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This paper presents a simple and efficient data flow algorithm

for escape analysis of objects in Java programs to determine

(i) if an object can be allocated on the stack; (ii) if an object

is accessed only by a single thread during its lifetime, so that

synchronization operations on that object can be removed. We

introduce a new program abstraction for escape analysis, the

connection graph, that is used to establish reachability rela-

tionships between objects and object references. We show that

the connection graph can be summarized for each method such

that the same summary information may be used effectively in

different calling contexts. We present an interprocedural al-

gorithm that uses the above property to efficiently compute

the connection graph and identify the non-escaping objects for

methods and threads. The experimental results, from a proto-

type implementation of our framework in the IBM High Per-

formance Compiler for Java, are very promising. The percent-

age of objects that may be allocated on the stack exceeds 70%

of all dynamically created objects in three out of the ten bench-

marks (with a median of 19%), 11% to 92% of all lock oper-

ations are eliminated in those ten programs (with a median of

51%), and the overall execution time reduction ranges from

2% to 23% (with a median of 7%) on a 333 MHz PowerPC

workstation with 128 MB memory.

To appear in the 1999 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA99). Denver, Colorado, November 1, 1999.

����� �
	�������
������ �

Java continues to gain importance as a language for general-

purpose computing and for server applications. Performance

is an important issue in these application environments. In

Java, each object is allocated on the heap and can be deallo-

cated only by garbage collection. Each object has a lock asso-

ciated with it, which is used to ensure mutual exclusion when

a synchronized method or statement is invoked on the object.

Both heap allocation and synchronization on locks incur per-

formance overhead. � In this paper, we present escape analy-

sis in the context of Java for determining whether an object (1)

may escape the method (i.e., is not local to the method) that

created the object, and (2) may escape the thread that created

the object (i.e., other threads may access the object).

For Java programs, we identify two important applications

of escape analysis:

1. If an object does not escape a method, it can be allocated

on the method’s stack frame. This has two important im-

plications. First, stack allocation is inherently cheaper

than heap allocation, which requires (occasionally) syn-

chronizing the allocator with other threads. Stack al-

location also reduces garbage collection overhead, since

the storage on the stack is automatically reclaimed when

the method returns. As well, if an object does not es-

cape a method, it opens up the possibility of strength-

reducing the object accesses and eliminating the cre-

ation of the object.

2. If an object does not escape a thread, then no other thread�
We use synchronization and synchronization operation synonymously.
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accesses the object. This has several benefits, especially

in a multithreaded multiprocessor environment. First,

we can eliminate the synchronization associated with

this object. Note that Java memory model still requires

that we flush the Java local memory at monitorenter

and monitorexit statements. Second, objects that

are local to a thread can be allocated in the memory of

the processor where that thread is scheduled. This local

allocation helps improve data locality. Third, with fur-

ther analysis, some operations to flush the local memory

can be safely eliminated.

In this paper, we introduce a new framework for escape

analysis, based on a simple program abstraction called the

connection graph. The connection graph abstraction captures

the “connectivity” relationship among heap allocated objects

and object references. For escape analysis, we simply perform

reachability analysis on the connection graph to determine if

an object is local to a method or local to a thread. Differ-

ent variants of our analysis can be used either in a static Java

compiler, a dynamic Java compiler, a Java application extrac-

tor, or a bytecode optimizer. To evaluate the effectiveness of

our method, we have implemented various flavors of escape

analysis in the context of a static Java compiler [11], and have

analyzed ten medium to large benchmarks.

The main contributions of this paper are:

� We present a new, simple interprocedural framework

(with flow-sensitive and flow-insensitive versions) for

escape analysis in the context of Java.

� We demonstrate an important application of escape anal-

ysis for Java programs – that of eliminating unnecessary

lock operations on thread-local objects. To the best of

our knowledge, ours is the first application of escape

analysis for eliminating synchronization operations. It

leads to significant performance benefits even when us-

ing a highly optimized implementation of locks, namely,

thin-locks [2].

� We describe how to handle exceptions in Java, without

being unduly conservative. These ideas can be applied

to other data flow analyses in the presence of exceptions

as well.

� We introduce a simple program abstraction called the

connection graph, which is well suited for the purpose of

escape analysis. It is different from points-to graphs for

alias analysis whose major purpose is memory disam-

biguation. In the connection graph abstraction, we also

introduce the notion of phantom nodes, which allows us

to summarize the effects of a callee procedure indepen-

dent of the calling context. This succinct summarization

helps improve the overall speed of the algorithm.

� We present extensive experimental results from an im-

plementation of escape analysis in a Java compiler. We

show that the compiler is able to detect more than 19%

of dynamically created objects as stack-allocatable in

five of the ten benchmarks that we examined (finding

higher than 70% stack-allocatable objects in three pro-

grams). We are able to eliminate 11%-92% of lock oper-

ations in those ten programs. The overall performance

improvement ranges from 2% to 23% on a 333 MHz

IBM PowerPC workstation with 128 MB memory.

