
USB Snooping Made Easy: Crosstalk Leakage Attacks on USB Hubs

Yang Su
University of Adelaide

yang.su01@adelaide.edu.au

Daniel Genkin
University of Pennsylvania and

University of Maryland
danielg3@cis.upenn.edu

Damith Ranasinghe
University of Adelaide

damith.ranasinghe@adelaide.edu.au

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

Abstract
The Universal Serial Bus (USB) is the most prominent
interface for connecting peripheral devices to computers.
USB-connected input devices, such as keyboards, card-
swipers and fingerprint readers, often send sensitive in-
formation to the computer. As such information is only
sent along the communication path from the device to the
computer, it was hitherto thought to be protected from
potentially compromised devices outside this path.

We have tested over 50 different computers and exter-
nal hubs and found that over 90% of them suffer from a
crosstalk leakage effect that allows malicious peripheral
devices located off the communication path to capture
and observe sensitive USB traffic. We also show that in
many cases this crosstalk leakage can be observed on the
USB power lines, thus defeating a common USB isola-
tion countermeasure of using a charge-only USB cable
which physically disconnects the USB data lines.

Demonstrating the attack’s low costs and ease of con-
cealment, we modify a novelty USB lamp to implement
an off-path attack which captures and exfiltrates USB
traffic when connected to a vulnerable internal or a ex-
ternal USB hub.

1 Introduction
Modern computer systems typically consist of hundreds
of components, each with a clear functionality and well-
defined input-output interfaces. Connecting all of these
components are buses, which transfer information be-
tween components. Since the internal hardware com-
ponents of a system are usually assumed to be trusted,
most buses carry no protections against malicious be-
havior. However, with the development of complicated
computer peripherals, buses are no longer kept inter-
nal. High-Definition Multimedia Interface (HDMI) [28],
DisplayPort [47], the external Serial AT Attachment
(eSATA) [43], the Universal Serial Bus (USB) [14], and
many others all connect to external devices of unknown
origin. Moreover, these buses often carry sensitive infor-

mation such as key strokes (including passwords), mouse
movements, file transfers, screen images, etc.

The security model of these buses does not follow the
standard methods of securing communication channels.
Rather than using common techniques, such as encryp-
tion and authentication, these buses seem to rely on a
unicast network model, where messages are physically
routed along the path from the sender to the receiver
instead of being broadcasted to all of the components
connected to the bus. This, coupled with short and sim-
ple routes that only have few intermediate components,
seems to provide a “good enough” security. As a result,
in order to externally monitor traffic such as the victim’s
keystrokes, the attacker has to corrupt one of the often
small number of components that are located between the
sender (the keyboard) and the receiver (the USB host).
Consequently, it is commonly assumed that “devices are
not able to snoop information sent from the Device to
Host since information flows only through Hubs until it
reaches the Host” [36].

In this paper we challenge this assumption. More
specifically, we investigate the following questions:

Are common communication buses vulnerable to
off-path attacks? How can such attacks be mounted and

at what cost?

1.1 Our Results
As a case study, in this paper we focus on the Univer-
sal Serial Bus (USB) interface, which is the predom-
inant interface used by modern computer parapherna-
lia. Compared with legacy interfaces such as serial port
(RS-232) [17], parallel port (IEEE 1284) [19] or key-
board jack (DIN 41524/IEC 60130-9) [29], USB has
wide range of advantages: it is hot pluggable, extensible
(via USB hubs) and capable of supporting many types of
equipment. A final feature of the USB interface is the
ability to provide both data communication and power to
peripheral devices.

mailto:yang.su01@adelaide.edu.au
mailto:danielg3@cis.upenn.edu
mailto:damith.ranasinghe@adelaide.edu.au
mailto:yval@cs.adelaide.edu.au

In this paper we demonstrate that in many cases, data-
dependent voltage fluctuations of the USB port’s data
lines can be monitored from adjacent ports on the USB
hub. Our results apply to both internal USB hubs which
are installed inside computers, as well as to external off-
the-shelf USB hubs. Moreover, this phenomena is not
limited to a small number of vulnerable hubs but seems
to be quite common, spanning various manufacturers and
hub designs. In our experiments, 94% of the internal
hubs in computers and in docking stations and 90% of the
external USB hubs we evaluated displayed some form of
exploitable leakage.

In the context of communication channels, this
phenomena is often referred to as channel-to-channel
crosstalk [38]. We demonstrate that this crosstalk effect
allows an off-path attacker to eavesdrop on USB com-
munication. In particular we show that a corrupted pe-
ripheral device can monitor the communication of other
peripheral devices connected to the same non-corrupted
USB hub, or just connected directly to the same com-
puter. Moreover, we show that common “ad-hoc” phys-
ical protections, such as physically disconnecting USB
data and power lines, are often ineffective in stopping
the discovered leakage.

Attack Scenario. As noted above, in addition to com-
munication, the USB bus can also provide power to var-
ious peripherals. Many “USB toys”, such as lamps, fans
or office foam rocket launchers [21], often of unknown
origin, have been designed to use the feature and are thus
routinely connected to USB ports. An attacker can thus
augment such a toy with the required equipment in order
to monitor the USB port crosstalk and subsequently sell
it at below-market-value prices. In Section 6 we show
how to cheaply construct such a probe which can moni-
tor and extract the communication of other devices.

We mainly focus on slow-speed USB 1.x input de-
vices, such as keyboards, card readers, fingerprint read-
ers, USB headsets, etc. Information sent from these de-
vices is often sensitive (e.g., passwords, credit card num-
bers, biometric data, voice conversations, etc.) and thus
should remain secret. While faster versions of the USB
standard were published almost two decades ago and are
in common use, these versions are backwards compatible
with USB 1.x and many input devices are manufactured
to the slower standard. We believe that in the forsee-
able future, slow speed-devices will continue to use the
USB 1.x interface.

While our proof-of-concept probe (Section 6) was de-
signed to attack USB 1.x devices (connected to any USB
hub, including 3.0 hubs), we do show that attacks on
devices using the faster USB 2.0 standard are feasible
(Section 3.3). We leave the task of attacking USB 3.0
devices connected to 3.0 hubs as an open problem (See
Section 7).

1.2 Related Work
For a summary of attacks on USB, see [16, 44] and ref-
erences therein.

USB Traffic Monitoring. Because USB traffic is not
encrypted, on-path devices can listen in to all of the com-
munication that passes through them. This capability is
exploited by commercial keyloggers, such as Key Grab-
ber [2] and KeyGhost [1]. Neugschwandtner et al. [34]
note that downstream traffic is broadcasted to all devices
connected to the bus, demonstrating recovery of all the
downstream traffic using a USB analyzer. They further
suggest encrypting downstream USB traffic to protect
against snooping attacks. Unlike their attack, we capture
upstream USB traffic, which is not broadcasted. Further-
more, because their countermeasure only encrypts down-
stream traffic, it does not prevent our attack.

Oberg et al. [36] describe a timing-based covert chan-
nel that creates an off-path information flow between col-
luding devices. To mitigate the channel they suggest
using deterministic time slots for serving each device.
We note that our attack allows capture of the actual data
transferred from a non-cooperating device and that the
suggested mitigation does not protect against our attack.

Exploiting Trust on Buses. Instead of monitoring traf-
fic, malicious devices can attack the host, exploiting
weaknesses in the host software [10, 50], firmware [39],
trust [15, 5] or protocol [42]. Similarly, malicious hosts
can attack attached devices [33, 35, 32, 52]. The attack
of the USB bus was also explored by Bratus et al. [12]
both at the hardware level and at the device driver level.

