtain enough 49-loop observations for a full key recovery.

Table 1: Strategies for key recovery with different numbers of signature samples.
Signatures 48-loop 49-loop 50-loop BKZ block size BKZ time

10300 2 35 0 2 0.1s
10000 2 31 10 20 0.2s
9000 2 29 21 30 1.4s
8000 2 25 35 30 4.5s

6 Conclusions
In this work, we show yet another leakage in highly sensitive code—the implementation of
the EPID protocol for SGX remote attestation. While the attack only allows a malicious
attestation provider to break the link signatures to a host, the unlinkability guarantee it
breaks is the main reason for using the EPID protocol in the first place. From the structure
of the code, it is clear that the developers have attempted to eliminate side channel leaks.
Thus, this incident demonstrates that producing constant-time code is not trivial and that
better tools for facilitating such development are required.

This work extends the art of recovering the long-term key from partial information
on the ephemeral keys. First, we apply known techniques used in the context of digital
signatures to the wider context of zero-knowledge proofs. Second, we investigate the
handling of erroneous inputs for the hidden number problem. We show that prior common
belief notwithstanding, lattices can handle some erroneous input. Exploring the trade-offs
between past approaches of selecting a random subset of the inputs and the new approach
of using the inputs in the lattice is left for future work.

Acknowledgments
We thank Rina Zeitoun and the anonymous reviewers for their help in improving the
quality of this work.

This work was supported by the Australian Department of Education and Training
through an Endeavour Research Fellowship; by the National Science Foundation under
grants CNS-1408734, CNS-1505799, CNS-1513671, CNS-1514261, CNS-1618837, CNS-
1651344, and CNS-1652259; by the financial assistance award 70NANB15H328 from the
U.S. Department of Commerce, National Institute of Standards and Technology; by the
2017-2018 Rothschild Postdoctoral Fellowship; and by the Defense Advanced Research
Project Agency (DARPA) under Contract #FA8650-16-C-7622.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 187

References
[ABF+16] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and

Yuval Yarom. Amplifying side channels through performance degradation.
In ACSAC, pages 422–435, 2016.

[AKM+15] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In IEEE Symposium on Security and Privacy, pages 623–639, 2015.

[AMG+15] Ittai Anati, Frank McKeen, Shay Gueron, Haitao Huang, Simon Johnson,
Rebekah Leslie-Hurd, Harish Patil, Carlos Rozas, and Hisham Shafi. Intel
software guard extensions (Intel SGX). Tutorial Slides presented at ISCA,
June 2015.

[ARAM17] Jiji Angel, R. Rahul, C. Ashokkumar, and Bernard Menezes. DSA signing key
recovery with noisy side channels and variable error rates. In INDOCRYPT,
volume 10698 of Lecture Notes in Computer Science, pages 147–165, 2017.

[AS08] Onur Acıiçmez and Werner Schindler. A vulnerability in RSA implementa-
tions due to instruction cache analysis and its demonstration on OpenSSL.
In CT-RSA, pages 256–273, 2008.

[ASK07] Onur Acıiçmez, Werner Schindler, and Çetin Kaya Koç. Cache based remote
timing attack on the AES. In CT-RSA, pages 271–286, 2007.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In
SCN, pages 111–125, 2006.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO, pages 41–55. Springer-Verlag, 2004.

[BCD+17] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Fras-
setto, Kari Kostiainen, Urs Müller, and Ahmad-Reza Sadeghi. DR. SGX:
Hardening SGX enclaves against cache attacks with data location random-
ization. arXiv preprint arXiv:1709.09917, 2017.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES, 2005. Preprint available
at http://cr.yp.to/papers.html#cachetiming.

[BGS06] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert. Mitigating
cache/timing based side-channels in AES and RSA software implementations.
RSA Conference 2006 session DEV-203, February 2006.

[BHHG01] Dan Boneh, Shai Halevi, and Nick Howgrave-Graham. The modular inversion
hidden number problem. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 36–51. Springer,
2001.

[BL11] Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing
for hardware authentication and attestation. IJIPSI, 1(1):3–33, 2011.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX
cache attacks are practical. In WOOT, 2017.

[Boo51] Andrew D. Booth. A signed binary mutiplication technique. Q. J. Mech.
Appl. Math., 4(2):236–240, January 1951.

http://cr.yp.to/papers.html#cachetiming

188 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still
practical. In ESORICS, pages 355–371, 2011.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the
most significant bits of secret keys in Diffie-Hellman and related schemes. In
CRYPTO, pages 129–142, Santa Barbara, CA, US, August 1996.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “Ooh
aah... just a little bit”: A small amount of side channel can go a long way.
In CHES, pages 75–92. Springer, 2014.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology
ePrint Archive, Report 2016/086, 2016.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In ASIACRYPT, volume 7073 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2011.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups (extended abstract). In CRYPTO, pages 410–424, 1997.

[CZRZ17] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang.
Detecting privileged side-channel attacks in shielded execution with déjà vu.
In AsiaCCS, pages 7–18. ACM, 2017.

[FWC16] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL im-
plementation of ECDSA with a few signatures. In CCS, pages 1505–1515.
ACM, 2016.

[GGO+09] Vinodh Gopal, James Guilford, Erdinc Ozturk, Wajdi Feghali, Gil Wolrich,
and Martin Dixon. Fast and constant-time implementation of modular expo-
nentiation. In Embedded Systems and Communications Security, September
2009.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js:
A remote software-induced fault attack in JavaScript. In DIMVA, pages
300–321, 2016.

