
Lend Me Your Ear: Passive Remote Physical Side Channels on PCs

Daniel Genkin
Georgia Tech

genkin@gatech.edu

Noam Nissan
Tel Aviv University

noamnissan@post.tau.ac.il

Roei Schuster
Tel Aviv University and Cornell Tech

rs864@cornell.edu

Eran Tromer
Tel Aviv University and Columbia University

tromer@tau.ac.il

Abstract
We show that built-in sensors in commodity PCs, such as
microphones, inadvertently capture electromagnetic side-
channel leakage from ongoing computation. Moreover, this
information is often conveyed by supposedly-benign chan-
nels such as audio recordings and common Voice-over-IP
applications, even after lossy compression.

Thus, we show, it is possible to conduct physical side-
channel attacks on computation by remote and purely passive
analysis of commonly-shared channels. These attacks require
neither physical proximity (which could be mitigated by dis-
tance and shielding), nor the ability to run code on the target
or configure its hardware. Consequently, we argue, physical
side channels on PCs can no longer be excluded from remote-
attack threat models.

We analyze the computation-dependent leakage captured
by internal microphones, and empirically demonstrate its effi-
cacy for attacks. In one scenario, an attacker steals the secret
ECDSA signing keys of the counterparty in a voice call. In
another, the attacker detects what web page their counterparty
is loading. In the third scenario, a player in the Counter-Strike
online multiplayer game can detect a hidden opponent waiting
in ambush, by analyzing how the 3D rendering done by the
opponent’s computer induces faint but detectable signals into
the opponent’s audio feed.

1 Introduction

Physical side-channel attacks utilize unintended interactions
between computing devices and the physical universe. The
past two decades have seen such attacks become powerful
tools for adversaries seeking to extract otherwise-unavailable
information. Exploiting a plethora of physical effects such
as power consumption [46], electromagnetic emanations [2],
timing [17], or acoustics [29], physical side-channel attacks
have been used to attack cryptographic implementations [26,
47,52,63], screens [27,49], keyboards [6] or even printers [7].

Authors are ordered alphabetically.

While powerful, traditional physical side channel attacks
have a significant limitation: the signals are acquired by ex-
ternal, attacker-controlled measurement equipment. This re-
quires the attacker to gain physical proximity to the target
device for the duration of the attack. Consequently, phys-
ical side channel attacks on PC-class computers are often
considered to be “outside of the threat model” (e.g., laptops
are typically protected and observed by their owners, servers
are typically located in protected data centers, and anyway
physical access to PCs often enables easier attacks).

Recently, several works challenge the need for external
equipment for physical attacks. For embedded devices, it was
shown [30, 36, 61, 64, 66, 79] that an attacker with access
to configurable hardware (e.g., FPGA oscillators, time-delay
converters, or ADCs), can use these components for construct-
ing side-channel sensors, thereby measuring physical emana-
tions. These attacks only consider embedded systems, which
are meant to provide low-level configurable hardware inter-
faces typically not present on PCs. For the PC-class devices,
Platypus [50] leverages local code execution to monitor the
CPU’s power consumption via the RAPL interface on x86 pro-
cessors, enabling power-analysis attacks. Platypus assumes
the presence of on-chip power monitoring, and was recently
blocked by requiring root privileges to access RAPL.

We observe that PC-class computers, such as laptops, nowa-
days include various built-in sensors: microphones, cameras,
WiFi and cellular interfaces, accelerometers, etc. While these
are intended and expected to capture some types of informa-
tion (e.g., the users’ voice or screen orientation), the acquired
analog signals may inadvertently be contaminated with EM
fields within the computer, and might consequently be af-
fected by ongoing computation and its secret arguments.

Thus, we pose the following question:

Can the built-in sensors of PC devices be exploited to
conduct physical side-channel attacks entirely within software,
without any external measurement equipment? If so, how
can unprivileged attacks exploit such information to recover
secrets within computations?

Second, all the above attacks assume that the attacker can

mailto:genkin@gatech.edu
mailto:noamnissan@post.tau.ac.il
mailto:rs864@cornell.edu
mailto:tromer@tau.ac.il

execute code on the target device. We observe that digitized
analog signals from internal secrets are often willingly shared
with others, e.g., voice and video images during Voice over
IP (VoIP) calls. This raises the possibility of passive attacks,
that do not directly access any sensors nor require local code
execution, and only utilize analog signals naturally shared by
common apps. We thus pose the following second question:

Can physical side-channel attacks on PCs be conducted
through common channels established by benign applications
such as VoIP calls, with no physical proximity nor local code
execution? What would it take for potential attacks to mount
such “passive” remote physical attacks?

1.1 Our Contributions
We present a new type of side-channel leakage from PC:
computation-dependent leakage observed through the laptop’s
audio interface. We show that built-in microphones in laptop
computers, while designed to record human voices, are often
capable of inadvertently recording computation-dependent
electromagnetic (EM) leakage, allowing physical side channel
attacks on PCs by purely software means. We show several
exploitation scenarios:
Signal acquisition over VoIP. The computation-dependent
EM leakage present on the laptop’s audio interface is picked
up and conveyed by multiple VoIP applications, despite their
lossy audio compression codecs. Thus, the acquisition of the
target’s EM emanations can be done remotely, via a VoIP
audio conversation over the Internet, without any physical
access, proximity, or code execution on the target machine.
Web browsing activity. Demonstrating the feasibility of re-
mote software-based physical attacks on PCs, we extract infor-
mation about the victim’s web browsing habits, via the audio
signals available on the attacker’s side of a VoIP conversation
with the target. We empirically identify the website rendered
by the target’s browser, from among a set of Alexa’s top-30
most popular websites. Further, we show that ambient noise
in typical home and office settings has little effect on attack
success, demonstrate that distinguishing information exists
even in the presence of varying system conditions such as
background processes, and discuss potential limitations such
as user activity during the attack.
Cryptographic secrets. Next, we demonstrate that this sig-
nal can be exploited for remote extraction of cryptographic
secret keys. Specifically, we extract 521-bit ECDSA signing
keys from Libgcrypt 1.8.4, by analyzing leakage signals nat-
urally sent by the target during a VoIP call with the attacker,
while performing signing operations.
Gaming advantage. Finally, we show that this side channel
can be used to cheat in on-line video games, by detecting the
computational pattern of competing players’ computers over
an open VoIP call. Here, we demonstrate how in a first-person
shooter (i.e., Counter-Strike), a hidden opponent waiting in
ambush can be detected, avoided and sneaked up upon.

Summary of Contributions. To summarize, in this paper
we make the following contributions.
• We show that CPU computation leaks onto audio signals

recorded by a laptop’s own microphone via commonly used
APIs, across multiple laptop models and makes (Section 2).

• We show that the leakage is naturally transmitted via VoIP
communication of common applications (Section 2), allow-
ing for remote exploitation.

• We exploit this leakage to distinguish between websites
open in the target’s browser (Section 4).

• We demonstrate secret-key extraction from Libgcrypt’s
ECDSA implementation (Section 5).

• We demonstrate how to leverage this side channel to cheat
on the popular video game Counter-Strike (Section 6).

1.2 Related Work

Remote timing side channels. Timing attacks exploit the
correlation between the computation’s execution time and its
inputs, allowing attacker to recover secrets by merely observ-
ing the running time of the targeted operation. Such attacks
have been demonstrated to be able to recover private RSA
keys [17, 48], ECDSA signing keys [16] as well as violate
security guarantees by TPM modules [42, 54].
Microarchitectural side channels. Microarchitectural at-
tacks exploit the minute timing variations that result from
contention on internal CPU resources in order to extract secret
information. Assuming a co-location between the attacker’s
code and the target on the same physical machine, microarchi-
tectural attacks have been shown to exploit caches [56,58,78],
branch predictors [1,25] pipeline components [4,5,37]. More
recently, microarchitectural attacks have been extended to in-
clude speculation, breaking nearly all hardware based security
domains [19, 45, 51, 72, 75, 76].
Physical side-channels attacks. As mentioned above, elec-
tronic computing devices also leak secrets through several
physical side channels, including electromagnetic (EM) radia-
tion [2, 24, 26, 49, 63, 74], acoustic emanation [29] and power
consumptions [21, 46, 47, 52]. More recently, [28, 29] showed
that PC devices leak via EM side channels. Finally, “Scream-
ing channels” [18] showed that mixed signal system on chips
(SoCs) inadvertantly transmit information on a processor’s
activity on top of a radio signal, thus allowing key extraction
at a relatively far range of to up to 10 meters.
Software-based physical side channels on embedded de-
vices. Analog-to-digital converters (ADCs) used by embed-
ded hardware to digitize analog inputs were shown to pick
up leakage of information on the execution of a processor
located on the same chip [34, 57]. A recent line of work ex-
plores the possibility of repurposing FPGA fabrics as power
monitors, aiming to pick up side-channel leakage from nearby
circuitry. This approach can extract cryptographic keys from
neighboring FPGAs [32, 64, 66, 79] or CPUs [36, 79] that
share a chip with the attacker one, across different chips that