To protect the host from malicious devices, Tian et
al. [46, 45] and Angel et al. [7] suggest filtering the USB
traffic and implementing a permission mechanisms for
USB ports. Angel et al. [7] also suggests applying end-
to-end encryption between devices and the host to pro-
tect the confidentiality and the integrity of USB data in
transit.

A common method for protecting hosts from mali-
cious devices and vice versa is to cut the data lines be-
tween the two, connecting only the USB power lines.
Such an approach allows the host to power a device with-
out the risk of data interchange between the two. Avail-
able options for this approach include power-only USB
cables as well as dedicated devices such as the USB Con-
dom [3]. We note that such defenses do not protect
against our attack in the case that crosstalk leakage is
present on the power lines.

Attacks On The Physical Medium. USB Killer [18] is
a device designed to collect energy from the USB power
line and inject a high voltage pulse back into the com-
puter, to destroy sensitive electronic components.

Vuagnoux and Pasini [48] as well as Wang and Yu [49]
show that the electromagnetic (EM) emanations from

PS/2 keyboards can be used to spy on key presses. How-
ever, the design of the USB port seems to make this leak-
age much harder to exploit with only partial information
being leaked about key presses, allowing the attack to
only narrow down the pressed key to a group of 5 poten-
tial keys [48]. EM attacks have also been shown effective
in recovering video signals [31] and Ethernet communi-
cation [41]. See [22] for a survey of EM-based surveil-
lance attacks. Similar attacks exploit acoustic emana-
tions from keyboards [8, 26] and printers [9].
Side Channel Attacks. Attacks on cryptographic im-
plementations by monitoring devices’ electromagnetic
emanations and power usage have been extensively
demonstrated. See [6, 30] and references therein. While
many such works have focused on small devices such as
smart cards or FPGAs, recent works have demonstrated
similar vulnerabilities in PCs [23] and smartphones [24].
Side Channel Attacks Using USB Ports. The USB
ports of various devices were also used for mounting
side channel attacks. For laptop and desktop comput-
ers, monitoring the USB power lines [37] can reveal in-
formation about the system’s activity. In addition, the
“far-end-of-cable” key extraction attack of [25, 23] can
be also mounted over USB ports. For mobile phones, the
USB port can be used for power analysis key extraction
attacks [24] and distinguishing websites [51].

1.3 Structure of this Paper
The rest of this paper is organized as follows: Section 2
introduces USB, including the bus topology and relevant
aspects of its physical and logical protocols. In Section 3
we discuss the crosstalk leakage on the USB data and
power lines. We show how to decode the leakage to re-
cover the transferred data in Section 4, and proceed to
describe the attacks on various devices in Section 5. Sec-
tion 6 demonstrates a practical attack using a subverted
USB lamp that captures key presses and exfiltrates the
information wirelessly via Bluetooth.

2 The USB Interface
USB Versions and Speeds. Since its introduction in
1996, the USB standard underwent three main upgrades.
Initially USB 1.x [13] used a single data path supporting
up to 127 peripheral devices and with 12 Mbps data rate
(also known as USB full-speed). This version currently
still powers a huge number HIDs (Human Interface De-
vices) such as keyboards, remotes and various card read-
ers. Next, in the early 2000’s USB 2.0 unified the com-
puter peripheral market, supporting speeds of up to 480
Mbps (also known as USB high-speed) while maintain-
ing backwards compatibility. USB 2.0 is commonly used
for devices requiring high data transfer rates, such as ex-
ternal storage devices and Web cameras. Finally, in 2008
another major upgrade of the USB family, USB 3.0, was

published [27]. In this version, the maximum bus speed
was increased to 5 Gbps (also known as USB super-
speed). In order to achieve such a speed and to support
full-duplex communication, five new pins were added to
the classic connectors and the cable material standard
was upgraded.

USB Hubs. USB hubs are commonly used to split a
single USB port to many (typically four) ports, thus al-
lowing the user to connect additional peripheral devices.
In addition to increasing the number of available USB
ports, USB hubs serve four functions. Each USB hub
may function as a signal repeater, extending the cable
length by five meters. Some hubs may include indepen-
dent power supply to ensure each downstream port has
enough power available. Hubs also function as protocol
translators: for example in case a USB 1.0 ticket printer
is plugged in a USB 3.0 hub, the hub translates the latest
USB 3.0 downstream signal back to the legacy USB 1.0
language and forwards to the printer. Finally, the USB
hub also protects the bus by isolating and disconnecting
malfunctioning devices which draw too much power or
do not obey the USB protocol.

USB Tiered Topology. All USB devices are connected
in a tree topology, up to 127 devices (including any hubs)
can be connected. At the root of the tree, there is a single
host (also known as USB root hub) which is directly ad-
dressable from CPU. The host coordinates the USB tree
network and in USB 1.0 and 2.0 it is the only one in
the network who can initiate communication. Up to five
additional hubs can be cascaded in series on each tree
branch. Each hub has one upstream port and up to seven
downstream ports. Downstream traffic is broadcasted to
all of the devices in the tree. However, upstream data
is only sent along the (single) path from the transmitting
peripheral device to the host. In particular, hubs which
are not located on the path between the transmitting pe-
ripheral and the host should not be able to observe the
peripheral’s upstream USB traffic.

Broadcasting USB downstream traffic is a risky design
decision [34]. For example, an attacker can use a simple
USB analyzer to monitor disk writes. However, because
upstream traffic is only transmitted along the path to the
host, much of the “interesting” data, such as keyboard
inputs and disk reads, seems to remain inaccessible to a
corrupted peripheral device outside that path.

USB 1.x and 2.0 Ports Structure. Both USB 1.x and
USB 2.0 use a two-wire differential communication bus.
We denote these wires as D+ and D-. In addition, each
USB connection also provides two power lines, denoted
as Vcc and GND, to supply 5 Volt power to peripheral
devices. See Figure 1.

USB 1.x and 2.0 Communication. Sharing the bus is
achieved through the use of Time-Division Multiplexing

Figure 1: Structure of a USB port.

Figure 2: USB transaction, frame and packets.

(TDM). The bus protocol divides time into 1 ms frames,
as shown in Figure 2. Each frame comprises a Start
of Frame (SOF) packet followed by several transfers.
Transfers can be periodic, repeating in every frame as
long as the target device remains connected to the bus.
These are used, for example, for polling input devices
which are supposed to update as frequently as possible.

Otherwise, transfers are non-periodic. These include
control transfers assigning a bus address to a newly
plugged device, or occasional data-transfers such as up-
dating the print queue of a printer. Each transfer consists
of packets, which are the smallest building block of USB
traffic. At the bottom of Figure 2, we illustrate a key-
board report transfer. The transfer begins with a Token
packet that probes the keyboard for key presses. If un-
delivered key presses are present, the keyboard responds
with a Data packet that contains a 64 bit payload identi-
fying the pressed key. The host then responds to the Data
packet, sending a Handshake packet, which terminates
the transfer. If no key presses are available for delivery,
the keyboard responds to the initial Token packet with a
Handshake packet that terminates the transfer.

To protect data from corruption, packets include sev-
eral checksum mechanisms. The Packet Identifier (PID)
field is protected by requiring that the second half of
the field is the bitwise complement of the first half. To-
ken packets transmitted from the host to the device use
a 5 bits CRC (Cyclic Redundancy Check) to verify the
Address (ADDR) and Endpoint (ENDP) fields and Data
packets use a 16 bits CRC in order to verify the payload.

