CS 6340 — Fall 2009 — Problem Set 6 Name
Assigned: October 7, 2009
Due: October 15, 2009

At the beginning of class on the due date, submit your neatly presented solution with
this page stapled to the front (100 pts). As with the previous assignments, you are to do
this assignment individually.

Part 1

Your new position as Test Manager requires that you establish a set of requirements
that developers will use for unit testing of the software that they write. Before you
establish these requirements, you want to assess the fault-detection ability, expense,
tool availability, etc. of various techniques that have been proposed in the literature. To
do this, you will use a program, which we'll call tritype, that has the following
requirements specification

tritype takes as input three integer values. The three values are interpreted as
representing the lengths of the sides of a triangle. The program prints a message
that states whether the triangle is scalene, isosceles, or equilateral.

You are to do the following:

1. Use the specification to develop a set of test cases (a test suite) for tritype
using two black box testing methods (both described at the end of this
document):

e Equivalence Partitioning
e Boundary Value Analysis

2. Create a file of test cases (reason for test (in quotes), inputs, expected
outputs) that consists of one test case per line; the number of the test case
will be the line number in the file. For example, suppose | created two test
cases:

Test Case 1: isosceles 2 2 3 isosceles
Test Case 2: equilateral 4 4 4 equilateral
The file should contain

"isosceles" 2 2 3 isosceles

"equilateral" 4 4 4 equilateral

3. Send the test cases to Raul (raul@cc.gatech.edu), and he’ll send you the
tritype program for the second part of the assignment. Let him know whether
you want the C version or the Java version.



Part 2

Using your copy of the implementation of tritype (either in C or in Java), perform the
following activities:

1. Measure the Statement Adequacy of the test suite you developed in Part 1.

2. Measure the Multiple Condition Adequacy of the test suite you developed in
Part 1.

3. Create the control-flow graph for tritype

4. Using the control flow graph for tritype, compute the cyclomatic complexity of
tritype.

5. Measure Basis Path Adequacy for the test suite you developed in Part 1.

For any of 1,2,4, or 5, you can (a) perform the tasks manually, or (b) automate the
process by writing a program to perform the task or by finding an existing tool that will
do it for you.

At the beginning of class on the due date, submit the following:

e Your test suite (typed).

o Statement Adequacy: a list of the statements and, for each statement, an
indication of whether the statement was covered; a statement of the coverage
achieved by your test suite.

e Multiple Condition Adequacy: a list of the conditions required for multiple
condition coverage and, for each condition, an indication of whether the condition
was covered; a statement of the coverage achieved by your test suite.

e The control-flow graph for tritype.c.

e Basis Path Adequacy: The cyclomatic complexity, along with an explanation of
how you got it; a statement of the coverage achieved by your test suite.

e Adiscussion of the results of your experiment (e.qg., difficulty of measuring
adequacy, expense of measuring adequacy, inadequacy of your initial test suite,
ability of the various techniques to help uncover errors).

e A decision about what requirement(s) you will establish for your developers, and
why you made this decision. To help with your decision and discussion, you can
select a type of software that your company develops.



474

PART THREE: CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Y is required to compute Z
Therefore, a transitive relationship has been established between X and Z:
X is required to compute Z

Based on this transitive relationship, tests to find errors in the calculation of
Z must consider a variety of values for both X and Y.

The symmetry of a relationship (graph link) is also an important guide to
the design of test cases. If a link is indeed bidirectional (symmetric), it is im-
portant to test this feature. The UNDO feature [BEI95] in many personal com-
puter applications implements limited symmetry. That is, UNDO allows an ac-
tion to be negated after it has been completed. This should be thoroughly tested
and all exceptions (i.e., places where UNDO cannot be used) should be noted.
Finally, every node in the graph should have a relationship that leads back to
itself; in essence, a “no action” or “null action” loop. These reflexive relationships
should also be tested.

As test case design begins, the first objective is to achieve node coverage.
By this we mean that tests should be designed to demonstrate that no nodes
have been inadvertently omitted and that node weights (object attributes) are
correct.

Next, link coverage is addressed. Each relationship is tested based on its
properties. For example, a symmetric relationship is tested to demonstrate that
it is, in fact, bidirectional. A transitive relationship is tested to demonstrate
that transitivity is present. A reflexive relationship is tested to ensure that a
null loop is present. When link weights have been specified, tests are devised
to demonstrate that these weights are valid. Finally, loop testing is invoked
(Section 16.5.3).

16.6.2 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input
domain of a program into classes of data from which test cases can be derived.
An ideal test case single-handedly uncovers a class of errors (e.g., incorrect pro-
cessing of all character data) that might otherwise require many cases to be
executed before the general error is observed. Equivalence partitioning strives
to define a test case that uncovers classes of errors, thereby reducing the total
number of test cases that must be developed.