The rest of this paper is organized as follows. Section 2

presents our connection graph abstraction. Sections 3 and 4

respectively describe the intraprocedural and interprocedural

analyses, to build the connection graph and to identify the ob-

jects that do not escape their method or thread of creation.

Section 4 also describes the difference between the connec-

tion graph for escape analysis and the points-to graph for alias

analysis. Section 5 elaborates on handling of Java features like

exceptions and object finalizers. Section 6 describes the trans-

formation and the run-time support for the optimization, and

Section 7 presents experimental results. Section 8 discusses

related work, and finally, Section 9 presents conclusions.
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We begin by presenting our framework for escape analysis.

We first define, in Section 2.1, the notion of escapement and

introduce a lattice for escapement. Then in Section 2.2, we

introduce a connection graph abstraction for our escape anal-

ysis.
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We begin by formalizing the notion of escapement of an object

from a method or a thread.

Definition 2.1 Let � be an object instance and � be a method

invocation. � is said to escape � , denoted as �	��
���
�������������� ,
if the lifetime of � may exceed the lifetime of � .

Definition 2.2 Let � be an object instance and � be a thread

(instance). � is said to escape � , again denoted as

�	��
���
�������������� , if another thread, ������ � , may access � .

Alternatively, we say that an object � is stack-allocatable

in � if  !�	��
���
�������������� , and an object � is local to a thread

� if  ��	��
���
����������"�#� .
Let � be a method invocation in a thread � . The life-

time of � is, in that case, bounded by the lifetime of � . If

another thread object, ��� , is created in � , we conservatively

set �	�$
%��
��������&�'����� to be true for all objects �&� (including

��� ) that are reachable from �(� . Thus, we ensure the following

proposition:

Proposition 2.3 For any object � ,  !�	�$
%��
������������)� implies

 !�	�$
%��
����������"��� , where method � is invoked in thread � .

Intuitively, the proposition states that an object, whose life-

time is inferred by our analysis to be bounded by the lifetime

of a method, can only be accessed by a single thread.

To aid in our analysis, we define an escapement lattice

consisting of three elements: NoEscape ( * ), ArgEscape, and

GlobalEscape ( + ). The ordering among the lattice elements

is: ,.-0/21�3�-54!6�7�398�:<;>=(?A@�4!6�7�398�:B;DCE/�4�6%79398�: . CE/�4�6%7�398�:
means that the object does not escape the method in which it

was created. ArgEscape with respect to a method means that

the object escapes that method via the method arguments, but

does not escape the thread in which it is created. Finally, Glob-

alEscape means that the object is regarded as escaping glob-

ally (i.e., all threads and methods). Let FHGI4�6%7�398�:�JK:ML �
N CE/�4�6%7�398�:���=(?O@P4!6%79398�:Q�P,.-0/2193�-54!6�7�398�:�R , then

F	S.C	/�4!6%79398�: � F , and F	S	,.-0/2193�-54!6%7�398�: � ,.-0/21�3�-54�6%7�398�: .
Upon the completion of our interprocedural analysis, all

objects that are marked NoEscape are stack-allocatable in the

method in which they are created. Furthermore, all objects

that are marked NoEscape (due to Proposition 2.3 above) or

ArgEscape, are local to the thread in which they are created,

and so we can eliminate the synchronization in accessing these

objects without violating Java semantics.

� � �UT � � � � 
 ����� �BV 	 ���XW �����
�
	 ��
������ �

In Java, objects are created via new statements. To simplify

the discussion, we shall view each array as a single, monolithic

object. In this section, we introduce a compile-time abstrac-

tion called the Connection Graph that captures the connectiv-

ity relationship among objects.

Definition 2.4 A connection graph is a directed graph Y	Z �
��[]\_^B[	`.^a[cbd^B[]e����.`.^a�gf.^B�(bP� , where

� [�\ represents the set of objects. We create at most one

object node per statement. h
� [&` represents the set of reference variables (locals and

formals) in the program.

� [cb represents the set of non-static field nodes.

� [�e represents the set of static field nodes, i.e., all global

variables in the program.

� �.` is the set of points-to edges. If ikjmlnGo�g` , then

i�G�[ ` ^�[ b ^a[ e and l<Gp[ \ .
� � f is the set of deferred edges. If ikjqlnG�� f , then

ir��lsG�[ ` ^B[ b ^a[ e .
� � b is the set of field edges. If i>jtluGv� b , then

i�G�[]\ and lsG�[wbd^B[]e .