Oscilloscope

Root hub USB hub

Figure 3: Leakage can be observed at an unused port
adjacent to the USB device.

3 Leaky Hubs
We now turn our attention to the leakage between two
adjacent USB ports on the same USB hub. We investi-
gate both internal hubs, installed inside computers, and
external stand-alone hubs. As mentioned in Section 2,
downstream traffic from the PC to the peripherals con-
nected to the hub is broadcasted and thus readily avail-
able. However, upstream traffic, e.g. keyboard presses, is
not broadcasted and thus should remain out of reach for
an attacker monitoring the USB port. We evaluated the
crosstalk leakage between two downstream USB ports
on the same USB hub as follows. First, we connected
a USB input device, such as a keyboard, to one of the
ports of the hub. Next, we used an oscilloscope to mon-
itor the data sent from the device to the host while con-
currently measuring the leakage on a different USB port
of the same USB hub. See Figure 3.

As we described in Section 2, every USB port con-
tains a pair of data lines and a pair of power lines. Each
of these pairs is a potential source of leakage. Hence,
we can measure the crosstalk leakage present on the data
lines of an adjacent port and additionally, or alternatively,
we can measure it on power lines of the adjacent port.

In a typical scenario both data line and power line
leakage should be available on the same USB port, thus
allowing the attacker to choose the channel contain-
ing the best signal. However, common “ad-hoc” coun-
termeasures against untrusted USB devices are some-
times deployed. These include USB hubs with dedi-
cated switches, which power devices down by cutting the
power supply to them and power-only cables, a.k.a. USB
condoms [3], which disconnect the data lines in order
to prevent interaction between the device and the USB
host. Yet, because the crosstalk leakage is often present
on both the power and the data lines, to completely ren-
der the attacker ineffective, both pairs should be discon-
nected.

3.1 Data Line Leakage
Experimental Setup. In order to evaluate the data line
crosstalk leakage present on USB hubs we used an Ag-
ilent MSO6104A oscilloscope (1GHz, 4Gsps) and two
Agilent 10073C 500MHz passive probes. We then con-

(a) Terminus Tech FE1.1s
(inside a Lenovo 100s laptop)

(b) Prolific MA8601 (c) SMSC USB2517-JZX
(inside an Apple Display)

(d) ASMedia Technology
ASM1074L

Figure 4: Top and middle row: Four tested USB hubs and their controller chips found to contain data line crosstalk
leakage. Bottom row: Corresponding leakage waveform, yellow (top) trace shows the USB traffic and purple (bottom)
trace shows the data line crosstalk leakage measured from an adjacent downstream USB port.

USB logic
Port 1

D+ D-

USB driver
Port 2

D+ D-

R1=15k

R2=15k

R3=15k

R4=15k

GND

C

D+ D+R3=15k

GND

C

USB
Port 1

USB
Port 2

Figure 5: Typical schematic of a USB hub (left) and the RC differentiator created by C and R3 (right).

nected a USB keyboard (Lenovo KU-0225) to one of the
hub’s downstream ports. Next, we used one of the oscil-
loscope’s probes to monitor the communication between
the PC host and the keyboard by measuring the voltage
on the D+ line relative to the GND line. Finally, we ob-
served the data line crosstalk leakage (using the oscil-
loscope’s second probe) by measuring the voltage on the
D+ or D- line relative to the GND line on one of the hub’s
other downstream ports.1

Observing the Data Line Crosstalk. Figure 4 shows
four different devices, including both leaking comput-
ers and leaking external hubs. The correlation between
the actual keyboard data (yellow trace, top) and observed
data line crosstalk leakage (purple trace, bottom) can be
clearly seen. We find that such data line crosstalks are

1The choice between measuring the D+ or D- relative to the GND
line seems to depend on the specific port and hub used. In each experi-
ment below we actually attempted both options and present the option
which showed the clearest signal.

quite common. We evaluated 34 internal and 20 external
USB hubs. Out of these, 17 internal and 17 external were
found to have a data line crosstalk. Finally, we note that
data line crosstalk is not limited to USB 2.0 ports and is
also noticeable on USB 3.0 ports (see Figure 4(d)).

Leakage Mechanism. The leakage waveform of Fig-
ure 4(a) provides a hint into the physical reason for the
existence of crosstalk between two different USB ports.
A typical hub controller chip contains four USB logic
blocks, each responsible for a single downstream USB
port. See Figure 5. As part of the speed negotiation be-
tween the hub and downstream devices, the data lines
of the USB port are pulled down using 15kΩ resistors.
(These are marked as R1,R2,R3,R4 in Figure 5.) The-
oretically, the data lines of USB port 1 should be com-
pletely isolated from those of USB port 2. However,
we conjecture that the close proximity of the USB logic
blocks inside the controller chip creates some parasitic

Figure 6: Monitoring the hub’s electromagnetic leakage as well as the data line crosstalk leakage. The right figure is
the experimental setup where a keyboard is connected to the hub’s leftmost port (silver wire), the crosstalk leakage is
monitored via the adjacent port (blue wire) and the electromagnetic field is measured using an EM probe (blue loop).
The left figure shows the corresponding signals where the top (yellow) trace is the actual USB data, the middle (purple)
trace is the data line crosstalk leakage and the bottom (green) trace is the observed EM signal. Although the crosstalk
signal is plotted with the same vertical scale as the EM signal, only the crosstalk signal (middle, purple) exhibits a
clear correlation with the actual USB data (top, yellow).

capacitance between data lines of adjacent ports (see C in
Figure 5). Thus, any signal present on D+ line of port 1
passes through the RC differentiator created by C and R3
and can be observed on the D+ line of port 2. See Fig-
ure 5. Similar crosstalk leakage also happens with the D-
lines with one option typically giving much better signal
than the other, depending on the USB hub and on indi-
vidual ports in it.
Crosstalk or EM? In order to ascertain that the ob-
served leakage indeed emanates from crosstalk and not
from electromagnetic interference, we have used an EM
probe (Langer LF R400) to measure the electromagnetic
field emitted by an external USB hub. As can be seen in
Figure 6, while there is a clear correlation between data
line crosstalk leakage (purple, middle) and the real USB
traffic (yellow, top), the hub’s electromagnetic radiation
(green, bottom) does not contain any observable infor-
mation. We thus conclude that the observed crosstalk
leakage indeed emanates from parasitic capacitance be-
tween the hub’s USB ports and not from the hub’s elec-
tromagnetic leakage.

3.2 Power Line Crosstalk Leakage
A common method for isolating potentially corrupted
USB devices while still supplying them with 5V power
is to physically disconnect the USB data lines. Indeed,
power-only USB cables and USB condoms guarantee to
isolate corrupted devices from the USB bus while still al-
lowing the use of the USB port as a source of power, e.g.
for plugging a mobile phone into an untrusted charging
station. In this section we show that by monitoring the
power lines of a USB port, it is possible to eavesdrop on
the communication of USB devices connected to differ-
ent USB ports. Thus, even if the attacker is connected

to the hub using a power-only USB cable, he can still
observe the communication of nearby USB devices.

Experimental Setup. We connected a USB keyboard to
one of the hub’s downstream ports. We then used one of
the oscilloscope’s probes in order to monitor the commu-
nication between the PC host and the keyboard by mea-
suring the voltage on the D+ line relative to the GND
line. Finally, using the oscilloscope’s second probe, we
observed the power line crosstalk leakage by measuring
the voltage on the Vcc line relative to the GND line on
one of the hub’s other downstream ports.