Figure 1: Experimental setup example. Attacker laptop (left)
and victim laptop (Acer Aspire S3, right). Attacker and victim
are both connected, via WiFi, to a Mumble VoIP chat room
session. The green spectrogram on the attacker conveys the
audio stream received from the victim.

share a board [67], or even via a covert channel across boards
that share a power supply unit [65]. Power signal leakage was
shown to be measurable using commodity [60, 64, 67, 79],
cloud-based [31, 33], and multi-user FPGAs [31, 35, 60].
Software-based physical side channel attacks on complex
devices. Software-based physical side channel attacks are not
entirely exclusive to embedded devices. Indeed, Platypus [50]
shows how an attacker with local code execution can use the
RAPL interface on Intel and AMD processors to monitor the
CPU’s power consumption. Until blocked by OS vendors,
this access allowed attackers with code-execution privileges
to mount software-based power-analysis attacks on CPUs,
breaking cryptographic implementations, derandomizing ker-
nel ASLR, and leaking data from SGX enclaves. Software-
based fault attacks were also demonstrated on SGX enclaves
in Intel CPUs [44, 55] as well as on ARM TrustZone [62, 69].
Acoustic attacks on peripheral devices exploit the sound
generated by mechanical elements of peripherals such as key-
boards [6, 8, 10, 22, 38, 39, 77, 80], printers [7], and computer
screens [27]. Our work differs in that it analyzes signals that
stem from complex CPU computation rather than simple pe-
ripheral I/O. Further, our signals are not truly acoustic (they
include EM emanations captured by microphone circuitry),
are very faint (unlike mechanical noises), and are not trivially
repetitive (unlike screen signals).

2 Characterizing the Leakage Signal

2.1 Observing Local Audio Leakage

To establish leakage through the target’s own audio interface,
we wrote a test program that repeatedly executes a 1 sec loop
of integer multiplications, followed by a 1 sec loop of memory
accesses, with short sleeps inbetween. We ran this program
and recorded the target’s microphone using its internal audio
interface, sampled at 48 Ksample/sec, 16 bits per sample.

Figure 2 shows spectrograms of such recordings across
6 laptops of different models and makes (see Table 1 for

Model Mfg. date CPU RAM Sections
Acer Aspire S3 11/2011 i5-2467M 1.60 GHz 4GB 2,2.3, 4.1, 5
Acer Aspire S3 08/2012 i7-3517U 1.90 GHz 4GB 4.2
Acer Aspire S13 05/2016 i5-6500U 2.5 GHz 8GB 2,4.2
Acer Aspire E5 07/2018 i3-8130U 2.2 GHz 4GB 4.2
Lenovo IdeaPad Z370 mid 2011 i5-2410M 2.3 GHz 4GB 2
Lenovo ThinkPad X270 02/2018 i7-7500U 2.7 GHz 16GB 2
Lenovo ThinkPad X1

Carbon Gen 6 03/2018 i7-8650U 2.1 GHz 16GB 2

Lenovo Yoga 730-13IWL 04/2019 i5-8265U 1.8 GHz 16GB 2

Table 1: Target machines used in this paper

details). While signal quality varies, all spectrograms show
frequency alternations at 1-second intervals, corresponding to
heavy-light CPU-load periods. We deduce that the integrated
audio interface on commodity laptops captures side-channel
information on CPU computation.

2.2 Observing Leakage via VoIP

Having established that CPU-computation information leaks
onto a laptop’s own microphone, we proceed to explore
whether such signals can be acquired remotely over common
VoIP applications. Such applications may reduce the fidelity
of the leakage signals, since they often employ lossy audio
codecs that are psychoacoustically optimized for speech and
music, rather than faint and “unnatural” electronic noise.
Experimental setup. Testing the feasibility of this scenario,
we use the Acer Aspire S13 laptop from Figure 2b as a target,
and setup a VoIP call between the attacker’s machine and the
Acer laptop, using 5 popular VoIP applications: Skype, Zoom,
Google Meet, Mumble, and Discord. We keep the applica-
tions’ default codec choice and compression parameters. All
five of the tested VoIP applications use Opus [70] as their
audio codec, which is considered to be the de-facto standard
codec for real time communication, though each application
uses a slightly different configuration of this codec.

During each call, we repeat the measurements performed
in Figure 2, having the target alternate between CPU-heavy
and memory-heavy workloads. On the attacker’s machine, we
capture the remote participant’s (i.e., target’s) audio through
a VoIP application, via Linux’s audio loopback interface.
Remotely observing the leakage signal. Figure 3 illustrates
our findings. While quality varies, the signals generated by
our test programs are clearly visible in all 5 applications,
albeit with a reduced fidelity due to different low-pass filters,
aggressive compression, and other processing.

2.3 Determining the Leakage Source

Having established the presence of computation-dependent
signal on the laptop’s audio interface, and that it is transmitted
even to remote VoIP parties, we aim to identify the physical
source of this leakage.

(a) Acer Aspire S3 (b) Acer Aspire S13 (c) Lenovo IdeaPad Z370

(d) Lenovo ThinkPad X270 (e) Lenovo ThinkPad X1 Carbon Gen 6 (f) Lenovo Yoga 730-13IWL

Figure 2: Distinguishing between heavy and light CPU loads in recordings of microphones embedded in various laptops. In these
spectrograms, the vertical axis is time in milliseconds (≈12.5 sec total), and the horizontal is frequency (0–24 kHz). The laptop’s
lid is closed in Figure 2d, partially closed in Figures 2e and 2f, and open in the rest.

Acoustic or EM? As microphones are designed to be good
audio receivers, one hypothesis is that the microphone some-
how picks up acoustic emanations from internal circuitry
on the machine’s motherboard [29]. Alternatively, the ADC
within the audio interface somehow picks up conducted or
radiated EM emanations, sampling it as if it were originat-
ing from the outputs of the internal microphone. This may
happen due to EM emanations affecting the transducer, signal-
conditioning electronics (amplifiers and filters) or sampling
electronics (A2D); or due to conducted fluctuations in the
ground or power-supply rails of these electronics.
Experimental setup. To test whether the signal is acous-
tic or EM, we measured the aforementioned Acer S3 using
three different sensors, simultaneously: (1) the laptop’s em-
bedded microphone sampling at 48 Ksample/sec, (2) an EM
probe (Langer LF-R 400 connected to Tracker Pre sound card,
sampling at 48 Ksample/sec), and (3) a consumer-grade mi-
crophone. The latter two use external equipment which is not
connected to the target. Figure 4 shows the combined setup.
Observing the leakage signal. Figure 5 shows the signal
measured via the internal audio interface, and the signal cap-
tured by the EM probe. They exhibit similar copmutation-
dependent leakage (alternating bright and dark areas at around
7.5 kHz marked with red arrows, corresponding to memory
and CPU operations performed by our test program). The

external-microphone signal does not appear to contain this
information. We deduce that the leakage is essentially elec-
tromagnetic, and is picked up by the analog front-end of the
audio interface of the target machine, either via conduction
or via radiation.
Locating the leakage source. To spatially localize the leak-
age source inside the laptop, we visualized the signal from
our EM probe on a spectrogram, while moving it around
near the laptop’s chassis. Though leakage prominently ap-
pears in several locations, we find the strongest signal near
the laptop’s Escape key, in close proximity to both the internal
microphone and to the CPU’s voltage regulation circuits (see
Figure 6). We thus conjecture that the EM signal is emitted
by the CPU’s voltage regulator, and is then picked up by the
analog front-end of the laptop’s internal audio interface.

3 Threat Model

Our key assumption is that the attacker can remotely acquire
digitally-recorded audio, captured by the victim device’s mi-
crophone, while the victim is performing sensitive operations
(e.g., website browsing, cryptographic signing, or game ren-
dering). Such audio may be transmitted, e.g., via VoIP, video
call, or webcasts.

Our experiments on website identification (Section 4) and

(a) Discord (b) Mumble (c) Google Meet

(d) Skype (e) Zoom

Figure 3: Signals from an Acer Aspire S13’s embedded microphone, recorded by the remote party in VoIP and video-chat calls
using various applications. The vertical axis is time (≈12.5 sec total), and the horizontal axis is frequency (0–22.5 kHz).

Figure 4: Measuring the Acer laptop with an EM probe (blue
ring), internal microphone (black dot below blue ring) and
external microphone (black rod above the blue ring).

key extraction (Section 5) make some additional assumptions
that are not necessarily inherent to the attack: an ability to
acquire multiple training traces from the victim’s own device,
and that the victim’s website-visit patterns and conditions are
highly regular. We discuss those extensively in Section 8.
Assumptions we do not make. Unlike most prior physical-
side-channel attacks, we do not assume that the attacker has
physical access or dedicated measurement equipment in prox-
imity to the target. We do not assume that the attacker has
code-execution capabilities on the target device, neither inten-
tional nor via a code exploit.

We also do not assume that the audio signal obtained by the

attacker is free from interference. Our attacker’s audio record-
ings contain environmental acoustic noise such as music and
human speech, internal acoustic noise such as that from the
cooling fan, and interference by other software running on
the target machine (including the operating system’s back-
ground tasks, the VoIP application that connects the victim
and attacker, and other processes).

