
CS 6340 – Fall 2009 – Problem Set 2 Name________________________
Assigned: August 25, 2009
Due: September 1, 2009

At the beginning of class on the due date, submit your neatly presented solution with
this page stapled to the front (70 pts).

1. Given the following program (in a Pascal-like language) and the statement-based
control-flow graph for that program (which you created in Problem Set 1):

 procedure sqrt(real x):real
 real x1,x2,x3,eps,errval;

 begin
1. x3 = 1
2. errval = 0.0
3. eps = .001
4. if (x <= 0.0)
5. output("illegal operand");
6. return errval;
7. else
8. if (x < 1)
9. x1 = x;
10. x2 = 1;
11. else
12. x1 = eps;
13. x2 = x;
14. endif
15. while ((x2-x1) >= 2.0*eps)
16. x3 = (x1+x2)/2.0
17. if ((x3*x3-x)*(x1*x1-x) < 0)
18. x2 = x3;
19. else
20. x1 = x3;
21. endif;
22. endwhile;
23. return x3;
24. endif;
25. end.

a. Compute the reaching definitions for each node in the control-flow graph: create
a table that shows the initial values of the IN, OUT, GEN, and KILL sets, along
with the results of the first and second iterations of the reaching-definition data-
flow analysis algorithm (10).

b. Compute the reachable uses for each node in the control-flow graph: create a
table that shows the initial values of the IN, OUT, GEN, and KILL sets, along with
the results of the first and second iterations of the reachable-use data-flow
analysis algorithm (10).

c. Compute the definition-use pairs (du-pairs) for the program: create a table that
shows, for each node that contains a use, the du-pairs that involve that use (5).

d. Compute DU-Chains and UD-Chains for the program (5).

2. Given the following C program and the statement-based control-flow graph for the

program (which you created in Problem Set 1):

 main()
 {
 int sum, i, j;

1. sum = 0;
2. i = 1;
3. while (i <= 5) {
4. scanf("%d",&j);
5. if (j < 0)
6. continue;
7. sum = sum + j;
8. if (sum > 10)
9. break;
10. i = i + 1;
11. }
12. printf("sum is %d", sum);
 }

a. Construct the control-dependence graph (CDG) without regions for the program;
show all steps in the construction using the Ferrante, Ottenstein, Warren
algorithm (15).

b. Add regions to the CDG from (a); show all steps in this addition (5).

3. It is often desirable to keep data-flow information from one version of a program to
the next, and consider the changes to incrementally update the information for the
new version of the program. For example, when a program is optimized, the data-
flow changes. We can compute the data-flow for the unoptimized program, and
then, given the locations and types of changes, we can incrementally update the old
data-flow information to get the data-flow for the optimized program. As another
example, we can use a similar process to get the data-flow for a program after it has
been changed because of user edits.

You are to develop an algorithm computes reaching definitions incrementally. In
developing your algorithm, answer the following questions (in the remainder of the
discussion, old program refers to old, original program and new program refers to
the new, changed, modified program):

a. Your algorithm should not require the entire reaching-definition solution for the

old program for use in computing the reaching definitions for the new program.
What information would you need to store about the old program for use in the
analysis (5)?

b. What method would you use to update the information about the old program to
get the reaching definitions for the new program (5)?

c. Use Version 1 and Version 2 of the following program to illustrate your
techniques (10).

Program Version1
1. read (x)
2. x1 = .0001
3. x2 = x
4. while (x2-x1) >= .0002
5. x3 = (x1+x2)/2
6. if (x3*x3-x) * (x1*x1-x) < 0
7. then x1 = x3 Version2, change to x2 = x3
8. else
9. x1 = x2 Version2, change to x1 = x3
10. endif
11. endwhile
12. print (x)
13. print (x2)
14. print (x3)
end Version1