Observing the Power Line Crosstalk Leakage. Fig-
ure 7 shows four devices along with the observed signals,
confirming the existence of power line crosstalk leakage.
The correlation between the actual keyboard data (yel-
low, top) and the observed power line crosstalk leakage
(blue, bottom) is clearly visible. Overall, we found that
29 of the 34 internal and 17 of the 20 external hubs we
tested show power line crosstalk leakage. Overall, 32 in-
ternal hubs and 18 external hubs show at least one type
of crosstalk leakage.

Evaluating USB Condoms. We have also examined
the crosstalk leakage present on the USB power lines
measured through a PortaPow USB condom [4] which
promises to “block data transfer to / from a computer,
preventing data security breaches and viruses / hacking
when charging from a public USB socket”. As can be
seen in Figure 8, the power line crosstalk leakage can be
clearly observed.

Leakage Mechanism. Parasitic capacitances are
present not only between two proximate data lines, but
also exist across a data line and a nearby USB power line.
See Figure 9 with the parasitic capacitance marked as C1.

Figure 7: Top row: four tested USB hubs found to contain power line crosstalk leakage. Bottom row: Corresponding
leakage waveform, yellow (top) trace shows the USB traffic and blue (bottom) trace shows the power line crosstalk
leakage measured from an adjacent downstream USB port. Notice the correlation between the sharp spikes in the
leakage trace and the USB traffic. The waveforms were captured using an Agilent MSO6104A oscilloscope (1GHz,
4Gsps) and two Agilent 10073C 500MHz passive probes.

Figure 8: Measuring powerline crosstalk leakage through a PortaPow USB condom. The right figure is the exprimen-
tal setup where a keyboard is connected to the USB hub via the silver wire and the powerline crosstalk leakage in
monitored through the PortaPow USB condom (red) via the blue wire. The left figure shows the correponding signals
(acquired using an Agilent Infiniium DSO 5454832B oscilloscope) where the top (yellow) trace is the actual USB data
and the bottom (blue) trace is the powerline crosstalk leakage. Notice the clear correlation between the two traces.

D+

GND

C1

USB
Port 1

USB
Port 2

USB logic
Port 1

5V DC

Figure 9: Power line crosstalk leakage mechanism. The
parasitic capacitance is marked by C1.

Next, since the power lines of all of the USB ports are
generally interconnected inside the hub controller chip,
the data-to-power crosstalk occurring in one port can be
also observed from another port.

3.3 Attacking USB 2.0 Devices
So far we have mainly focused on crosstalk leakage cre-
ated by USB 1.x devices (such as keyboards or other
human interface peripherals). Similar effects are also
present with high speed USB devices, such as USB stor-
age and webcam devices. However, since these devices
operate at a much greater speed, the experimental setup
used in Section 3.1 is no longer sufficient.

Experimental Setup. In order to observe the data
line crosstalk leakage from high speed USB 2.0 devices,
we used an Agilent DSO 90404A oscilloscope (6GHz,
20Gsps). We then connected a USB drive to one of the
hub’s downstream ports and used an Agilent N2795A
active probe in order to monitor the communication be-

Figure 10: USB 2.0 data line crosstalk leakage from a
hub of the same make as the one used in Figure 6. The
yellow (top) trace shoes the USB traffic and the blue (bot-
tom) trace shows the observed data line crosstalk leakage
measured from an adjacent downstream port (manually
aligned with the yellow trace by subtracting 4ns).

tween the USB drive and the PC host while transferring
files from the USB drive to the PC host. Finally, we used
an Agilent N2752A differential probe in order to moni-
tor the voltage between the D+ and D- lines on one of the
hub’s other downstream ports.
Observing USB 2.0 Data Line Crosstalk Leakage.
Figure 10 shows that resulting data line crosstalk leak-
age while transferring data from the USB drive to the
host PC. The correlation between the actual data (yel-
low, top) and the observed data line crosstalk leakage
(blue, bottom) can clearly be seen. We recall that while
USB downstream traffic (from the PC host to the USB
devices) is broadcasted, USB upstream traffic (such as
transferring files from the USB drive to the PC host) is
not broadcasted. Thus, it should not be possible to ob-
serve the data being transferred from the USB drive to
the host PC.

4 Leakage Decoding
4.1 Decoding USB Traffic
Physical Layer. As mentioned in Section 2, both
USB 1.x and USB 2.0 use a two-wire differential com-
munication bus, whose wires we denote by D+ and D-.
Theoretically, the voltage of D+ relative to D- should be
one of two values, either ‘high’ (3.3V for USB 1.x and
300mV for USB 2.0) or ‘low’ (−3.3V for USB 1.x and
-300mV for USB 2.0).
Non Return to Zero Inverted (NRZI) Encoding. Both
USB 1.x and USB 2.0 use NRZI encoding in order to
transmit individual bits across the communication bus.
One bit is transmitted in each clock cycles, with zeroes
represented at the physical layer as transitions between
the low and the high voltage levels whereas ones are
represented as a lack of transition, i.e. keeping the volt-
age constant across the clock cycle. To maintain clock
synchronization, the USB bus avoids long periods of no

transitions using bit stuffing encoding [11]. More specif-
ically, it inserts a zero after every sequence of six con-
secutive ones. At the receiving end, voltage transitions
are used to maintain clock synchronization. The receiver
otherwise ignores the artificially inserted zeroes.

Decoding USB Packets. Figure 11 presents a USB
transfer between a host and a USB keyboard. It shows
the signal that represents the communication (blue, top)
alongside the corresponding leakage captured on the data
lines of another port of the hub (green, bottom). The
transfer consists of a clock synchronization followed by a
token packet from the host, requesting information about
keyboard presses. Following the token, we see the key-
board’s response which contains a payload with the key
press information.

Field SYNC PID ADDR ENDP CRC5
value 00000001 10010110 0101100 1000 10001

Comment – IN 0x0A 0x01 –

Note that the two halves of the PID field (1001 0110)
complement each other, signifying that the PID check
is correct and making it an incoming (IN) packet from
the PC to an attached peripheral with address ADDR at
endpoint ENDP. Next, as mentioned in Section 2, the to-
ken packet also contains a CRC5 field (using the poly-
nomial X5 +X2 +X0) of the ADDR and ENDP fields.
Indeed, performing long division of 010110 1000 over
100101 gives 10001, which is exactly the CRC5 field of
the packet. Finally, at the right bottom corner of Fig-
ure 11 there is a clip of payload carried in the DATA
packet whose value is 00010000. Since USB data is
transmitted least significant bit first, the transmitted value
is 0x08. This scancode matches the “E” key on the key-
board indicating that this key was pressed.

4.2 Decoding Data Line Crosstalk Leakage
We now present the signal processing techniques we use
to decode the information available via data line crosstalk
leakage. As Figure 11 shows, there is a clear correlation
between the data line crosstalk leakage (green, bottom)
and the actual USB communication (blue, top). How-
ever, the transition between signal levels in the leakage
trace are less clear than in the communication trace. In
order to automatically and reliably decode the informa-
tion present in the data line crosstalk leakage trace we
have performed the steps outlined below. These steps
are carefully chosen to allow implementation on cheap
and simple hardware that an adversary can conceal eas-
ily. See Section 6.