4 Website Identification

4.1 Distinguishing Animated News Websites
Having established and characterized the computation-
dependent signal on the laptop’s audio interface, we next
show that this leakage can be used to identify websites visited
by the victim. We begin this investigation with websites that
display dynamically-changing on-screen content or videos,
since the animation’s continuous rendering may leave its foot-
print on our leakage signal across the entire span of time when
the website remains displayed by the browser.

We show that leakage signals, captured by a laptop’s built-
in microphone and acquired by the remote party to a VoIP
call, appear consistent across visits to the same website, and
different across visits to different websites. A convolutional
neural network (CNN) can identify which of 14 popular news
websites is being visited with 96% accuracy.
Experimental setup. We used an Acer S3 running Ubuntu
and a Firefox browser (in their default configuration) as the
victim laptop. The target and attacker were connected over

(a) EM probe (b) Self measurement (c) External microphone
Figure 5: The trace from the laptop-embedded microphone in Figure 5b has similar features to the one acquired by an
electromagnetic probe in Figure 5a, which are not present when measuring with an external microphone in Figure 5c.

Figure 6: Proximity of the microphone to the CPU’s voltage
regulator circuit. (Photo from youtu.be/IO9YXLW7FdA.)

WiFi to a home router.We established a VoIP connection using
Mumble (version 1.4.1), a popular open-source VoIP appli-
cation. A Mumble server ran on the attacker machine, and
both the victim and attacker connected to it for the duration
of the experiment. We switched Mumble’s transmission set-
ting from “voice detection” to “continuous”, and set the voice
quality to maximum (96 kbit/sec). On the attacker’s side, we
captured Mumble’s playback of the target’s transmitted audio
by recording the local audio loop-back interface, and used the
recordings for further processing (described below).
Observing websites leakage signal. Figure 7 presents spec-
trograms of the victim’s audio stream while browsing differ-
ent websites, as received by the attacker over Mumble. The
animated content on the websites created very different visual
patterns (e.g., black and green stripes) on the spectrogram.
These patterns were consistent across visits, and corresponded
to the animations (marked in red) on the corresponding web-
site. Computing the FFT spectra of the multiple traces of each
of the three websites (Figure 7, bottom) we can see clear and
consistent differences in several frequency bins.
Data collection. We now aim to perform website distinguish-
ing automatically and at a larger scale. To this end, we col-

lected data using 14 websites from Alexa’s list of most pop-
ular news websites where animation is displayed.1 We used
the Acer S3 laptop with the aforementioned VoIP setup, and
opened each of the websites in a round-robin fashion. For
each visit, we used Selenium’s browser-control automation
to launch a Firefox window directed to the website’s address,
left it open for about 40 seconds, and then closed it. We then
allowed a 5-second sleep period before opening the next page.
On the attacker end, we recorded the incoming audio during
the time the page is open in the victim. We repeated this
process for 250 rounds, generating a total of 3,500 samples.

This setup renders the victim’s hardware/software condi-
tions fairly consistent across the website visits recorded by
the attacker. In Section 4.4 we measure the effect of vary-
ing background processes across visits, and in Section 8 we
discuss how to address real-world victims who may further
deviate from these laboratory conditions.
Signal preprocessing. For each collected signal, we first
extracted a spectrogram using matplotlib’s [41] specgram
function from the mlab module. We used an FFT window
size of 2048, and a Blackman window function with a signal
overlap of 0.12. We computed the log (base 10) of each en-
try and scaled down the resulting spectrogram image using
scikit-image’s [73] transform.resize method, such that
both dimension sizes (time and frequency) are divided by 5.
We then cropped the image to filter out the first 10 seconds,
which contain the loading of the website.
Machine learning methodology. After preprocessing every
sample as above, we split the samples into a training set (85%
of samples) and a test set (15%). To normalize, we divided
all values by the highest value observed in he training set.
We then trained a CNN classifier. CNNs have shown to be
effective for time-series data acquired via a side channel, and
particularly for audio, as they are comparatively accurate,

1Specifically: reuters.com economictimes.indiatimes.com
indianexpress.com news.com.au chainadaily.com.cn
latimes.com nytimes.com forbes.com newsweek.com
bloomberg.com/middleeast foxnews.com abcnews.go.com
euronews.com nationalgeographic.com

youtu.be/IO9YXLW7FdA

(a) msn.com animation (b) forbes.com animation (c) foxnews.com animation

(d) msn.com signal (e) forbes.com signal (f) foxnews.com signal

(g) msn.com FFT (h) forbes.com FFT (i) foxnews.com FFT

Figure 7: Attacker’s signal when victim viewed msn.com, forbes.com and foxnews.com. For spectrograms, the vertical axis is time
(40 sec), and the horizontal axis is frequency (0–24 kHz). The bottom figures show, for each website, the FFTs of all recordings
in a single plot. We subtracted from the measurement the average value, over all websites, of each bin.

robust to noise, and tend to generalize across settings and
devices [27, 68].

Our neural network includes 2 convolutional layers of di-
mensions 4×4 and with 8 and 16 filters respectively, followed
by a 2×2 max-pooling layer, followed by a fully-connected
layer with 256 outputs, followed by a linear layer with dimen-
sions 256×14, followed by a soft-max operation. The first
convolutional layer does a 4×4 stride. The convolutional and
fully-connected layers are followed by ReLU activations. We
used an Adadelta optimizer with learning rate 1, and batch
size 32, and trained for 100 epochs.

For programming, training, and running our classifier, we
used the deep learning library Keras 2.3.0 with Tensorflow
2.0 and CUDA 10.0 / CuDNN 7.4 backends. Training took
about 90 second on using Intel i7-4930K CPU and NVIDIA
GeForce RTX 2080 Ti GPU.
Results. The above model succeeded with value accuracy
of 96%. Figure 8 shows the classifier’s confusion matrix. It

appears that variation in loading time (unusually slow or fast
loading) were the main cause of errors.

4.2 Evaluating on Alexa Top Websites

In Section 4.1, we evaluated our attack on websites that dis-
play animations using the Acer S3 laptop. We now evaluate
a website-classification adversary on Alexa’s unfiltered top
website list, not all of which contain animations, using also
newer hardware. We applied a similar methodology, but en-
hanced trace spectral accuracy by averaging together rows of
the spectrogram (i.e. local spectrum) corresponding to times
where the CPU is active, as follows.
Enhancing spectral accuracy. As some of the websites do
not contain animations, temporal patterns of animation render-
ing are not as discernible to the naked eye as those in Figure 7.
Yet, we expect the ongoing rendering of websites, and execu-
tion of their internal scripts, to leak information about their

Figure 8: Confusion matrix of the website classifier.

content onto the signal spectrum. We observe our signals
contain regular periods of stronger activity, interspersed with
relatively quiescent periods (Figure 7). We conjecture that
stronger periods are ones where the CPU is busy (and ren-
dering the website), whereas silent ones correspond to idle
times (which presumably contain no useful information, as
the website is not being rendered). We filtered out idle times
by (1) choosing the maximal frequency in the signal’s real
FFT spectrum between 5 kHz and 12.5 kHz, whose values
are (we found) indicative of CPU activity, (2) computing the
series of values in the spectrogram bin corresponding to the
chosen frequency, and (3) selecting times where it is above
its median value. Then, we computed the FFT spectra of the
signal during the selected times. Finally, we normalized each
trace by dividing all values by the maximal absolute value ob-
served in the dataset, and subtracted the average of all traces.
This resulted in a 2048-dimension vector for each trace, which
we used as input to our machine-learning classifier.

Experimental setup. We used an Acer S3, an Acer S13,
and an Acer E5 as our victims, and collected traces as in
Section 4.1 from Alexa’s top website list from November
2020. We used 350 30-second traces for each website, this
time without discarding the first 10 seconds. We split the
dataset to train and test sets as in Section 4.1 and trained a
neural network for 1000 epochs on the training set.

Our neural network includes a single 1D convolution layer
with kernel size 4 and 32 filters, followed by 2-way max-
pooling, a 128-neuron fully connected layer, followed by a
softmax layer. Again, we used ReLU activations at all hidden
layers, and an Adadelta optimizer with learning rate 1.

Results. Table 2 summarizes our results for attempting
to distinguish among the 15 and among the 30 top Alexa
websites. While the accuracy is lower than in Section 4.1,
where animation-rendering times contributed to website dis-
tinguishability, it is far above a random-guessing baseline
(6.6% for 15 websites or 3.3% for 30 websites).

Victim website accuracy CPU manufacturing
model count model date
Acer S3 30 40% i7-3517U 08/12
Acer S3 15 50% i7-3517U 08/12
Acer S13 15 69% i5-6500U 05/16
Acer E5 15 65% i3-8130U 07/18

Table 2: Results: Alexa top websites. Accuracy is the correct-
classification rate for a 30-second trace.

Figure 9: Accuracy in mixed recordings of leakage and The
Office, weighted 1−α and α respectively.