Figure 1 illustrates an example of a connection graph. In

figures, we represent each object as a tree with the root rep-

resenting the object and the children of the root representing

the reference fields within the object. x Also, in our figures, a

solid-line edge represents a points-to edge, and a dotted-line

edge represents a deferred edge. In the text, we use the nota-

tion izyj{l to represent a points-to edge from node i to node

l , i}|j~l to represent a deferred edge from i to l , and i��j~l
to represent a field edge from i to l .
�
We use a 1-limited naming scheme which creates one node for each new

statement in the program.�
Since Java does not allow nested objects, the tree representation of an object

consists of only two levels – the root and its children.
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ab S1

f g h

D
a S1

f g h

P P

S1: T a = new T(...) S2: T b = a

F
F F F F F

Figure 1: A simple connection graph. Boxes indicate object nodes and circles indicate reference nodes (including field reference
nodes). Solid edges indicate points-to edge, dashed edges indicate deferred edges, and edges from boxes to circles indicate field
edges.

We assign to each field
�

in an object a unique number
����� � � � that corresponds to the field identifier (or offset) in the

class defining the object. Let � � and � h be two objects con-

structed from the same class Y . Let
�

be a field defined in Y ,

then
����� ��� ���

� � � ����� ��� h��
� � .

We use deferred edges to model assignments that merely

copy references from one variable to another. Deferred edges

defer computations during connection graph construction, and

thereby help in reducing the number of graph updates needed

during escape analysis. Deferred edges were first introduced

for flow-insensitive pointer analysis in [7].

Given a reference node 	 G�[&`�^ [wb	^p[]e , the set of

object nodes ��
 [�\ that it (immediately) points-to can be

determined by traversing the deferred edges from 	 until we

visit the first points-to edge in the path. The destination node

of the points-to edge will be in � . We formalize this as fol-

lows:

Definition 2.5 Let 	 G>[ ` ^ [ b ^ [ e . A points-to path

of length one, denoted as 	
� yj�� , is a sequence of edges

	 � 	��}|j�	 � |j ����� yj�� that terminates in a points-to

edge and contains exactly one points-to edge in the path (all

other edges, if any, are deferred edges).

Definition 2.6 Let 	 G [ ` ^<[ b ^s[ e , then the set of object

nodes that nodes 	 points-to is:
� /����KL'6���/2��	�� � N ��� 	 � yj�� R �

With each node � G [ , we associate an escape state, de-

noted as 4�6%7�398�:�JKLA32LA: � ��! , that is an element of EscapeSet. The

initial state for each node in [�e is GlobalEscape, whereas the

initial state for each node in [ ` ^ [ \ ^ [ b , unless other-

wise stated, is NoEscape (in Sections 4 and 5, we shall dis-

cuss nodes representing parameters, thread objects, and ob-

jects with non-trivial finalizers, which are initialized as ArgEscape,

GlobalEscape, and GlobalEscape, respectively).

� �#"%$ ���
��
 � ��� � � � 	 ���

���� � � � ��� � �
���

In the next several sections, we will show how to compute the

connection graph abstraction and use it to compute escape-

ment of objects. The intuition behind our algorithm is based

on the following key observation: Let Y	Z be a connection

graph for a method � , and let � be an object node in Y	Z . If

� can be reached in Y	Z from any node whose escape state is

not NoEscape, then � escapes � . The intuition easily extends

to the escapement of an object from a thread.

" ��� �
	�����	 ��
 � ��� 	 ��� � � ��� � �
���

Given the control flow graph (CFG) representation of a Java

method, we use a simple iterative scheme for constructing the

intraprocedural connection graph. We describe two variants of

our analysis, a flow-sensitive version, and a flow-insensitive

version. To simplify the presentation, we assume that all multiple-

level reference expressions of the form a.b.c.d... are

split into a sequence of simple two level reference expres-

sions that are of the form a.b. Any bytecode generator au-

tomatically does this simplification for us. For example, a

Java statement of the form a.b.c.d = new T() will be

transformed into a sequence of simpler statements: t = new

T(); t1 = a.b; t2 = t1.c; t2.d = t; wheret,

t1, and t2 are new temporary reference variables of the ap-

propriate type.

To simplify our presentation, we introduce a function called
&('�� 3�6�6��'8 � that when applied to a node 
 G []`g^v[cb redi-
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ByPass(p)

p p

Figure 2: Illustrating
&('�� 3�6�6��'8 � function

rects the incoming deferred edges of 
 to the successor nodes

of 
 . The type of redirected edge is the same as the type of

edge from 
 to the corresponding successor node. It also re-

moves any outgoing edges from 
 . Figure 2 illustrates the
&('�� 3�6�6��'8 � function. More formally, let

� � N�� � � |jm
 R ,
� � N ��� 
>yj �QR , and � � N�� � 
I|j � R . &('�� 3�696��'8 � removes

the edges in the set
N�� |j 
 � � G � Rr^ N 
 yj{��� �(G � R ^ N 
 |j

� � � G �#R from the connection graph (CG) and adds edges in

the set
N�� yj{��� � G ���	��
 �&G � R.^ N�� |j � � � G ���
��
 � G

��R to the CG. Note that
&('�� 3�6�6��'8 � can always be applied to

a reference node to eliminate its incoming deferred edges.