Step 1: Leakage Trace Cleanup. As can be seen
in Figure 12(top, black), the data line crosstalk leak-
age trace contains high frequency noise, making detect-
ing the bus transitions difficult. In order to remove this
high frequency noise, we have applied triangular window

-0.15

-0.05

0.05

0.15

0.25

0.35

-4

-2

0

2

4

USB waveform

-0.15

-0.05

0.05

0.15

0.25

0.35

-4

-3

-2

-1

0

1

2

3

4

USB IN Packet

1 11111 11 1 11 1 1 1 1 1111

1 11111 11 1 11 1 11 1 1 111

0 0 0000000 00 0 00 0 00 000 000 0

0 0 0000000 00 0 00 0 00 000 000 0

USB Payload

SYNC PID ADDR ENDP CRC5 0x08 “E”

Figure 11: USB communication (blue, top) and data line crosstalk leakage (green, bottom) of a USB frame with a
keyboard attached to the USB hub. The data line crosstalk leakage was captured using the hub from Figure 6.

moving average filter. This removed the high frequency
spikes in the leakage trace, see Figure 12(top, blue).

Step 2: Transition Enhancement. To precisely locate
the bus transitions in the trace we produced at Step 1,
we calculated its derivative. That is, we want to find
V ′ = ∂V

∂ t where V denote the trace produced by Step 1
above. Simplifying this operation, we approximated the
derivative by subtracting from each sample at some lo-
cation t in V the sample present at location t−10 in V .2

Figure 12(middle) is the result of this derivative approx-
imation. Note that the rising edges appear as local max-
ima and the falling edges appears as local minima.

Step 3: Edge Detection. As mentioned in Section 4.1,
in the NRZI encoding the rising and the falling edges
are equivalent. Both represent a level toggle in physical
layer, which corresponds to a transmission of a zero bit.
Thus, we first compute the absolute value of the trace we
produced in Step 2, see Figure 12(black, bottom). Next,
in order to decode the data line crosstalk leakage accu-
rately, we need to know the exact times of the trace’s
edges. A naive approach would be to attempt to locate
all the local maxima of Figure 12(black, bottom). How-
ever this approach is unreliable as it might be distracted
by any noise, such as the glitches between samples 200
and 250 in Figure 12(black, bottom).

Instead, we apply a simple thresholding to locate the

2Note that (Vt −Vt−n)/n is a discrete approximation of the deriva-
tive at point t. In our case setting n = 10 seems to produce the best
results. Note further that because n is constant, discarding the division
does not affect the overall shape of the trace.

edges. As Figure 12(blue, bottom) shows, we used a
fixed threshold of 0.048 V.3 Next, every time the trace
(black) crosses the threshold low to high we consider
this to be a transition of the physical layer. See Fig-
ure 12(green, bottom).

Step 4: NRZI Decoding. As mentioned in Section 4.1,
in the USB protocol uses NRZI encoding. More specifi-
cally, the value of a transmitted bit is indicated by main-
taining a fixed signal level for a logical one and a transi-
tion between signal levels for a logical zero. To decode
the signal we use the timing of physical layer transitions
to find zeroes (Figure 12(green, bottom)). Next we use
the length of the intervals between transitions to find the
number of ones. Finally, to account for bit stuffing, we
remove any logical zero appearing after six consecutive
logical ones.

4.3 Decoding Power Line Crosstalk Leak-
age

We now turn to the signal processing techniques we
use to decode the information available via power line
crosstalk leakage. As can be seen from the red trace
in Figure 13, every transition between the high and low
levels on the USB communication lines creates a short,
sharp glitch on the USB power lines. Thus, to decode
the information present in the power line crosstalk leak-
age we performed the following.

As in Step 2 of Section 4.2, we approximated the first

3This value was set empirically and may vary between different
leaky hubs.

200 300 400 500 600 700 800 900 1000 1100

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Raw Scope Reading
Smooth Signal

200 300 400 500 600 700 800 900 1000 1100

-0.04

-0.02

0

0.02

0.04

0.06

First Order Derivative

200 300 400 500 600 700 800 900 1000 1100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Absolute Value of Derivative
Threshold
Edge Stream

0 0000000000 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1

SYNC PID ADDR ENDP CRC5

Figure 12: Trace transformations performed to decode
the data line crosstalk leakage. (top, black) is the raw
data line crosstalk leakage from the hub in Figure 6 and
(top, blue) is the result of removing the high frequency
noise done in Step 1. (middle, red) is the result of ap-
plying the trace enhancement step (Step 2) on the results
of leakage trace cleanup step (Step 1). Finally, the (bot-
tom, black) trace is the absolute value of the (middle, red)
trace and the green markings denote all locations where
the bottom black trace crosses the blue threshold.

order derivative by subtracting each sample from the pre-
vious one. We then computed the absolute value of the
approximated derivative and smoothed the resulting trace
using a moving average filter of 10 samples. This re-
sulted in a relatively clean trace with the toggling in
physical layer clearly visible as sharp spikes. See Fig-
ure 14(blue). We then applied Steps 3 and 4 from Sec-
tion 4.2 using a threshold of 0.05 V for edge detection.
This resulted in a clear detection of the physical layer
toggling events. See Figure 14(green).

5 Leakage Crosstalk Attacks
In this section we present several crosstalk leakage at-
tacks against various peripheral USB devices.

Experimental Setup. We used an Agilent MSO6104A
oscilloscope (1GHz, 4Gsps) with Agilent 10073C
500MHz passive probes to monitor the communication
between the attacked peripheral and USB host while at
the same time monitoring either the data line or power
line crosstalk leakage.

Attacking USB Keyboards. Using data line crosstalk

leakage, we have successfully extracted keyboard
presses from USB keyboards, see Figure 15. Similar re-
sults were obtained using power line crosstalk leakage.
Finally, notice that in this case, the USB hub had two
additional USB devices connected to it (a USB mouse
and a USB headset) in additional to the USB keyboard.
Nonetheless, we have successfully extracted the key-
board presses, despite additional USB traffic from other
devices, functioning concurrently to USB keyboard.

Attacking USB Magnetic Card Readers. In addition
to USB keyboards, we have successfully extracted credit-
card data from a USB magnetic card reader (MagTek
21040140) using data line crosstalk leakage from an in-
ternal USB hub of a Lenovo Ideapad 100s laptop. See
Figure 16 for a picture of the experimental setup and Fig-
ure 17 for the extracted data. Similar results were also
obtained using power line crosstalk leakage.

Attacking USB Headsets and USB Fingerprint Read-
ers. Two other types of devices we successfully attacked
are USB headsets and USB Fingerprint Readers. For
the headsets, we captured the signals corresponding to
the microphone (see Figure 18). We have also success-
fully observed and decoded the USB communication of
a USB fingerprint reader during a finger swipe (see Fig-
ure 19). We did not attempt to decode either the voice
communication of the headset or the fingerprint data be-
cause these devices use propriety data-transfer formats,
and reverse engineering these is beyond the scope of this
paper. However, we did recover the USB traffic and with
the knowledge of the protocols, interpreting the captured
data should be straightforward.

Attacking USB Storage. In addition to attacking hu-
man interface devices, we have also mounted crosstalk
leakage attacks on USB 1.1 drives connected to both
internal and external USB 2.0 hubs. Indeed, we have
successfully recovered the communication during a file
transfer from a USB 1.1 drive to the PC host using data
line crosstalk leakage with both external and internal
USB 2.0 hubs. See Figure 20. Due to the complexity of
the USB driver stack and the file system, we did not at-
tempt to decode the obtained traffic. However, we claim
that since the USB communication was completely re-
covered from the crosstalk leakage, recovering the trans-
ferred file can be achieved as well. Finally, similar results
were also obtained using power line crosstalk leakage.