4.3 Effect of Ambient Noise
Due to the COVID-19 pandemic, the recordings in Section 4.2
were taken within the corresponding author’s living room,
resulting in the microphone of the target laptop recording
ambient noises from music, speech, TV shows, and other
noises resulting from human activity. Nonetheless, website
identification is still possible, as shown in Table 2.

To more systematically evaluate the performance of our
technique in the presence of different noise levels from a
realistic office environment, we augmented our recordings
by mixing them with audio from the TV show The Office.
We used episodes from seasons 1 and 2, totaling ∼ 10 hours
of playback at the same sample rate as our traces. Using the
Acer S13 dataset from Section 4.2, we mixed each trace with a
30-seconds segment of The Office, chosen at a random offset
from a random episode. Mixing was done via a weighted
average between the office noise and the leakage signal, with
weight α given to the office noise, and weight 1−α given
to the signal, for various values of α ∈ [0,1]. For each α, we
separately applied the methodology of Section 4.2. Figure 9
depicts the result. Even though audible sound is dominated
by The Office’s playback already for α≥ 0.2, accuracy starts
to significantly decrease only for α≥ 0.9. Thus, the attack is
able to recover website information even when the leakage
signal’s amplitude is attenuated tenfold and masked by much
stronger ambient noise.

4.4 Noise From Other Software Processes
Software activity on the target machine is another source of
noise in the attacker’s signals. Our experiments were con-
ducted on a standard installation of the OS, including all of
its background processes. Additional load was induced by the
VoIP software on the target machine, and any auxiliary tasks
executed by the web browser.

Additional applications might induce further interference.
For interactive applications, which are mostly dormant while
awaiting user input, this effect is usually minor. Figure 10

Figure 10: Spectra of 5-minute traces for google.com and
youtube.com (Alexa’s top-2 sites) as output by our procedure
from Section 4.2, with and without background applications
(Thunderbird Mail, Spotify, LibreOffice Writer, and Signal
messenger) running.

illustrates this, showing how spectra of traces recorded while
browsing youtube.com, are distinct from those recorded with
google.com, even with multiple applications running.

5 Cryptographic Key Recovery

Having established the feasibility of website classification
using the laptop’s audio interface, we now demonstrate that
the audio-interface leakage can be used to extract secret keys
from cryptographic computations. Specifically, we show an
attack on the ECDSA-signing implementation of Libgcrypt
1.8.4. We exploit the same side-channel weakness as Min-
erva [42], however, instead of leveraging measurement code
locally running on the target machine, we perform a remote
attack over the Internet, using only the audio information
transmitted during a Mumble VoIP session.

5.1 Mathematical Background

We provide necessary mathematical background on ECDSA,
and its deterministic-k variant, as implemented by Libgcrypt.
ECDSA. The Elliptic-Curve Digital Signature Algorithm
(ECDSA) comprises three functions: key generation, signing,
and signature verification. Given an elliptic curve group of
order n with generator G, key generation is done by having the
signer generate a random integer d ∈ [1,n−1] and compute
Q = [d]G (where [d]G is the scalar-by-point multiplication
inside the group generated by G). Finally, the integer d is the
secret signing key and Q is the public verification key.

Next, to sign a message m, the signer first hashes m, ob-
taining z by truncating the resulting digest into dlog2 ne
bits. The signer than samples a random secret nonce k, and
computes the curve point (x,y) = [k]G, r = x mod n and
s = k−1(z+ r · d) mod n. The output signature is (r,s). To
verify a signature (r,s) corresponding to a message m with a
truncated hash digest z, the verifier computes w= s−1 mod n,
u1 = zw mod n, u2 = rw mod n, (x,y) = [u1]G+[u2]Q and
checks that x≡ y mod n.
ECDSA with deterministic nonces. The requirement that
the nonce k be chosen uniformly at random makes ECDSA

hard to implement securely and to test. Biases and implemen-
tation weaknesses in the random generation of k are often
mathematically exploitable by tools such as lattice reduc-
tion, and have led to numerous vulnerabilities in deployed
systems [13–15, 23, 40].

To mitigate this issue, RFC 6979 [59] (natively supported
by Libgcrypt) suggests a method where the nonce k is gen-
erated deterministically from m and d, using a series of
HMAC applications. In ECDSA with deterministic nonces,
k is uniquely and deterministically determined from m and
d. The idea is that, despite this determinism, RFC 6979 [59]
is ostensibly secure: as long as the attacker does not know
d, they are unable to predict k. Ironically, however, this mit-
igation actually aggravates side-channel weaknesses, as it
allows attackers to amplify their signal-to-noise by using mul-
tiple traces of signing the same message (thus having the
same nonce). Real-world applications often repeatedly sign
the same data, e.g. when signing identical files or generating
S/MIME-signed autoresponse, making such attacks danger-
ous.
Scalar-by-point multiplication. To avoid secret-dependent
runtime variations, Libgcrypt 1.8.4 computes [k]G using a
left-to-right double-and-always-add methodAlgorithm 1. The
bits of k are processed in one main loop which performs a
single double and a single add operation in each iteration
(Lines 5 and 6). As the result of the add operation is only
needed in case the current bit is 1, a constant-time conditional
swap is used to update Q when ki = 1 (Line 7).

Algorithm 1 Libgcrypt’s Double-and-Always-Add Multiplication.

Input: A positive scalar k = kn−1 · · ·k0 and an elliptic-curve point G.
Output: [k]G.

1: procedure DOUBLE-ALWAYS-ADD(k,G)
2: Q← O . O is identity element
3: t← truncate-leading-zeros(k)
4: for i← t−1 to 0 do
5: Q← 2Q . always double Q
6: T ← Q+G
7: Q,T ← ct-swap(Q,T,ki) . swap if ki = 1
8: return Q

A side-channel vulnerability. As observed by Minerva [42],
Libgcrypt 1.8.4 optimizes the computation time of the main
loop (Line 4) of Algorithm 1 by truncating the leading ze-
ros, in case such are present (Algorithm 1, Line 3). Thus, by
attempting to detect the number of loop iterations, we are
able to determine the amount of leading zeros in the nonce k,
allowing us to extract the target’s signing key using the lattice
reduction techniques discussed in Appendix A.

5.2 Observing ECDSA Leakage

We now describe our approach for estimating the number of
loop iterations in Line 3 of Algorithm 1 using audio-interface
leakage signal that was conveyed via a VoIP call.

Figure 11: Running time of Libgcrypt’s signing operation for
different nonce lengths.

Measuring true signing times. First, we ascertain the ex-
istence and quality of the conjectured timing variability. To
this end, we compiled Libgcrypt 1.8.4, and measured the ex-
ecution time of its 521-bit ECDSA signing operation on the
Acer S3 laptop from Section 4 using cycle accurate timers
(i.e., rdtsc). For stability and reproducibility, we clamped
the CPU at its lowest frequency setting (i.e., highest power
saving mode). This avoids disruptive effects such as thermal
throttling resulting from long experimental runs with high
CPU use, and allowed us to obtain consistent benchmarks.

Figure 11 shows the running time of 25,000 signing opera-
tions, as a function of number of leading zeros in the ECDSA
nonce. The running time of Libgcrypt’s signing operation is
linearly inverstly proportional to the number of leading zeros.
This leakage stems in the side-channel vulnerability in Line 3
of Algorithm 1, where the number of iterations of the main
loop is directly influenced by the number of leading zeros in
the signature’s nonce.
Observing the leakage remotely over VoIP. We used the
Acer S3 laptop, and a Mumble session between the target and
attacker’s machine as in Section 4.1. While the attacker was
recording the call on their end, we made the Acer laptop vic-
tim repeatedly execute Libgcrypt ECDSA signing operations.

Figure 12a shows the signal acquired by this attacker. The
ECDSA signing operation manifested as a clear gap in the vi-
sualized signal (marked in red), lasting about 100 msec. Thus,
the timing of the ECDSA computation is observable on the
attacker’s side of the VoIP call.

5.3 ECDSA Key Recovery
Having established the ability to observe ECDSA timings
through VoIP sessions, we proceed to demonstrate the recov-
ery of cryptographic secrets from the observed data.
Experimental setup. Emulating a generic ECDSA target, we
wrote a small wrapper application that listens on a network
connection and receives a message to sign. The wrapper then
uses Libgcrypt 1.8.4 to sign the received message using a fixed
signing key generated beforehand, and sends the resulting
signature to the attacker.