Given a node � in the CFG, the connection graph at entry

to � (denoted as Y��� ) and the connection graph at exit from �
(denoted as Y �\ ) are related by the standard data flow equa-

tions:

Y �\ � � � ��Y �� �
Y �� � S `�� y `���f�� ��� Y

`\ �

We define a merge between two connection graphs Y � � ��[ � � � � �
and Y h

� ��[ h � � h � to be the union of the two graphs. More

formally, Y � SBY h � ��[ � ^B[ h ��� � ^B� h � .
Figure 3 illustrates the connection graphs at various pro-

gram points computed using the analysis described in this section. �
Given the bytecode simplification of Java programs, we iden-

tify four basic statements that affect intraprocedural escape

analysis: (i) 
 = new � ��� , (ii) 
 ��� , (iii) 
 �
� ��� , (iv)


 ��� �
�

. We present the transfer functions for each of these

statements.

p = new � () We first create a new object node � (if one does

not already exist for this site). For flow-sensitive analy-
�
In order to keep the figure simple, we have not transformed a statement like

a.f = new T1() to its equivalent form: t = new T1(); a.f = t;.

sis, we first apply
&('�� 3�696��'8 � and then add a new points-

to edge from 
 to � . For flow-insensitive analysis, we

do not apply
&('�� 3�6�6��'8 � , but simply add the points-to

edge from 
 to � .

p = q As in the previous case, for flow-sensitive analysis, we

first apply
&('�� 3�6�6��'8 � , and then add the edge 
 |j � .

Again, for flow-insensitive analysis we ignore
&('�� 3�6�6��'8 �

but add the edge 
u|j � . The difference is that we can

kill what 
 points to with flow-sensitive analysis, but not

with flow-insensitive analysis.

p.f = q Let � �! #" � � � �9� " �5
K� . If � �%$ , then either (i)


 is null (in which case, a null pointer exception will

be thrown), or (ii) the object that 
 points to was created

outside of this method (this could happen if 
 is a formal

parameter or reachable from a formal parameter). We

conservatively assume the second possibility (if � �
$ ) and create a phantom object node �'&)( , and insert a

points-to edge from 
 to �*&�( (if 
 is null, the edge from


 to � &)( is spurious, but does not affect the correctness

of our analysis).

During interprocedural analysis, the phantom nodes will

be mapped back to the actual nodes created by the ap-

propriate procedure. (We also use a 1-limited scheme

for creating phantom nodes.) Now let + � N�, � - �j
, �	��
 -)G.� �
��
 ����� � , � � � R . Again, it is pos-

sible that + is empty. In this case, we create a field

reference node (lazily) and add it to + . Finally we add

edges in
N/, |j � � , G0+�R to the connection graph. Note

that even for flow-sensitive analysis, we cannot in gen-

eral kill whatever 
 �
�

was pointing to, and so we do not
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S3: b a
S3:S1:

f g f g

b a
S1:

f g f g

S4:
S4:

S5: a = b.f;

b a
S1:

f g

Input S5:

f g

S3:

f g

S4:

b a
S1:

f g

f g

S3:

f g

S4:

Output S5:

S1: T1 a = new T1(...);

S2: T1 b = a;

if()
S3: a.f = new T1(...);

else

S4: b.f = new T1(...);

Figure 3: An example illustrating connection graph computation. The connection graphs at S1 and S2 are not shown.

apply
&('�� 3�6�6��'8 �

� � . �

p = q.f Let � � N - � � � y� j -KR , + � N/, � -v�j , �
��
 -}G
� �
��
 ����� � , � � ����� � � ��R . As in the previous case, if

� is empty, we create a phantom node and add it to � ,

and if + is empty, we create a field reference node and

add it to + .

For flow-sensitive analysis, we first apply
&('�� 3�6�6��'8 � ,

and then add the edges in
N 
 |j , � , G +�R to the con-

nection graph. For flow-insensitive analysis we once

again ignore
&('�� 3�6�6��'8 � , but add the edges in

N 
 |j
, � , G0+�R to the connection graph.

� ��� � ��	���	 ��
 � ��� 	 ��� � � ��� � �
���

The intuition behind our interprocedural analysis is based on

the following observation. Assume that a method F calls an-

other method � . Now if the method � has already been an-

alyzed for escape analysis, then when F is analyzed intrapro-

cedurally, it can simply use the summary information of �
�
This is because even a single object that � points to in any � -limited rep-

resentation may correspond to more than one program object. One can easily
construct examples to show that a kill in this case can be incorrect.

without going through the body of method � (this makes es-

cape analysis different from alias analysis, as described further

in Section 4.6). This analysis process is akin to elimination-

style of data flow analysis. We use a program call graph to

represent the caller-callee relation. Since Java supports virtual

method calls, we use type information to refine the call graph � .

We iterate over the nodes in the call graph graph in a reverse

topological order until the data flow solution converges. 	