6 Exploiting Crosstalk Leakage via Mali-
cious Peripherals

In this section we show how to construct a malicious pe-
ripheral device (spy probe) which can successfully ex-
tract USB keyboard presses from the data line crosstalk
leakage. After extraction, the spy probe exfiltrates the
key presses via Bluetooth.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-4

-3

-2

-1

0

1

2

3

4

USB Powerline waveform

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-5

-4

-3

-2

-1

0

1

2

3

4

USB Power line IN Packet

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

USB Power line payload

0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0

Figure 13: USB communication (blue, top) and power line crosstalk leakage (red, bottom) of a single 1ms USB
frame with a keyboard attached to the USB hub. The data line crosstalk leakage was captured using the hub from
Figure 7(rightmost).

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Smooth Signal
Threshold
Edge Stream

0 000000000000000000 1 1 1 1 1 1 1 1 1

SYNC PID ADDR ENDP

Figure 14: Smoothed trace (blue) subjects to the thresh-
old (red) and the resultant Edge detected (green).

6.1 Design Overview
Hardware. The spy probe is constructed from an Alinx
AX309 FPGA development board (30 USD) connected
to an AN108 analog to digital conversion (ADC) board
(15 USD) designed by heijin.org. Data is exfiltrated us-
ing a WeBee Bluetooth Low Energy (BLE) Board with
a Texas Instruments CC2540 chip (5 USD). All of the
probe’s components are concealed in a USB ghost lamp
(20 USD). See Figure 21. In case the 5V USB power is
not available (such as in the case where the power lines
are disconnected in an attempt to isolate a malicious de-
vice), the lamp also contains a battery pack.

The ADC Board. We have connected the ADC board
to a male A-type USB plug which should be plugged
into the leaky USB hub in order to monitor the data line
crosstalk leakage. We have connected the ADC’s input
to the D+ USB line and monitored its voltage relative to

Figure 15: Extracting keyboard presses using data line
crosstalk leakage. The scan code 0x07 corresponding to
the letter d is clearly visible in the leakage trace.

the GND line. We have also used the USB’s 5V power
line in order to power the probe.4 Our ADC board has
a clamp circuit, attenuator (AD8065), low pass filter and
an 8 bit 32 MSaps ADC in a chain. The clamp is a pro-
tective element consisting of two germanium diodes, to
ensure that the voltage of the signal feed into the ADC
never goes above 5 Volts or below GND. Immediately
after the clamp there is an attenuator, mapping the in-
put signal of ± 5 Volts into a 0–2 Volt range. In order
to remove high frequency noise, there a simple RC low-
pass filter (fc = 723MHz) between the attenuator and the
ADC. Finally a AD9280 ADC is used to digitize the data

4As mentioned above, the spy probe also contains a battery pack for
the case where the 5V power is not available.

Figure 16: (left) Experimental setup for extracting credit card data from a USB card reader (MagTek 21040140 card
reader and a Lenovo Ideapad 100s laptop) using data line crosstalk leakage (clearly visible on the oscilloscope’s
screen) from an internal USB hub. (right) MagTek 21040140 USB magnetic card reader.

Figure 17: Extracted credit card data using data line crosstalk leakage. (top) Observed data line crosstalk leakage
trace segment. Part of the credit card number is visible in hexadecimal encoding (marked in orange box). (middle)
hexadecimal to ascii conversion of the extracted data. Part of the credit card number is visible in ascii form (green).
(bottom) picture of the credit card used. Notice the correct extraction of the credit card number. In order to protect
owner’s privacy we have hidden all other card details.

line crosstalk leakage signal. The ADC receives its clock
from the FPGA board and transmits 8 bits of data per
sample back to the FPGA board. Because the signals we
measure are typically 30mV peak to peak, we bypassed
the attenuator with a jumper cable thereby improving the
measurement resolution. See Figure 22.

Software. In order to decode the data line crosstalk
leakage recorded by the probe’s ADC board, we have im-
plemented a highly optimized version of the signal pro-
cessing approach described in Section 4.2 on the probe’s
FPGA board, in Verilog HDL. After decoding the data

line crosstalk leakage, the spy probe filters out USB
packets which correspond to keyboard presses and ex-
filtrates them via a bluetooth connection.

6.2 Attack Performance
In this section we evaluate our spy probe’s ability to cor-
rectly recognize and exfiltrate USB keyboard presses.

Experimental Setup. We used a Microsoft SurfacePro
laptop as a USB host. This machine has only one USB
slot, forcing the end user to use an external USB hub in
order to simultaneously connect a keyboard and mouse.

Figure 18: (left) Experimental setup for observing data line crosstalk leakage from a USB headset microphone (Log-
itech H340). The data line crosstalk leakage is clearly visible on the oscilloscope’s screen. (right) Logitech H340 USB
headset.

Figure 19: (left) Experimental setup for observing data line crosstalk leakage from a USB fingerprint reader (Eikon
Trueme). The data line crosstalk leakage is clearly visible on the oscilloscope’s screen. (right) Eikon Trueme finger-
print reader

Figure 20: Observing the data line crosstalk leakage during a file transfer from a USB 1.1 drive (blue), connected to
the laptop’s (Lenovo G550) internal USB 2.0 hub using an Agilent Infiniium DSO 54832B Oscilloscope. The data
line crosstalk leakage is clearly visible on the oscilloscope’s screen.

We then connected the keyboard, spy probe, mouse and
the USB drive via a 4 port USB hub. See Figure 23.

Key Recognition Rate. We measured the spy probe’s
key recognition rate under various typing speeds. Using

a digital metronome as a speed reference, we pressed a
random key on every metronome pulse. We evaluated the
spy probe’s ability to operate at various typing speeds.
As can be seen in Figure 24, the spy probe achieves 97%

Figure 21: The external appearance of the spy probe, which is embedded inside a toy ghost lamp, size is compared
with a 375mL classic Coca-Cola can (left). Inside look of the spy probe, showing the ADC board, FPGA board, BLE
board and battery pack (right).

Figure 22: Analog front-end and ADC

accuracy rate for typing speeds from 150 KPM (Key-
press Per Minute) to 210 KPM. Notice that average adult
typing speed is between 36 and 45 words per minutes,
equivalent to 200 KPM.5

Figure 23 is a complete demonstration of our attack.
We typed “USB CROSSTALK” on the keyboard while
the spy probe was monitoring the data line crosstalk leak-
age, exfiltrating the key presses via bluetooth to the at-
tacker’s computer.

7 Conclusions
In this paper we present two attacks on the USB bus,
which expose upstream traffic hitherto considered safe
against off-path adversaries. The attacks exploit the elec-
trical properties of USB hubs and affect both internal
hubs and external hubs. Traditional countermeasures,
such as blocking the power or the data lines, do not pro-
tect against our attack. We now describe potential coun-
termeasures against the attacks.

Hardware Countermeasures. One possible solution
to completely remove any crosstalk leakage is optically
decoupling the USB data lines and constructing a ded-
icated 5V supply for each downstream port. However
such solutions are expensive and require careful design.
A cheap countermeasure which significantly reduces the
power line crosstalk leakage uses an LC low pass filter
and LDO (low dropout regulator) to decouple the USB
power lines from the data lines. Figure 25 presents an im-
proved USB condom which, in addition to disconnecting
the USB data lines, also attempts to suppress any signal

5http://typefastnow.com/average-typing-speed

above 300Hz. As can be seen in Figure 26, our improved
USB condom is able to significantly reduce the data line
crosstalk leakage, thus requiring far more sensitive mea-
surement equipment to exploit the small remaining leak-
age.