In parallel to our Libgcrypt wrapper, we also initiated a
Mumble session between the Acer laptop and the attacker’s

machine, recording the audio signal corresponding to each
signature operation as received at the attacker’s side. Finally,
to emulate a realistic networking environment where the at-
tacker and target machines are far apart, we routed the traffic
between the target and the attacker machine via a transatlantic
VPN connection with a latency of 160 msec.
Data collection. We recorded audio at the attacker’s side of
the conversation, corresponding to 20,000 different messages
signed on the Acer target. We signed all 20,000 messages
repeatedly in a round-robin fashion until each message was
signed 91 times. Since we do not assume accurate synchro-
nization between the attacker and target, we trigger the signa-
tures on the target at roughly regular intervals of 1 sec, used
the detector described below in order to locate the signature-
dependent leakage in the resulting audio.
Locating the signatures in raw traces. The leakage corre-
sponding to the ECDSA signature manifests as a black region
at around 5–10 kHz (see Figure 12a). We thus applied a band-
pass filter in the range between 7.4–9.8 kHz to our traces,
followed by amplitude demodulation (AM-demod). The re-
sulting signals exhibit distinctly lower values for the duration
of the ECDSA-signing operation, as shown in Figure 12b.
Estimating individual signature duration. For each AM-
demodulated trace produced as above, we estimated the du-
ration of the signature by scanning the trace for a period
of duration of about 100 msec (i.e., one ECDSA signature)
where the it drops below a threshold, as visible in Figure 12b.
This produces a rough, noisy estimate of the signature’s actual
duration (Figure 13).
Amplifiying estimation accuracy. As can be seen in Fig-
ure 13, many of the traces recorded at the attacker’s side
are corrupted by noise, presumably generated from unrelated
events on the target device. To eliminate these noisy traces, we
first grouped the traces by their corresponding message, such
that all traces corresponding to the same message belong to
the same group. As we target deterministic ECDSA where the
nonce is uniquely derived from the key and message, group-
ing by message guarantees that all the traces belonging to
the same group will have the same nonce, and thus the same
duration. Within each group, we estimated signature dura-
tion as follows: we first remove outliers (signature duration
under 80 msec or over 120 msec). We then further cull the
remaining traces by dropping those whose estimated duration
is farthest from the average, until the standard deviation drops
below 0.5 msec. Next, we compute the average estimated du-
ration of the group’s remaining traces. Note that the ability to
amplify accuracy via processing multiple traces of the same
message (and thus the same nonce) stems from RFC 6979’s
determinism, originally introduced as an attack mitigation.
Key extraction. Each group corresponds to a specific mes-
sage and its deterministically-derived nonce, which has a spe-
cific number of leading zeros. To recover the target’s singing
key, we chose the groups whose estimated duration is shortest,
with the hope that these correspond to nonces with at least

(a) Spectrogram (b) AM demodulation

Figure 12: (Left) Spectrogram corresponding to the ECDSA leakage signal,
as recorded on the attacker’s side through a Mumble VoIP session. (Right)
Trace of an ECDSA signature after bandpass filtering and AM demodulation;
the orange line indicates the actual signature duration as measured on the
victim device.

Figure 13: Signature actual duration (x-
axis) and our estimation (y-axis); in red:
linear regression with incline 1.

leading 6 zeros.
Specifically, we chose the 115 groups whose duration es-

timates are the shortest, which resulted in only 4 groups out
of the 115 having 5 (less than 6) leading zeros.2 From these
115 groups, we repeatedly sampled a uniformly-drawn sub-
set of 103 groups and provided it as input to the bkz-enum
solver outlined in Appendix A. Running these in parallel on
an Amazon EC2 c5.9xlarge 36-threads instance, the correct
key was extracted within 20 minutes, at a total computational
cost of less than $1.3

Parametrization. An important attack parameter is the num-
ber of traces acquired. The required number of groups (i.e.,
distinct signatures) is implied by the underlying lattice-based
algorithm; but the number of traces per group depends on
the leakage and our ability to analyze it to identify signatures
with 5 leading zeros. In the above attack, we used 91 traces
per signature. Figure 14 shows the effect of varying this pa-
rameter: if group size is significantly decreased, an excessive
number of false positives occur, i.e., groups are incorrectly
detected as having 5 leading zeros, resulting in failure of the
lattice-based algorithm.

6 Leakage in Multiplayer Games: the Killer
Application

We investigate another attack scenario: online multiplayer
games, where players are incentivized to learn the hidden
locations and viewpoints of their opponents. We show how
a player can use an audio signal from a VoIP call with an-
other player to detect an ambush, giving them a significant
advantage. Unlike other game exploits, this is a purely pas-

2We learned this information in hindsight, using the ground truth and
after our attack was complete.

3When performing a longer trial, we saw the solver succeed in extracting
the key for 28 out of 360 random subset.

Figure 14: Number of false-positive signatures among the 115
whose duration estimates were shortest, as a function of the
number of traces per group (used to estimate the duration).

sive attack which does not require modifying the game’s code
or its runtime environment, and thus cannot be mitigated by
standard game anti-cheat measures.
Counter-Strike (CS). CS is one of the best-known and
commercially-successful online first-person-shooter games
(e.g., over 2019 it maintained an average of over 10,000 con-
current online players on its official gaming hub Steam. CS
is also a textbook example of an e-sport, as a game competi-
tively in an orchestrated league involving millions of dollars
worth of prizes and millions of viewers watching livestreamed
games. The entire e-sport industry has surpassed $10B in
value , and much like in traditional sports, e-sport games face
threats of misconduct for players’ performance enhancement,
and these prominently include exploitation technical vulnera-
bilities in the game software, i.e., “cheats”.
CS: technical background. In CS, every game session has
a 3D virtual environment (map), and each player controls a
person-like avatar located on it, whose purpose is to “kill”
other avatars. CS simulates a close-quarters combat scenario
where players can gain tactical advantage by using the map’s
layout, such as using inanimate objects (like walls and cars)
for taking shelter and laying ambush.

CS works in a distributed client-server model: anyone can
run a server node, and publish it on-line for other players to
join. To play against each other, players must connect to the

same server. The game state is synchronized between the
server and clients as follows: each client periodically sends its
avatar’s location and viewing angle to the server. Clients also
get updates from the server about all existing objects in the
avatar’s frustum, i.e., their field of vision, which is a cone-like
area on the map. The player’s view is then rendered locally
on the client, using this information.

Often, objects are occluded by other objects in the avatar’s
view, and are thus invisible to the player. However, as long
as an object is in the frustum and regardless of occlusion,
the client receives information about it and includes it in
its rendering process; the occlusion computation is handled
within the client’s local rendering pipeline. The client’s local
processing is thus affected by all objects within the frustum.

It is common for CS players to maintain an open audio
channel with other players on the map via VoIP software, a
popular choice of which is Mumble.
Frustum content leaks to opponents via audio. It follows
from the above that each player’s physical processor behavior
is affected by the objects within that player’s frustum, like
other players’ avatars, whether or not those objects occluded.
Thus, audio recordings from a client’s built-in microphone,
transmitted over VoIP, might leak information about their
frustum’s content.
A simple attack: camper detection. In this scenario, the
attacker cheats by detecting whether an opponent is camping,
i.e. taking shelter and hiding in ambush, in a particular spot
(note that CS maps typically have well-known spots that are
especially suitable for camping. If the opponent is camping
in the suspected spot, then their likely frustum is known to
the attacker. The attacker can attempt to detect the ambush
by moving its avatar to enter and exit the camper’s supposed
frustum in a place that the enemy does not have a direct line
of sight to (for example, behind a wall), and examining the
audio signal from their environment. Whenever the attacker
enters/exits the frustum, the camper’s processors starts/stops
including the attacker’s avatar in the rendering pipeline. The
resulting effect on the camper’s processor is detectable by
the attacker, by observing the spectrum of the audio signal
transmitted by the camper over Mumble. Figure 15 illustrates
this. Otherwise, if the attacker is not camping in the suspected
location, it is unlikely that the audio signal will be correlated
with the attacker’s movements.
CS attack scenario. The attack operates in a scenario where
CS opponents have a VoIP channel between them (as is com-
mon in CS “player versus player” games). No physical prox-
imity is assumed. This attack is applicable when the target
player is carrying out the “camper” strategy, i.e., stays mostly
still and fixes their gunsight on a point where their opponent
(the attacker) is expected to emerge.
Simulating the attack in a CS battle.4 For this experiment
(illustrated by the aforementioned Figure 15, we simulated a

4We have disclosed the details of this attack to the game’s developer.

“camper” player who plays CS on an Acer S3 laptop that runs
Ubuntu 20.04. Our camper and attacker play a one-on-one
game of Counter-Strike on a third-party server (hosted on the
Internet) with VAC turned on. They also keep an open Mum-
ble audio channel.To force the Mumble connection to traverse
the Internet (even though both machines were physically in
our lab), we connected both machines to a cloud hosted VPN
server by OpenVPN.

These players joined one of CS’s standard gaming are-
nas named cs-assault which features a truck with a cargo
container. Our attacker is inside the cargo container, and the
camper could be lurking on either side of the truck. In this
classic scenario, the attacker would normally not know which
side of the track to face when emerging from the container; if
they guess wrong, they will be an easy target as the camper is
ready to shoot them right after their next step. To discover the
camper’s location, our attacker repeatedly moves to the right
and to the left, and detects which of the movement causes
a change in the VoIP audio sent by the camper, which indi-
cates entering into their frustum. See Figure 16. Our attacker
successfully detects the camper’s ambush on the right, and
thus decided to exit the truck and go left, circumvent the
truck all the way to the right side and “kill” their opponent’s
avatar from behind. We refer the interested reader to the video
recording of this demo5. We have also tested other maps and
camping situations with different geometries, with similar
results.