We handle Java thread objects conservatively. Consider a

Java thread object in a method M:
� � �K��
 �
� � �Q� � ����� � � �

� � � � ��� .
�
� �
� � � � ��� starts the execution of the new thread

�
. Since the

lifetime of
�

may exceed the lifetime of (an invocation of) �
and since the object

�
is accessed by more than one thread (the

creating and the created thread), we mark
�

as GlobalEscape.

In general, we mark any object that implements the Runnable

interface as GlobalEsape. This ensures, although conserva-

tively, that any object used as a thread, or any object that is

reachable from such a thread object globally escapes. Note

that this does not mean that objects created during the execu-
�
We could further refine the call graph by constructing the graph in tandem

with the construction of the points-to graph [19].�
We ignore back edges in determining the reverse topological order.
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class ListElement
{

int data;
ListElement next;
static ListElement g = null;
ListElement() {data = 0; next = null;}

static void L(int p, int q)
{

S0: ListElement u = new ListElement();
ListElement t = u;
while(p > q)
{

S1: t.next = new ListElement();
t.data = q++;
t = t.next;

}
S2: ListElement v = new ListElement();

NewListElement.T(u, v);
}

}

class NewListElement
{

ListElement org;
NewListElement next;
NewListElement() {org = null; next = null;}

static void T(ListElement f1, ListElement f2)
{

S3: NewListElement r = new NewListElement();
while(f1 != null)
{

S4: r.org = f1.next;
S5: r.next = new NewListElement();

. . . // do some computation using r

. . . // w/o changing the data structure
S6: r = r.next;

if(f1.data == 0)
{

S7: ListElement.g = f2;
}
f1 = f1.next;

}
}

}

(A)

(B)

(1)

(2)

(3)

(4)

return

Invocation
Before Method

Invocation
After Method

return

L(p,q)

T(a1,a2)

T(a1,a2)

T(f1,f2)

Method Exit

Method Entry

Figure 4: An example program for illustrating interprocedural analysis and its call graph.
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(A):
(B):

(C):

(E):

(D):

(F):
NonLocalGraph
GlobalEscape

Connection graph
after call to T()

f1

NonLocalGraph
ArgEscape

S4

LocalGraph

L(p,q)

T(a1,a2)

L(p,q)

T(f1,f2)

T(f1,f2)

T(a1,a2)

S3

t

S0 S1u

next

t

S0 S1

S2

next
f1

f2

g

S5
next

before call to T()
Connection graph

next

next

â2

v

u

next

org

r

a1

a2

v S2

next next

a2^

a1̂

a1

a1̂
next

org

a2

R

Figure 5: Connection graphs at various points in the call graph. Nodes that escape globally are shadowed.

tion of thread
�

will be marked GlobalEsape.

We will use the Java example shown in Figure 4 to illus-

trate our interprocedural framework. In this example, method
� ��� constructs a linked list and method �	��� constructs a tree-

like structure. Figure 4(B) shows the caller-callee relation for

the example program shown in Figure 4(A). In Figure 4(B)

we identify four points of interest to what are relevant for in-

terprocedural analysis: (1) method entry, (2) method exit, (3)

immediately before a method invocation, and (4) immediately

after a method invocation. We will present our analysis at each

of these four points of interest in the following subsections.

� � �UT � � � � 
������ �BV 	���� W ����� � ��W���� � � �
	 �

We process each formal parameter (of reference-type) in a

method one at a time. Note that the implicit this reference

parameter for an instance method appears as the first parame-

ter. For each formal parameter
� � , there exists an actual param-

eter � � in the caller of the method that produced the value for
� � . At the method entry point, we can envision an assignment

of the form
� � � � � that copies the value of � � to

� � . Since

Java advocates call by value semantics,
� � is treated like a lo-

cal variable within the method body, and so it can be killed by

other assignments to
� � . We create a phantom reference node

for � � and insert a deferred edge from
� � to � � . The phan-

tom node serves as an anchor for the summary information

that will be generated when we finish analyzing the current

method. � We initialize �	�$
%��
�� � � � � � � � � ! � C	/�4!6%79398�: and

�	��
���
�� � � � � ��� � � ! � =(?O@P4!6%79398�: . Figure 5(B) illustrates the

reference nodesf1 and f2, the phantom nodes a1 and a2, and

the corresponding deferred edges at the entry of method T().

� � �UT � � � � 
 ����� �BV 	 ���XW ����� � ��W���� ��� ���

We model a return statement that returns a reference to an

object as an assignment to a special phantom variable called

return (similar to formal parameters). Multiple return state-

ments are handled by “merging” their respective return val-

ues. After completing intraprocedural escape analysis for a

method, we use the ByPass function (defined in Section 3) to

eliminate all the deferred edges in the CG, creating phantom

nodes wherever necessary. For example, the phantom node
�

in Figure 5(E) is created during this process.

We then do reachability analysis on the CG holding at the

return statement of the method to update the escape state of ob-
�
We use �
	 as the anchor point rather than ��	 , since, in Java, ��	 is treated as

a local variable, and so the deferred edge from � 	 to � 	 can be deleted.