Frequency filtering cannot be used to protect the data
lines against crosstalk leakage. The leaked signal carries
the same basic frequencies as the original signal. Hence
any frequency-based filtering that removes the leakage
frequencies will also remove the signal frequencies. We
leave the problem of designing hardware countermea-
sures to data line leakage to future work.

Software Countermeasures. The lack of encryption in
the USB protocol is a major design limitation of the bus.
Without encryption, the design is unable to guarantee the
confidentiality and the integrity of messages. Adding
end-to-end encryption, for example using the methodol-
ogy of [7] would protect messages from eavesdropping
attacks such as those we describe in this work. Sim-
pler approaches, such as encryption with a session key
generated, for example, using the Diffie-Hellman key
exchange protocol [20], could also mitigate our attack.
Both approaches require devices to have sufficient com-
putational power to perform public key operations.

Future Work. Our spy probe implementation uses
commercial off-the-shelf components. Because these are
not optimized for the task of capturing USB traffic, they
require relatively large space and consume a lot of power.
Designing dedicated hardware carries the promise of a
small-sized implementation that can be embedded in in-
conspicuous looking devices and even within the USB
plug [40].

While our attack does apply to non-USB 3.0 devices
connected to USB 3.0 hubs (see Figure 4(d)), one limi-
tation of our work is that it does not apply to USB 3.0
devices connected to USB 3.0 hubs. This is because
USB 3.0 devices connected to USB 3.0 hubs simulta-

Figure 23: Demonstration of our attack. (left) Phrase being typed on the Surface Pro via a USB keyboard. (right)
extracted key presses corresponding to the string “USB CROSSTALK”.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0

50

100

150

200

250

150 160 170 180 190 200 210

R
ec

o
gn

it
io

n
 r

at
e

K
ey

 p
re

ss
ed

Key press per minute

Recognition Rate VS Typing Speed

Key pressed

Key reported

Recognition rate

Figure 24: Recognition rate over typing rate range from
150 KPM to 210 KPM.

neously use three differential wire pairs and employ a
much higher transmission rate. This configuration sig-
nificantly exceeds the specifications of our measurement
equipment (both in measurement speed and number of
channels). While more difficult to attack, USB 3.0 de-
vices connected to USB 3.0 hubs present a lucrative tar-
get, in particular because in this configuration the down-
stream communication, like upstream communication,
is unicasted from the host to the device. Exploiting
crosstalk effects on such configurations would therefore
expose downstream traffic (in addition to upstream traf-
fic) to off-path attackers. As we mentioned earlier, in-
put devices, which often send sensitive information to
the host, mostly use USB 1.x Hence, even though our at-
tack does not apply to the newest version of the protocol
(USB 3.0), it remains relevant.

The current research applies to USB devices. Further
research is required to check if other buses and commu-
nication networks are vulnerable to crosstalk attacks.

Acknowledgements
Yuval Yarom performed part of this work as a visiting
scholar at the University of Pennsylvania.

Figure 25: A USB condom which attempts to suppress
power line crosstalk leakage.

4.98

5

5.02

5.04

5.06

5.08

5.1

5.12

5.14

5.16

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

Le
ak

ag
e

(V
)

Tr
af

fi
c

(V
)

Traffic Before After

Figure 26: Evaluation of our USB condom showing the
actual USB communication (blue), the corresponding
unmitigated power line crosstalk leakage (black) and the
power line crosstalk leakage measured on the USB port
of our USB condom (orange). Notice that the power line
crosstalk leakage is significantly attenuated.

This research was supported by an Endeavour Re-
search Fellowship from the Australian Department of
Education and Training; the Australian Research Coun-
cil under project DP140103448; the 2017-2018 Roth-
schild Postdoctoral Fellowship; the Blavatnik Interdis-
ciplinary Cyber Research Center (ICRC); by the Check
Point Institute for Information Security; by the Israeli
Centers of Research Excellence I-CORE program (cen-
ter 4/11); by the Leona M. & Harry B. Helmsley Chari-
table Trust; the Defence Science and Technology Group,
Maritime Division, Australia; the Warren Center for Net-
work and Data Sciences; the financial assistance award
70NANB15H328 from the U.S. Department of Com-
merce, National Institute of Standards and Technology;
and by the Defense Advanced Research Project Agency
(DARPA) under Contract #FA8650-16-C-7622.

References
[1] “KeyGhost USB keylogger,” http://www.keyghost.

com/usb-keylogger.htm.

[2] “KeyGrabber USB,” http://www.keelog.com/.

[3] “The original USB Condom,” http://int3.cc/
products/usbcondoms.

[4] “PortaPow smart charge,” http://www.
portablepowersupplies.co.uk/portapow-fast-
charge-data-block-usb-adaptor/.

[5] “USB Rubber Ducky,” http://usbrubberducky.
com/.

[6] R. J. Anderson, Security Engineering: A Guide to
Building Depandable Distributed Systems, 2nd ed.
Wiley, 2008.

[7] S. Angel, R. S. Wahby, M. Howald, J. B. Leners,
M. Spilo, Z. Sun, A. J. Blumberg, and M. Wal-
fish, “Defending against malicious peripherals with
Cinch,” in USENIX Security 2016, Aug. 2016, pp.
397–414.

[8] D. Asonov and R. Agrawal, “Keyboard acoustic
emanations,” in IEEE S&P, May 2004, pp. 3–14.

[9] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal,
and C. Sporleder, “Acoustic side-channel attacks on
printers,” in USENIX Security, Aug. 2010, pp. 307–
322.

[10] D. Barrall and D. Dewey, ““Plug and root,” the
USB key to the kingdom,” in BlackHat 2005, Jul.
2005.

[11] D. Bertsekas and R. Gallager, Data Networks.
Prentice-Hall, 1987.

[12] S. Bratus, T. Goodspeed, P. C. Johnson, S. W.
Smith, and R. Speers, “Perimeter-crossing buses:
a new attack surface for embedded systems,” in
Workshop on Embedded Systems Security (WESS),
2012.

[13] Universal Serial Bus Specification, Rev. 1.0, Com-
paq, Data Equipment Corporation, IBM PC Com-
pany, Intel, Microsoft, NEC and Northern Telecom,
Jan. 1996.

[14] Universal Serial Bus Specification, Rev. 2.0, Com-
paq, Hewlett-Packard, Intel, Lucent, Microsoft,
NEC and Philips, Apr. 2000.

[15] A. Crenshaw, “Programmable HID USB keystroke
dongle: Using the Teensy as a pen testing device,”
in DEFCON-18, Aug. 2010.

[16] ——, “Plug and prey: Malicious USB devices,” in
ShmooCon 2011, Jan. 2011.

[17] Application Note 83: Fundamentals of RS-232 Se-
rial Communications, Dallas Semiconductor, 1998.

[18] Dark Purple, “USB Killer,” http://kukuruku.co/
hub/diy/usb-killer, Mar. 2015.

[19] S. L. Diamond, “A new PC parallel interface stan-
dard,” IEEE Micro, vol. 14, no. 4, Aug. 1994.

[20] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Information
Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

[21] “Thunder missile launcher,” http://dreamcheeky.
com/thunder-missile-launcher, Dream Cheeky.

[22] R. Frankland, “Side channels, compromising ema-
nations and surveillance: Current and future tech-
nologies,” Royal Halloway University of London,
Tech. Rep. RHUL-MA-2011-07, Mar. 2011.

[23] D. Genkin, L. Pachmanov, I. Pipman, A. Shamir,
and E. Tromer, “Physical key extraction attacks on
PCs,” CACM, vol. 59, pp. 70–79, Jun. 2016.