The attack circumvents standard mitigations. A well-
known cheating technique in multiplayer games is manipula-
tion of client code. For example, the CS client can be modified
to directly extract and display other players’ avatars, regard-
less of occlusions. This requires either modifying the game’s
executables, installing an extension plugin, or attaching a de-
bugger to the game process. Such attacks can sometimes be
mitigated by attestation mechanisms such as SGX [9]. The
game’s developer, Valve, has integrated into it a mechanism
called Valve Anti Cheat (VAC), which detects cheats based
on process memory signatures and anomalies. VAC-enabled
game servers send periodic challenges to game clients, which
must then answer the challenge by revealing relevant informa-
tion about the process memory (or risk raising an anomaly).
Cheating players are permanently banned from playing in
such servers [71]. Cheat developers adapt to VAC’s signa-
tures by modifying their code, resulting in a repetitive cat-
and-mouse dynamic. Our attack circumvents VAC entirely,
since it does not require any modification to the game envi-
ronment: nothing runs on any of the game client computers
other than the unmodified game and a VoIP application. The
signal analysis does not have any direct interaction with the
game process, and can be executed on a separate machine.

5https://vimeo.com/468851232

https://vimeo.com/468851232

(a) Attacker is outside the frustum (b) Attacker is inside the frustum

Figure 15: Counter-Strike camper detection via side channel leakage: when the attacker is within the camper’s frustum, rendering
on the camper’s computer results in visible differences in the spectrogram. Thus, by entering the frustum and examining the
signal, the attacker can detect the ambush, while neither seeing nor being seen by the camper.

7 Countermeasures

Signal-generating hardware. As discussed in Section 2.3,
the leakage we observed originates in electromagnetic em-
anations. These can be attenuated at the hardware level by
better shielding of radiation and filtering of currents and volt-
ages; though this is difficult and expensive to achieve at the
level of power-hungry components like CPUs. It is possible
that in some other computers, acoustic leakage occurs as well
(e.g., of the effects reported in [29]), in which case acoustic
blocking or baffling would also be required, raising costs and
posing challenges to air flow for cooling.
Sensors. Another approach is to protect the sensors and as-
sociated circuitry from leakage. For example, noise can be
picked up by microphone’s amplifier and ADC, due to EM
emanations impinging on their ground and power connec-
tions. By shielding and filtering of these connections, signals
can be attenuated. As these are low-power components, this
can be done relatively inexpensively (as done in high-fidelity
audio interfaces), and moreover provide the side benefit of
improving signal quality also for normal audio recording use.
Software. Standard techniques for writing leakage-resilient
software are applicable: most crucially constant-time algo-
rithms for processing sensitive data [11, 43], but also finer-
granularity DPA protections (e.g., masking) [20, 53].
Signal processing. Even if leakage-bearing signals have been
acquired and digitized by the sensor, the undesired signal can
be intentionally degraded. Crude methods include adding
sufficient digital noise to reduce signal-to-noise ratio below
usefulness for the attacker, or low-pass filtering of the signal
to remove the high frequencies where the leakage is most
salient. We pose the open question of finding good tradeoffs
between attenuation (or other disruption) of the undesirable
leakage signal vs. preservation of the desirable signals (e.g.,
under psychoacoustic measures).
Data sharing. Lastly, in the absence of adequate mitigations
at the aforementioned levels, one should assume that sensor

recordings are no less sensitive than any computation (or
computed-upon data) that occurred locally during the record-
ing. Their distribution should be limited accordingly. This
would also mitigate related attacks on peripherals, such as
acoustically-captured keystrokes [6] or screen content [27].

8 Limitations and Future Work
Additional sensors and devices. We pose an open question
the exploration of computational leakage captured by other
common sensors. For example, webcam sensors contain an
array of sensitive analog-to-digital converters, which can be
affected by EM emanations, and the resulting videos are often
shared as recordings or video calls. Likewise, investigating
the presence of similar leakage on other device categories,
such as phones and tablets (which have even more sensors),
is an important open question.
Attacking additional targets. The software targets consid-
ered in this work are not adequately hardened against physical
side channel attacks, and appear to not have been designed
with such threat model in mind. Thus, our work should be
viewed as a feasibility result, establishing the possibility of
attacking PCs using internal analog sensors. We leave the task
of attacking side channel harden primitives (e.g., AES-NI) to
future work. Finally, our work side steps the low sampling rate
provided by internal audio interfaces, by heavily relying on
the attacker’s ability to average multiple traces corresponding
to the same leakage. While this is possible in some cases (e.g.,
website distinguishing or deterministic-ECDSA), we leave
the task of attacking randomized primitives, such as regular
(EC)DSA or (EC)DH, to future work.
Cross-device training/testing. Across our experiments we
used the same device for collecting training and testing sets.
This simulates a scenario where the attacker has access to
the victim device for collecting traces. We expect our trained
models to generalize across different physical devices, yet
achieving this would require training on a cluster of multiple

(a) Attacker’s avatar (back of truck) is outside the frustum of the victim (outside the truck).

(b) Attacker’s avatar stepped to the front of the truck, entering the victim’s frustum. This causes a noticeable change in the signal.

(c) Attacker’s avatar is again out of the victim’s frustum. The signal is similar to the first case.

Figure 16: Counter-Strike attack: a side-channel attacker (avatar inside truck) detects an ambush by a camper (outside truck).
Left: spectator’s view. Center: attacker’s view. Right: signal acquired by attacker.

devices of the same model [27] (the attacker must still know
the model). Operating on a limited budget, we preferred al-
locating it for acquiring a diverse set of devices, aiming to
show the prevalence of the leakage, rather than focusing on
specific device models. We acknowledge this limitation, leave
this task to future work.

Practicability of website distinguishing. While our results
in Section 4 show that the leakage signal can be used to dif-
ferentiate between websites even in the presence of ample
ambient noise, there remain important limitations a real-world
attacker would have to address. First, the attacker’s accuracy
varies depending on the victim’s device and the set of websites
being distinguished (see Table 2). Second, our experiments
mostly model a system where each website visit is performed
under fairly consistent conditions, i.e., without having other
websites open and while only having the OS’s default back-

ground activities running. While we observe that spectra do
remain distinguishable even in the presence of extraneous ac-
tivity (Figure 10), we leave the task of addressing these limita-
tions to future work. Third, we assume the attacker can record
for at least 40 seconds while the website is in the foreground,
and that the user performs no activity such as scrolling or
switching tabs during the recording. While the attacker might
try to detect and discard audio traces that include user activity
via the recorded audio stream (e.g., mouse/keyboard clicks),
we leave this issue as a future research question. Finally, the
demonstrated attack assumes that the attacker obtains a train-
ing dataset which corresponds to the contents of the websites
actually rendered by the victim. In practice however, websites’
contents often changes over time, geographical location, or
user configuration (e.g., dark theme and ad blocking). All of
these affect the leakage signal, reducing similarity with the

leakage profiled by the attacker, thereby reducing the attack’s
accuracy. We leave the characterization and mitigation of
these effects to future efforts.

Acknowledgments
This work was supported by the Air Force Office of Scientific
Research (AFOSR) under award number FA9550-20-1-0425;
by the Blavatnik Interdisciplinary Cyber Research Center
(ICRC); by the Check Point Institute for Information Security;
by Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory (AFRL) under contracts
FA8750-19-C-0531 and HR001120C0087; by the Israeli Min-
istry of Science and Technology; by the National Science
Foundation under grant CNS-1954712; and gifts from Intel,
AMD, and VMware. Any opinions, findings, and conclusions
or recommendations expressed are those of the authors and
do not necessarily reflect the views of AFOSR, AFRL, NSF,
the U.S. Government or other sponsors.