8



jects. The reachability analysis partitions the graph into three

subgraphs:

1. The subgraph induced by the set of nodes that are reach-

able from a GlobalEscape node. The initial nodes marked

GlobalEscape are: static fields of a class andRunnable

objects. This subgraph is collapsed into a single bottom

node that efficiently represents all the nodes whose es-

cape state is GlobalEscape.

2. The subgraph induced by the set of nodes that are reach-

able from an ArgEscape node, but not reachable from

any GlobalEscape node. The initial ArgEscape nodes

are the phantom reference nodes that represent the ac-

tual arguments created at the entry of a method, such as

a1 and a2 in Figure 4(B).

3. The subgraph induced by the set of nodes that are not

reachable from any GlobalEscape or ArgEscape node

(which remain marked NoEscape).

We call the union of the first and the second subgraphs the

NonLocalGraph of the method, and the third subgraph the Lo-

calGraph. Figure 6 gives an efficient implementation of the

reachability analysis by propagating escape state from nodes

with initial state of GlobalEscape, then from nodes with ini-

tial state of ArgEscape. It is easy to show that there can only

be edges from LocalGraph to NonLocalGraph, and not vice

versa. The NonLocalGraph represents the summary connec-

tion graph of the method. This summary information is used

at each call site invoking the method, as described below in the

next section.
�

All objects in LocalGraph that are created in the current

method are marked stack-allocatable. Among the objects (in

NonLocalGraph) marked GlobalEscape, those propagated from

a callee of the method need to have their original nodes in each

callee procedure marked GlobalEscape. The original nodes of

a propagated node in the current method are identified using

the concept of MapsTo between two nodes of a caller CG and

a callee CG, which is described in Section 4.4. Marking the
�
As a further optimization to reduce the size of the summary representation,

each reference node in NonLocalGraph is bypassed by connecting its predeces-
sors directly to its successors, so that the NonLocalGraph consists only of the
nodes representing actual parameters, objects accessed via the parameters, and
a single bottom node.

ReachabilityAnalysis()N
1:

� " ��� � � � � � $
/* Nodes in [�e escapes globally */

2: foreach node 	 such that
3: �	�$
%��
�� � � � � � � 	 ! � ,.-0/2193�-54!6�7�398�: do
4: Add 	 to

� " ��� � � � � .
5: while

� " ��� � � � � is not empty do
6: Remove a node 	 from

� " ��� � � � �
7: foreach outgoing edge 	 j � do
8: if ���	��
���
�� � � � � ��� ��!d�� ,.-0/21�3�-54�6%79398 :9� then
9: �	��
���
�� � � � � ��� ��! � ,.-0/21�3�-54!6�7�398�:
10: Add � to

� " ��� � � � � .
11: endif
12: endfor
13: endwhile
14:

� " ��� � � � � � $
/* Phantom argument nodes */
/* state = =(?A@�4�6%7�398�: */

15: foreach node 	 such that
16: �	�$
%��
�� � � � � � � 	 ! � =E?O@�4�6%79398�: do
17: Add 	 to

� " ��� � � � � .
18: while

� " ��� � � � � is not empty do
19: Remove a node 	 from

� " ��� � � � �
20: foreach outgoing edge 	 j � do
21: if ���	��
���
�� � � � � ��� ��!��o=(?A@�4!6�7�398�:9� then
22: �	��
���
�� � � � � ��� ��! � =(?O@P4!6%79398�:
23: Add � to

� " ��� � � � � .
24: endif
25: endfor
26: endwhile
R

Figure 6: Reachability analysis over connection graph to com-
pute escape state of objects.

original nodes GlobalEscape can be performed after the com-

pletion of the interprocedural escape analysis in a top down

pass over the call graph.

Figure 5(C) - Figure 5(E) show the connection graph at the

exit of method T(). In this connection graph, the object node

S4 is a phantom node that was created at Statement S4 during

intraprocedural analysis of T(). The object nodes S3 and S5

were created locally in T(). In the figure, we can see that the

structure in Figure 5(C) is local to method T(), and so will

not escape T(). We also see that the assignment to the global

reference variable, “g = f2”, makes the formal parameter

f2 and the phantom actual parameter a2 all GlobalEscape as

shown in Figure 5(E). (In the figure, a deferred edge from g to

a2 is shown for exposition.) The summary graph for method

T() will consist of the NonLocalGraph shown in Figure 5(D).

This summary graph will be mapped back to caller’s connec-

tion graph (see Section 4.4).
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� �#" T � � � � 
������ �wV 	 ���XW � � � � � � ��� � � � $ � � � 	 � � � � ��W����� � � ��
�������� �

At a method invocation site, each parameter passing is handled

as an assignment to an actual parameter
�� � at the caller. Let - �

be a reference to an object � � . Consider a call - � �
� "�" ��- h � ����� -���� ,

where - h������ -�� are actual parameters to
� "�" ��� . We model the

call as follows:
�� � � - � �

�� h � - h � ����� �
� " " � �� � �

�� h � �����
�� � � .