Test case design for equivalence partitioning is based on an evaluation of
equivalence classes for an input condition. Using concepts introduced in the
preceding section, if a set of objects can be linked by relationships that are sym-
metric, transitive, and reflexive, an equivalence class is present [BEI95]. An
equivalence class represents a set of valid or invalid states for input conditions.
Typically, an input condition is either a specific numeric value, a range of val-
ues, a set of related values, or a Boolean condition. Equivalence classes may be
defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid equiva-
lence classes are defined.

s e e



B O Ao e R

CHAPTER 16: SOFTWARE TESTING TECHNIQUES 475

2. If an input condition requires a specific value, one valid and two invalid
equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid
equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

As an example, consider data maintained as part of an automated banking
application. The user can “dial” the bank using his or her personal computer,
provide a six digit password, and follow with a series of keyword commands
that trigger various banking functions. The software supplied for the banking
application accepts data in the form:

area code—blank or three digit number
prefix—three digit number not beginning with 0 or 1
suffix—four digit number

password—six digit alphanumeric value

commands—-“check,” “deposit,” “bill pay,” etc.

The input conditions associated with each data element for the banking ap-
plication can be specified as:

area code: input condition, Boolean—the area code may or may not be
present
input condition, range—values defined between 200 and 999,
with specific exceptions

prefix: input condition, range—specified value > 200 with no 0 dig-
its

suffix: input condition, value—four digit length

password: input condition, Boolean—a password may or may not be
present

input condition, value—six character string
command: input condition, set—containing commands noted above

Applying the guidelines for the derivation of equivalence classes, test cases for
each input domain data item could be developed and executed. Test cases are
selected so that the largest number of attributes of an equivalence class are ex-
ercised at once. '

16.6.3 Boundary Value Analysis

For reasons that are not completely clear, a greater number of errors tend to
occur at the boundaries of the input domain than in the “center.” It is for this
reason that boundary value analysis (BVA) has been developed as a testing




476

PART THREE: CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

technique. Boundary value analysis leads to a selection of test cases that exer-
cise bounding values.

Boundary value analysis is a test case design technique that complements
equivalence partitioning. Rather than selecting any element of an equivalence
class, BVA leads to the selection of test cases at the “edges” of the class. Rather
than focusing solely on input conditions, BVA derives test cases from the out-
put domain as well [MYE79]. '

Guidelines for BVA are similar in many respects to those provided for
equivalence partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases
should be designed with values a and b, just above and just below @ and b,
respectively.

2. If an input condition specifies a number of values, test cases should be de-
veloped that exercise the minimum and maximum numbers. Values just
above and below minimum and maximum are also tested.

3. Guidelines 1 and 2 are applied to output conditions. For example, assume
that a temperature vs. pressure table is required as output from an engi-
neering analysis program. Test cases should be designed to create an out-
put report that produces the maximum (and minimum) allowable number
of table entries.

4. If internal program data structures have prescribed boundaries (e.g., an ar-
ray has a defined limit of 100 entries), be certain to design a test case to
exercise the data structure at its boundary.

Most software engineers intuitively perform BVA to some degree. By applying
the guidelines noted above, boundary testing will be more complete, thereby
having a higher likelihood for error detection.

16.6.4 Comparison Testing

There are some situations (e.g., aircraft avionics, nuclear power plant control)
in which the reliability of software is absolutely critical. In such applications
redundant hardware and software are often used to minimize the possibility of
error. When redundant software is developed, separate software engineering
teams develop independent versions of an application using the same specifi-
cation. In such situations, each version can be tested with the same test data
to ensure that all provide identical output. Then all versions are executed in
parallel with real-time comparison of results to ensure consistency.

Using lessons learned from redundant systems, researchers (e.g., [BRI87])
have suggested that independent versions of software be developed for critical
applications, even when only a single version will be used in the delivered com-
puter-based system. These independent versions form the basis of a black-box
testing technique called comparison testing or back-to-back testing [KNIS9].

When multiple implementations of the same specification have been pro-
duced, test cases designed using other black-box techniques (e.g., equivalence
partitioning) are provided as input to each version of the software. If the out-

I




	problemset6
	pages474thru476-1.pdf
	CCF10082009_00000.jpg
	CCF10082009_00001.jpg
	CCF10082009_00002.jpg

	pages474thru476-1.pdf
	CCF10082009_00000.jpg
	CCF10082009_00001.jpg
	CCF10082009_00002.jpg

	pages474thru476-1
	CCF10082009_00000.jpg
	CCF10082009_00001.jpg
	CCF10082009_00002.jpg