[24] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer,
and Y. Yarom, “ECDSA key extraction from mobile
devices via nonintrusive physical side channels,” in
ACM CCS 2016. ACM, 2016, pp. 1626–1638.

[25] D. Genkin, I. Pipman, and E. Tromer, “Get
your hands off my laptop: Physical side-channel
key-extraction attacks on PCs,” in CHES 2014.
Springer, 2014, pp. 242–260.

http://www.keyghost.com/usb-keylogger.htm
http://www.keyghost.com/usb-keylogger.htm
http://www.keelog.com/
http://int3.cc/products/usbcondoms
http://int3.cc/products/usbcondoms
http://www.portablepowersupplies.co.uk/portapow-fast-charge-data-block-usb-adaptor/
http://www.portablepowersupplies.co.uk/portapow-fast-charge-data-block-usb-adaptor/
http://www.portablepowersupplies.co.uk/portapow-fast-charge-data-block-usb-adaptor/
http://usbrubberducky.com/
http://usbrubberducky.com/
http://kukuruku.co/hub/diy/usb-killer
http://kukuruku.co/hub/diy/usb-killer
http://dreamcheeky.com/thunder-missile-launcher
http://dreamcheeky.com/thunder-missile-launcher

[26] T. Halevi and N. Saxena, “Keyboard acoustic side
channel attacks: exploring realistic and security-
sensitive scenarios,” Int. J. Inf. Secur., vol. 14, no. 5,
pp. 443–456, Oct. 2015.

[27] Universal Serial Bus 3.0 Specification, Hewlett-
Packard, Intel, Microsoft, NEC, ST-NXP Wireless,
Texas Instruments, Nov. 2008.

[28] High-Definition Multimedia Interface Specification
Version 1.3a, Hitachi, Matsushita, Philips, Silicon
Image, Sony, Thomson and Toshiba, Nov. 2006.

[29] IEC 60130-9: Connectors for frequencies below 3
MHz Part 9: Circular connectors for radio and
associated sound equipment, 4th edition, Interna-
tional Electrotechnical Comission, 2011.

[30] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “In-
troduction to differential power analysis,” JCEN,
vol. 1, no. 1, pp. 5–27, 2011.

[31] M. G. Kuhn, “Electromagnetic eavesdropping risks
of flat-panel displays,” in PET 2004, May 2004, pp.
88–107.

[32] B. Lau, Y. Jang, C. Song, T. Wang, P. H. Chung, and
P. Royal, “Mactans: Injecting malware into IOS de-
vices via malicious chargers,” in BlackHat 2013,
Jul. 2013.

[33] J. Maskiewicz, B. Ellis, J. Mouradian, , and
H. Shacham, “Mouse trap: Exploiting firmware
updates in USB peripherals,” in WOOT’14, Aug.
2014.

[34] M. Neugschwandtner, A. Beitler, and A. Kurmus,
“A transparent defense against USB eavesdropping
attacks,” in EuroSec’16, 2016, pp. 6:1–6:6.

[35] K. Nohl, S. Krißler, and J. Lell, “BadUSB — on
accessories that turn evil,” in BlackHat 2014, Aug.
2014.

[36] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood,
and R. Kastner, “Information flow isolation in I2C
and USB,” in 48th DAC, Jun. 2011, pp. 254–259.

[37] Y. Oren and A. Shamir, “How not to protect PCs
from power analysis,” Rump Session, Crypto 2006,
2006.

[38] C. R. Paul, Introduction to Electromagnetic Com-
patibility, 2nd ed. John Wiley & Sons, Inc., 2006.

[39] J. Rutkowska, “Evil Maid goes after True-
Crypt!” http://theinvisiblethings.blogspot.com.au/
2009/10/evil-maid-goes-after-truecrypt.html, Oct.
2009.

[40] B. Schneier, “COTTONMOUTH-I: NSA exploit of
the day,” https://www.schneier.com/blog/archives/
2014/03/cottonmouth-i n.html, 2014.

[41] M. Schulz, P. Klapper, M. Hollick, and E. Tews,
“Trust the wire, they always told me!: On practical
non-destructive wire-tap attacks against Ethernet,”
in WiSec’16, Jul. 2016, pp. 43–48.

[42] R. Sevinsky, “Funderbolt: Adventures in Thunder-
bolt DMA attacks,” in BlackHat 2013, Jul. 2013.

[43] External Serial ATA, Silicon Image, Sep. 2004.

[44] F. Steinmetz, “USB — an attack surface of emerg-
ing importance,” Bachelor Thesis, Hamburg Uni-
versity of Technology, Mar. 2015.

[45] D. Tian, N. Scaife, A. Bates, K. R. B. Butler, and
P. Traynor, “Making USB great again with USB-
FILTER,” in USENIX Security 2016, Aug. 2016, pp.
415–430.

[46] J. D. Tian, A. M. Bates, and K. R. B. Butler,
“Defending against malicious USB firmware with
GoodUSB,” in Proceedings of the 31st Annual
Computer Security Applications Conference, Los
Angeles, CA, USA, December 7-11, 2015. ACM,
2015, pp. 261–270.

[47] VESA DisplayPort Standard Version 1, Revision
1a, Video Electronics Standards Association, Jan.
2008.

[48] M. Vuagnoux and S. Pasini, “Compromising elec-
tromagnetic emanations of wired and wireless key-
boards.” in USENIX security 2009, 2009, pp. 1–16.

[49] L. Wang and B. Yu, “Analysis and measurement
on the electromagnetic compromising emanations
of computer keyboards,” in CIS 2011, Dec. 2011,
pp. 640–643.

[50] C. Wisniewski, “Windows zero-day vulner-
ability uses shortcut files on USB,” https:
//nakedsecurity.sophos.com/2010/07/15/windows-
day-vulnerability-shortcut-files-usb/, Jul. 2010.

[51] Q. Yang, P. Gasti, G. Zhou, A. Farajidavar,
and K. Balagani, “On inferring browsing ac-
tivity on smartphones via USB power analysis
side-channel,” IEEE Transactions on Information
Forensics and Security, no. 99, pp. 1–1, 2016.

[52] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass,
A. Francillon, T. Goodspeed, M. Gupta, and
I. Koltsidas, “Implementation and implications of a
stealth hard-drive backdoor,” in 29th ACSAC, Dec.
2013, pp. 279–288.

http://theinvisiblethings.blogspot.com.au/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.com.au/2009/10/evil-maid-goes-after-truecrypt.html
https://www.schneier.com/blog/archives/2014/03/cottonmouth-i_n.html
https://www.schneier.com/blog/archives/2014/03/cottonmouth-i_n.html
https://nakedsecurity.sophos.com/2010/07/15/windows-day-vulnerability-shortcut-files-usb/
https://nakedsecurity.sophos.com/2010/07/15/windows-day-vulnerability-shortcut-files-usb/
https://nakedsecurity.sophos.com/2010/07/15/windows-day-vulnerability-shortcut-files-usb/

	Introduction
	Our Results
	Related Work
	Structure of this Paper

	The USB Interface
	Leaky Hubs
	Data Line Leakage
	Power Line Crosstalk Leakage
	Attacking USB 2.0 Devices

	Leakage Decoding
	Decoding USB Traffic
	Decoding Data Line Crosstalk Leakage
	Decoding Power Line Crosstalk Leakage

	Leakage Crosstalk Attacks
	Exploiting Crosstalk Leakage via Malicious Peripherals
	Design Overview
	Attack Performance

	Conclusions