Note that if foo is a virtual method, we will merge the solution

after processing each method to which - � �
� "�" could possibly

resolve. Each
�� � at the call site will be matched with the phan-

tom reference node � � of the callee method. In Figure 5(A),

two nodes,
�
3�� and

�
3�� , are created with deferred edges point-

ing to the first and the second actual parameters to the call, u

and v, respectively.

� � � T � � � � 
������ �nV 	 ���XW � � ��� � ��� � � � � � � � � 	 � � � ��W����� � � ��
�������� �

At this point, we essentially map the callee’s connection graph

summary information back to the caller connection graph. Three

types of nodes play important role in updating the caller’s con-

nection graph (CG) with the callee’s CG right after a method

invocation:
�� � ’s of the caller’s CG, � � ’s of the callee’s CG, and

the return node of the callee’s CG. Updating the caller’s CG

is done in two steps: (1) updating the node set of the caller’s

CG using
�� � ’s and � � ’s; and (2) updating the edge set of the

caller’s CG using
�� � ’s and � � ’s. Updating the return node

is done during the first step by treating the return node the

same as � � and treating the target node of the method invoca-

tion the same as
�� � .

	 � � ����� ��
aT ��� � � 	�� ����� �

Figure 7 describes how we map the nodes in the callee’s CG

with the nodes in the caller’s CG. This mapping of nodes from

callee CG to caller CG is based on identifying the MapsTo re-

lation among object nodes in the two CGs. As a base case, we

ensure that � � maps to
�� � . Given the base case, we also ensure

that a node in  #" � � � � " �A� � � maps to any node in  #" � � � � " � �� � � .
We formally define the relation MapsTo ( 
 � j ), among objects

belonging to a callee CG and a caller CG recursively as fol-

lows:

� � � 
 � j �� �

UpdateCallerNodes()N
27: foreach � � � �� � actual parameter pair do
28: UpdateNodes ( � � , N �� � R );
29: endfor
R
UpdateNodes(

� � � : field node;� 398K6���/�� : set of field nodes)
//

� 398K6���/�� is the set of MapsTo
// field nodes of

� � �N
30: foreach object node � \ G  #" � � � � " � � � � � do
31: foreach

��r\(G  #" � � � � " � � �"`M�
32: such that

� �"` G � 398K6���/�� do
33: if

��r\]�G � 398K6���/��.1��2���r\M� then
34:

� 398K6���/��.1�� ��� \M�
35: � � 398K6���/��.1�� ��� \M�K^ N �� \MR ;
36: foreach �� � � such that � \ �j �� � � do

37: L��#8 � 398K6���/�� � N �� �"` � ��r\p�j �� �"`��
38:

����� � �� � � � � ����� � �� �"` ��R �
39: UpdateNodes( �� � � , L��#8 � 398K6���/�� );
40: endfor
41: endif
42: endfor
43: endfor
R

Figure 7: Algorithm to Update the Caller’s Connection Graph
Nodes.

� � & G  #" � � � �%� " �5
K��
 � j ���(G  #" � � � �9� " � � � , if

1. �5
 � � � � S � �E� �� � � , or

2. �5
 � � �
� �KS � �E� �

� � � � S
����
 � j �

�	� S � ����� � � � � ����� � � ��� .

In Figure 7,
� 398K6���/��.1�� ��� � denotes the set of objects that

� can be mapped to using the above MapsTo relation. In the

figure, we use the subscript � � to denote caller nodes and �M�
to denote callee nodes. The algorithm starts with � � and

�� �
as the original “fields” that map to/from each other, and then

recursively finds other objects in the caller CG that are Map-

sTo nodes of each corresponding callee object. If there is no

MapsTo node in the caller CG, we create one with an escape

state of NoEscape. Then, the escape state of the nodes in
� 398K6���/��d1�� ��� � is marked GlobalEscape if the escape state

of � is GlobalEscape.

The main body of procedure UpdateNodes is applied

to all the callee object nodes pointed to by the callee field

node
� � � (Statement 30). Given a callee object node � \ , State-

ment 32 computes the set of � \ ’s MapsTo object nodes in the
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caller graph. This is done by identifying the set of caller object

nodes “pointed” to by the caller field node
� �"` , which is itself a

MapsTo field node of callee node
� � � (i.e.

� �"`]G � 398K6���/�� ).

A caller object node,
�� \ , and its field nodes are created at

Statement 32 if no MapsTo caller object node exists. State-

ment 33 is for termination: it skips the body of the loop for
�� \

that is already in
� 398K6���/��d1 �2��� \ � . Given a callee object node

� \ and its MapsTo caller node
��r\ , Statement 38 computes, for

each field node of �r\ (i.e. �� � � ), the set of MapsTo field nodes

of the caller (i.e. L��g8 � 398K6���/�� ). It then recursively invokes

UpdateNodes, passing �� � � and L��#8 � 398K6���/�� as the new

parameters (Statement 39).