[GPP+16] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval
Yarom. ECDSA key extraction from mobile devices via nonintrusive physical
side channels. In CCS, pages 1626–1638, 2016.

[GZES17] Berk Gülmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar.
PerfWeb: How to violate web privacy with hardware performance events. In
ESORICS (2), pages 80–97, 2017.

[HR06] Martin Hlavác and Tomás Rosa. Extended hidden number problem and its
cryptanalytic applications. In Selected Areas in Cryptography, volume 4356
of Lecture Notes in Computer Science, pages 114–133. Springer, 2006.

[IAES15] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. S$A: A
shared cache attack that works across cores and defies VM sandboxing - and
its application to AES. In IEEE Symposium on Security and Privacy, pages
591–604, 2015.

[IEE00] IEEE. Minutes from the IEEE P1363 working group for public-key cryptog-
raphy standards, November 2000.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 189

[IGI+16] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In
CHES, pages 368–388, 2016.

[Int09] International Organization for Standardization. Information technology
- security techniques – cryptographic techniques based on elliptic curves.
Part 5: Elliptic curve generation, 2009.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203, 2018.

[KM05] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security
levels. In Proceedings of Cryptography and Coding 2005, volume 3796 of
LNCS, pages 13–36. Springer-Verlag, 2005.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache attacks on mobile devices. In USENIX
Security Symposium, pages 549–564, 2016.

[LGS+17] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Mau-
rice, and Stefan Mangard. Practical keystroke timing attacks in sandboxed
JavaScript. In ESORICS (2), pages 191–209, 2017.

[LSG+17] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In USENIX Security Symposium, pages 557–574, 2017.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Security
and Privacy, pages 605–622, 2015.

[MES17] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam: A false
dependency attack against constant-time crypto implementations in SGX.
In CT-RSA, pages 21–44, 2017.

[MHMP13] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson. Using
Bleichenbacher’s solution to the hidden number problem to attack nonce leaks
in 384-bit ECDSA. In CHES, volume 8086 of Lecture Notes in Computer
Science, pages 435–452. Springer, 2013.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom:
How SGX amplifies the power of cache attacks. In CHES, pages 69–90, 2017.

[MN01] Atsuko Miyaji and Masaki Nakabayashi. New explicit conditions of elliptic
curve traces for FR-Reduction. IEEE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E84-A(5):1234–1243,
May 2001.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the Digital
Signature Algorithm with partially known nonces. J. Cryptology, 15(3):151–
176, 2002.

190 CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the Elliptic
Curve Digital Signature Algorithm with partially known nonces. Des. Codes
Cryptography, 30(2):201–217, 2003.

[OKSK15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox: Practical cache attacks in JavaScript
and their implications. In CCS, pages 1406–1418. ACM, 2015.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: The case of AES. In CT-RSA, pages 1–20, 2006.

[Pag02] Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel.
IACR Cryptology ePrint Archive, Report 2002/169, 2002.

[Per05] Colin Percival. Cache missing for fun and profit. In BSDCon 2005, Ottawa,
CA, 2005.

[Sch87] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci., 53(2-3):201–224, August 1987.

[Sch92] Claus Peter Schnorr. Block Korkin-Zolotarev bases and successive minima.
1992.

[SCNS16] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
Preventing page faults from telling your secrets. In AsiaCCS, pages 317–328.
ACM, 2016.

[SE94] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66(2):181–199,
September 1994.

[SP17] Raoul Strackx and Frank Piessens. The Heisenberg defense: Proactively
defending SGX enclaves against page-table-based side-channel attacks. arXiv
preprint arXiv:1712.08519, 2017.

[SPLI06] JH. Song, R. Poovendran, J. Lee, and T. Iwata. The AES-CMAC algorithm.
RFC 4493, June 2006.

[SWG+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. Malware guard extension: Using SGX to conceal cache
attacks. In DIMVA, pages 3–24, 2017.

[TSS+03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES implemented on computers with cache. In
CHES, pages 62–76, 2003.

[TTMH02] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Hiyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In International Symposium on Information Theory and Its Applica-
tions, Xi’an, CN, October 2002.

[VBWK+17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In USENIX Security Symposium. USENIX
Association, 2017.

[vdPSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more.
In CT-RSA, pages 3–21, 2015.

F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, et al. 191

[WWB+17] Shuai Wang, Wenhao Wang, Qinkun Bao, Pei Wang, XiaoFeng Wang,
and Dinghao Wu. Binary code retrofitting and hardening using SGX. In
FEAST’17, pages 43–49. ACM, 2017.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In
IEEE Symposium on Security and Privacy (SP), pages 640–656. IEEE, 2015.

[XLCZ17] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. STACCO:
differentially analyzing side-channel traces for detecting SSL/TLS vulnera-
bilities in secure enclaves. In CCS, pages 859–874, 2017.

[YGL+15] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
Mapping the Intel last-level cache. IACR Cryptology ePrint Archive, Report
2015/905, 2015.

	Introduction
	Our Contribution
	Targeted Software and Hardware

	Preliminaries
	Prime+Probe
	Intel SGX
	Bilinear Maps
	Enhanced Privacy ID

	SGX EPID Provisioning and Attestation
	Provisioning and Quoting Enclave Implementations
	Scalar Multiplication in the Quoting Enclave

	Short Scalar Leakage via High Resolution Side Channels
	Controlled Prime+Probe Attack
	Loop Counting Analysis

	A Lattice Attack on EPID
	The Hidden Number Problem
	Conversion to a Hidden Number Problem
	Solving the Hidden Number Problem
	Performance Tradeoffs
	Recovering f

	Conclusions