References

[1] Acıiçmez, O., Koç, Ç.K., Seifert, J.P.: Predicting secret
keys via branch prediction. In: CT-RSA 2007

[2] Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.:
The EM side-channel(s). In: CHES 2002

[3] Albrecht, M.R., Heninger, N.: On bounded distance
decoding with predicate: Breaking the "lattice barrier"
for the hidden number problem. IACR Cryptol. ePrint
Arch. (2020)

[4] Aldaya, A.C., Brumley, B.B., ul Hassan, S., García, C.P.,
Tuveri, N.: Port contention for fun and profit. In: IEEE
S&P Symposium 2019

[5] Andrysco, M., Kohlbrenner, D., Mowery, K., Jhala, R.,
Lerner, S., Shacham, H.: On subnormal floating point
and abnormal timing. In: IEEE S&P Symposium 2015

[6] Asonov, D., Agrawal, R.: Keyboard acoustic emanations.
In: IEEE S&P Symposium 2004

[7] Backes, M., Dürmuth, M., Gerling, S., Pinkal, M.,
Sporleder, C.: Acoustic side-channel attacks on printers.
In: USENIX Security 2010

[8] Balzarotti, D., Cova, M., Vigna, G.: Clearshot: Eaves-
dropping on keyboard input from video. In: IEEE S&P
Symposium 2008

[9] Bauman, E., Lin, Z.: A case for protecting computer
games with sgx. In: SysTEX 2016

[10] Berger, Y., Wool, A., Yeredor, A.: Dictionary attacks
using keyboard acoustic emanations. In: CCS 2006

[11] Bernstein, D.J., Lange, T., Schwabe, P.: The security im-
pact of a new cryptographic library. In: LATINCRYPT
2012

[12] Boneh, D., Venkatesan, R.: Hardness of computing the
most significant bits of secret keys in diffie-hellman and
related schemes. In: CRYPTO 1996

[13] Bos, J.W., Halderman, J.A., Heninger, N., Moore, J.,
Naehrig, M., Wustrow, E.: Elliptic curve cryptography
in practice. In: FC 2014

[14] Breitner, J., Heninger, N.: Biased nonce sense: Lattice at-
tacks against weak ecdsa signatures in cryptocurrencies.
In: FC 2019. (2019)

[15] Brengel, M., Rossow, C.: Identifying key leakage of
Bitcoin users. In: RAID 2018

[16] Brumley, B.B., Tuveri, N.: Remote timing attacks are
still practical. In: ESORICS 2011

[17] Brumley, D., Boneh, D.: Remote timing attacks are
practical. Computer Networks (2005)

[18] Camurati, G., Poeplau, S., Muench, M., Hayes, T., Fran-
cillon, A.: Screaming channels: When electromagnetic
side channels meet radio transceivers. In: CCS 2018

[19] Canella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M.,
Minkin, M., Moghimi, D., Piessens, F., Schwarz, M.,
Sunar, B., Van Bulck, J., Yarom, Y.: Fallout: Leaking
data on meltdown-resistant cpus. In: CCS 2019

[20] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards
sound approaches to counteract power-analysis attacks.
In: CRYPTO 1999

[21] Clark, S.S., Mustafa, H., Ransford, B., Sorber, J., Fu,
K., Xu, W.: Current events: Identifying webpages by
tapping the electrical outlet. In: ESORICS 2013

[22] Compagno, A., Conti, M., Lain, D., Tsudik, G.: Don’t
Skype & type! acoustic eavesdropping in voice-over-ip.
In: ASIACCS 2017

[23] Courtois, N.T., Valsorda, F., Emirdag, P.: Private Key Re-
covery Combination Attacks: On Extreme Fragility of
Popular Bitcoin Key Management, Wallet and Cold Stor-
age Solutions in Presence of Poor RNG Events. (2014)

[24] Enev, M., Gupta, S., Kohno, T., Patel, S.N.: Televisions,
video privacy, and powerline electromagnetic interfer-
ence. In: CCS 2011

[25] Evtyushkin, D., Riley, R., Abu-Ghazaleh, N.C., ECE,
Ponomarev, D.: Branchscope: A new side-channel at-
tack on directional branch predictor. ACM SIGPLAN
Notices (2018)

[26] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic
analysis: concrete results. In: CHES 2001

[27] Genkin, D., Pattani, M., Schuster, R., Tromer, E.: Synes-
thesia: Detecting screen content via remote acoustic side
channels. In: IEEE S&P Symposium 2019

[28] Genkin, D., Pipman, I., Tromer, E.: Get your hands off
my laptop: Physical side-channel key-extraction attacks
on pcs. Journal of Cryptographic Engineering (2015)

[29] Genkin, D., Shamir, A., Tromer, E.: RSA key extraction
via low-bandwidth acoustic cryptanalysis. In: CRYPTO
2014

[30] Giechaskiel, I., Eguro, K., Rasmussen, K.B.: Leakier
wires: Exploiting FPGA long wires for covert-and side-
channel attacks. TRETS (2019)

[31] Giechaskiel, I., Rasmussen, K., Szefer, J.: Reading be-
tween the dies: Cross-slr covert channels on multi-tenant
cloud FPGAs. In: ICCD 2019

[32] Giechaskiel, I., Rasmussen, K.B., Eguro, K.: Leaky
wires: Information leakage and covert communication
between FPGA long wires. In: ASIACCS 2018

[33] Giechaskiel, I., Rasmussen, K.B., Szefer, J.: Measuring
long wire leakage with ring oscillators in cloud FPGAs.
In: FPL 2019

[34] Gnad, D.R., Krautter, J., Tahoori, M.B.: Leaky noise:
new side-channel attack vectors in mixed-signal iot de-
vices. CHES 2019

[35] Gnad, D.R., Nguyen, C.D.K., Gillani, S.H., Tahoori,
M.B.: Voltage-based covert channels in multi-tenant
FPGAs. IACR Cryptol. ePrint Arch. (2019)

[36] Gravellier, J., Dutertre, J.M., Teglia, Y., Moundi, P.L.,
Olivier, F.: Remote side-channel attacks on heteroge-
neous soc. In: CARDIS. (2019)

[37] Großschädl, J., Oswald, E., Page, D., Tunstall, M.: Side-
channel analysis of cryptographic software via early-
terminating multiplications. In: ICISC 2009

[38] Halevi, T., Saxena, N.: A closer look at keyboard acous-
tic emanations: random passwords, typing styles and
decoding techniques. In: CCS 2012

[39] Halevi, T., Saxena, N.: Keyboard acoustic side channel
attacks: exploring realistic and security-sensitive sce-
narios. International Journal of Information Security
(2015)

[40] Heninger, N., Durumeric, Z., Wustrow, E., Halderman,
J.A.: Mining your ps and qs: Detection of widespread
weak keys in network devices. In: USENIX Security
2012

[41] Hunter, J.D.: Matplotlib: A 2D graphics environment.
Computing in science & engineering (2007)

[42] Jancar, J., Sedlacek, V., Svenda, P., Sys, M.: Minerva:
The curse of ECDSA nonces systematic analysis of lat-
tice attacks on noisy leakage of bit-length of ECDSA
nonces. CHES 2020

[43] Käsper, E., Schwabe, P.: Faster and timing-attack resis-
tant AES-GCM. In: CHES 2009

[44] Kenjar, Z., Frassetto, T., Gens, D., Franz, M., Sadeghi,
A.R.: V0ltpwn: Attacking x86 processor integrity from
software. In: USENIX Security 2020

[45] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D.,
Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher,
T., et al.: Spectre attacks: Exploiting speculative execu-
tion. In: IEEE S&P Symposium 2019

[46] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis.
In: CRYPTO 1999

[47] Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction
to differential power analysis. Journal of Cryptographic
Engineering (2011)

[48] Kocher, P.C.: Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In: CRYPTO
1996

[49] Kuhn, M.G.: Compromising emanations: eavesdropping
risks of computer displays. PhD thesis, University of
Cambridge (2003) Technical Report UCAM-CL-TR-
577, PhD dissertation.

[50] Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon,
C., Canella, C., Gruss, D.: PLATYPUS: Software-based
Power Side-Channel Attacks on x86. In: IEEE S&P
Symposium 2021

[51] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W.,
Fogh, A., Horn, J., Mangard, S., Kocher, P., Genkin, D.,
Yarom, Y., Hamburg, M.: Meltdown: Reading kernel
memory from user space. In: 27th USENIX Security
Symposium (USENIX Security 18)

[52] Mangard, S., Oswald, E., Popp, T.: Power analysis at-
tacks: Revealing the secrets of smart cards. Springer
Science & Business Media (2007)

[53] Messerges, T.S.: Securing the AES finalists against
power analysis attacks. In: FSE. (2000)

[54] Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N.:
Tpm-fail:TPM meets timing and lattice attacks. In:
USENIX Security 2020

[55] Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J.,
Gruss, D., Piessens, F.: Plundervolt: Software-based
fault injection attacks against intel sgx. In: IEEE S&P
Symposium 2020

[56] Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and
countermeasures: the case of aes. In: CT-RSA 2006

[57] O’Flynn, C., Dewar, A.: On-device power analysis
across hardware security domains. CHES 2019

[58] Percival, C.: Cache missing for fun and profit. Pre-
sented at BSDCan. http://www.daemonology.net/
hyperthreading-considered-harmful (2005)

[59] Pornin, T.: Deterministic Usage of the Digital Sig-
nature Algorithm (DSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA), RFC 6979. https:
//tools.ietf.org/html/rfc6979 (August 2013)

[60] Provelengios, G., Holcomb, D., Tessier, R.: Character-
izing power distribution attacks in multi-user FPGA
environments. In: FPL 2019

[61] Provelengios, G., Ramesh, C., Patil, S.B., Eguro, K.,
Tessier, R., Holcomb, D.: Characterization of long wire
data leakage in deep submicron FPGAs. In: FPGA
Conference 2019

[62] Qiu, P., Wang, D., Lyu, Y., Qu, G.: Voltjockey: Breaching
trustzone by software-controlled voltage manipulation
over multi-core frequencies. In Cavallaro, L., Kinder, J.,
Wang, X., Katz, J., eds.: CCS 2019

[63] Quisquater, J.J., Samyde, D.: Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards.
In: E-smart 2001. (2001)

[64] Ramesh, C., Patil, S.B., Dhanuskodi, S.N., Provelengios,
G., Pillement, S., Holcomb, D., Tessier, R.: FPGA side
channel attacks without physical access. In: FCCM
2018

[65] Rasmussen, K., Giechaskiel, I., Szefer, J.: Capsule:
Cross-FPGA covert-channel attacks through power sup-
ply unit leakage. In: IEEE S&P Symposium 2020

[66] Schellenberg, F., Gnad, D.R., Moradi, A., Tahoori, M.B.:
An inside job: Remote power analysis attacks on FPGAs.
In: DATE 2018

[67] Schellenberg, F., Gnad, D.R., Moradi, A., Tahoori, M.B.:
Remote inter-chip power analysis side-channel attacks
at board-level. In: ICCAD 2018

[68] Schuster, R., Shmatikov, V., Tromer, E.: Beauty and the
burst: Remote identification of encrypted video streams.
In: USENIX Security 2017

[69] Tang, A., Sethumadhavan, S., Stolfo, S.: CLKSCREW:
Exposing the perils of security-oblivious energy man-
agement. In: USENIX Security 2017

[70] Valin, J., Maxwell, G., Terriberry, T.B., Vos, K.: High-
Quality, Low-Delay Music Coding in the Opus Codec.
(2016)

[71] Valve: Valve anti-cheat system. https://support.
steampowered.com/kb/7849-RADZ-6869/ accessed:
August 2020.

[72] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D.,
Kasikci, B., Piessens, F., Silberstein, M., Wenisch, T.F.,
Yarom, Y., Strackx, R.: Foreshadow: Extracting the keys
to the intel SGX kingdom with transient out-of-order ex-
ecution. In: USENIX Security 2018. (2018) 991–1008

[73] Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu,
T.: scikit-image: image processing in python. PeerJ
(2014)

[74] Van Eck, W.: Electromagnetic radiation from video
display units: An eavesdropping risk? Computers &
Security (1985)

[75] van Schaik, S., Milburn, A., Österlund, S., Frigo, P.,
Maisuradze, G., Razavi, K., Bos, H., Giuffrida, C.:
RIDL: Rogue in-flight data load. In: IEEE S&P Sympo-
sium 2019

[76] van Schaik, S., Minkin, M., Kwong, A., Genkin, D.,
Yarom, Y.: Cacheout: Leaking data on intel cpus via
cache evictions (2020)

[77] Vuagnoux, M., Pasini, S.: Compromising Electromag-
netic Emanations of Wired and Wireless Keyboards. In:
USENIX Security 2009

[78] Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high res-
olution, low noise, L3 cache side-channel attack. In:
USENIX Security 2014

[79] Zhao, M., Suh, G.E.: FPGA-based remote power side-
channel attacks. In: IEEE S&P Symposium 2018

[80] Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic
emanations revisited. TISSEC 2009

A Using Partial Information to Extract Keys

We employ the key-recovery approach of Minerva [42] (itself
based on [12]) with the recent improvements of [3]. In the
following, we briefly review the algorithmic approach.

Suppose we obtain a set of signatures each of which has a
short nonce, i.e., k that has many leading zeros. The nonce

http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://support.steampowered.com/kb/7849-RADZ-6869/
https://support.steampowered.com/kb/7849-RADZ-6869/

are secrets, but we will be able to identify the signing oper-
ations that involve short nonces using the timing variability
discussed above, observed through the side channel. Given
such a set of signatures, extracting the ECDSA secret key is
reduced to a Hidden Number Problem:
HNP. The Hidden Number Problem (HNP) [12] is: find a
secret α∈Zp given a set of integer pairs {(ti,ui)}i and leakage
parameter l such that |αti−ui|p < p/2l for each i. Here, | · |p
means reducing modulo p into the range [0, p−1].
From ECDSA leakage to HNP [12]. Suppose we are given
a set of m signed messages. For each, we know the message M
with hash digest z and the signature (r,s). Moreover, suppose
that through side-channel observations, we learned that all of
these signatures have a short nonce: the l leading bits of k are
zero (for some small fixed l to be chosen later). Rearranging
the formula of s from Section 5.1 we get rs−1d + zs−1 = k
mod n. From the leakage information we know that k < n/2l .
Letting t = rs−1 and u = −zs−1, we achieve the inequality
|t · d− u|n = k < n/2l as in the definition of HNP. We take
the set (ui, ti) as our input to a HNP problem with the secret
key d as the hidden number.

At this point we diverge from [12,42] and use the improved
approach described and implemented in [3], which can practi-
cally succeed using a smaller set signatures.
Lattices. Given a matrix B in Rd with rows b1, ...,bd we
define the lattice spanned by B to be the discrete subgroup:
Λ(B) = {vibi|vi ∈ Z}
SVP. The Shortest Vector Problem (SVP) with predicate
(uSVP f (·)) [3] is: given a lattice Λ and a predicate f on vec-
tors, find the shortest nonzero vector v ∈Λ such that f (v) = 1.
This is a computationally difficult problem in the general
case, but [3] offers heuristic algorithms that are practical in
our parameter setting.
From HNP to uSVP with predicate [3]. Consider the lattice
generated by the following base:

n 0 0 0 0
0 n · · · 0 0 0

...
. . .

...
0 0 · · · n
t1 t2 · · · tm 1/2l 0
u1 u2 · · · um 0 n/2l

This lattice contains the point v= (k1,k2, ...,km,d/2l ,−n/2l)
which can by obtained by multiplying the second to last ba-
sis vector by the secret key, subtracting the last vector and
adding other rows for the correct modulus. This vector has
the Euclidean norm that is less than

√
m+2 · n/2l . Given

this vector, the secret key can be extracted from the second
to last entry. We use this lattice basis as input to the solver.
For the predicate we take a function that checks whether a
vector reveals the secret key. Note that (0,0, ...,0,2l ,0) is also
a point in the lattice and shorter than v, so using a simple SVP
solver might not give us the desired result. This lattice is then
improved in two ways, described in the following.
Assuming a larger leakage. The solver’s success probability

Figure 17: Performance of the uSVP with predicate solver, for
various number of signatures and number of leading zeros.

can be improved in a way that is equivalent to learning one
extra bit for each nonce. Notice that our goal is to construct
a lattice such that the values ki are small in absolute value to
create a short vector, but we have 0≤ ki ≤ 2l and ti ·d−ui−
χi ·n = k for each i and some χi ∈ Z. This means:

|t ·d−u−n/2l+1−χi ·n|= |k−n/2l+1|< n/2l+1

We set u′i = ui+n/2l+1 and k′i = ki−n/2l+1 which gives us a
lattice basis with a point with norm less than

√
m+2 ·n/2l+1,

which is shorter and thus easier to find by the solver.
Eliminating the secret key. This optimization gives us a
reduction from our previous lattice into a lattice of dimension
smaller by 1: notice we have m equations of the form ti ·
d−u′i = k′i mod n for each 1 ≤ i ≤ m. Isolating d from the
equations allows us to compare between different equations.
Choosing the last one, we get that for every 1 ≤ i ≤ m− 1
we have t−1

i · (ui + ki) = t−1
m · (um + km) mod n. Rearranging

yields: u′i− ti · t−1
m ·u′m + ki = ti · t−1

m · km mod n. We set u′′ =
u′−ti ·t−1

m ·u′m and t ′′ = ti ·t−1
m and we get a new HNP instance

with m−1 equations and k′m as the hidden number. We now
create a lattice basis as before:

n 0 0 0 0
0 n · · · 0 0 0

...
. . .

...
0 0 · · · n
t ′′1 t ′′2 · · · t ′′m 1 0
u′′1 u′′2 · · · u′′m 0 n/2l+1

This lattice contains the point (k′1,k

′
2, ...,k

′
m,−n/2l) which

is obtained by multiplying the second to last basis vector to k′′m
and subtracting the last vector. This vector has norm of less
than
√

m+1 ·n/2l+1. This lattice, with the same predicate, is
then fed to the aforementioned solver [3] to extract the key.
Solver performance. We ran the solver on generated data
to estimate its performance under different set of parameters.
Figure 17 shows the success rate on the values that were
tested. We chose 103 signatures with 6 leading zeros or more
as our target amount of information needed to accumulate in
order to extract the secret key.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Characterizing the Leakage Signal
	2.1 Observing Local Audio Leakage
	2.2 Observing Leakage via VoIP
	2.3 Determining the Leakage Source

	3 Threat Model
	4 Website Identification
	4.1 Distinguishing Animated News Websites
	4.2 Evaluating on Alexa Top Websites
	4.3 Effect of Ambient Noise
	4.4 Noise From Other Software Processes

	5 Cryptographic Key Recovery
	5.1 Mathematical Background
	5.2 Observing ECDSA Leakage
	5.3 ECDSA Key Recovery

	6 Leakage in Multiplayer Games: the Killer Application
	7 Countermeasures
	8 Limitations and Future Work
	Acknowledgments
	References
	A Using Partial Information to Extract Keys