	 � � ����� ��
aT ��� � � 	 ��� 
 � �

Recall that following the removal of deferred edges, there are

two types of edges in the summary connection graph: field

edges and points-to edges. Field edges get created at State-

ment 33 in Figure 7 while the nodes are updated.

To handle points-to edges, we do the following: Let 
 and

� be object nodes of the callee graph such that 
 �j � & yj � .
Then, for each

�
�G � 398K6���/��.1�� �5
 � and
�� G � 398K6���/��d1 �2� � � ,

both of the caller, we establish
�
~�j

�� &>yj �� by inserting a

points-to edge
�� & yj �� for each field node

�� & of
�
 such that

����� � � &�� � ����� � �� &Q� .
� � ��� ��� �

Consider the summary connection graph NonLocalGraphsshown

in Figure 5(D) and Figure 5(E). First, all nodes that are reach-

able from global variable g are marked + (or GlobalEscape).

Then, all nodes reachable from the phantom node a1, but not

reachable from g are marked as ArgEscape. Now when we

analyze method L() intraprocedurally we would construct the

connection shown in figure that is right after the method site

of T(). We will first mark the phantom node a1 of the callee

(in Figure 5(D)) and the phantom node
�
3�� of the caller (in

Figure 5(F)) as the initial “field” nodes. Then we will map the

phantom node S4, pointed to by a1, to S0, pointed to by
�
3�� .

The cycle in the NonLocalGraph of T() results in also map-

ping S1 as a MapsTo node of S4. The cycle also results in

inserting edges from the next fields of S0 and S1 to both S0

and S1. This is a result of the 1-limited approach we take in

creating a phantom node: we create at most one phantom node

at a statement for each type. Now since a2 is marked + , all

the nodes of the caller reachable from
�
3�� will also be marked

as + .

� � ��� � � ��� �����
	 � ��
�� � � � ��� � � 	 � ������� �

We can exploit Java’s strong type system in computing the

connection graph for a method whose body cannot be (or, has

not been) analyzed. The representation for such a method,

called a bottom method, is called the bottom graph, which

has one node for each class of the program that has been in-

stantiated. Given two nodes [ � and [ h in the bottom graph

that represent two classes Y � and Y h , respectively, there is a

points-to edge from [ � to [ h if Y � contains a field that is a

reference to Y h . There is a deferred edge from [ � to [ h if

Y h is a sub-type of Y � . In effect, the bottom graph is the most

conservative connection graph of the program allowed under

Java’s type system. The bottom graph can be used to (conser-

vatively) establish connections among nodes that are reachable

from the actual parameters passed to a bottom method. Exam-

ples of bottom methods are native methods implemented in a

non-Java language. Our current implementation does not take

advantage of the type information in bottom methods.

In a dynamic optimization system, a method that has not

been analyzed and optimized by the compiler also becomes a

bottom method when the compiler generates code for a caller

of the method. In this case, the bottom method may have

been interpreted or compiled without analysis/optimization.

The combination of the bottom graph and the summary graph

makes our approach for escape analysis well suited for dy-

namic Java compilation systems such as Jalapeño at IBM Re-

search [8].

� �
	 ���

���� � � � ��� � ����� � ��	 � ����� � � � ����
���� � � ��� � �
���

Connection graph for escape analysis and points-to graphs for

pointer-induced alias analysis [16, 19] are similar to each other

in that both are static abstractions of dynamic data structures

with pointers (or references in Java). The main goal of alias

analysis, however, is memory disambiguation to answer the

question whether two reference (pointer) expressions (of the

form a.b.c.d...) can resolve to the same memory loca-
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tion during execution. The points-to graph, for correctness,

should lead to the same node in the graph if the two reference

expressions might resolve to the same memory location during

execution.

The main goal of escape analysis, on the other hand, is

to identify objects that might escape a (dynamic) scope such

as a method invocation or a thread object. The connection

graph may lead to different nodes in the graph for two pointer

expressions that might resolve to the same memory location,

and can still be correct. We can, therefore, safely ignore the

calling context for escape analysis, although not for pointer

analysis.

� � � � � � � ��
 ��� 
 � ������� � � � � � � � � ��� ����������� � � � � � � �

In this section, we show how we handle Java-specific features

such as exceptions and object finalization.

� � � ��� 
 � ������� � �

We now show how our framework handles exceptions. Ex-

ceptions are precise in Java, hence any code motion across

the exception point should be invisible to the user program.

An exception thrown by a statement is caught by the closest

dynamically enclosing catch block that handles the excep-

tion [17].

One way to do data flow analysis in the presence of excep-

tions is to add a control flow graph edge from each statement

that can throw an exception to each catch block that can po-

tentially catch the exception, or to the exit of the method if

there is no catch block for the exception. The added edges

ensure that data flow information holding at an exception-throwing

statement will not be killed by statements after the exception

throwing statement, since the information incorporating the

“kill” would be incorrect if the exception was thrown. The

factored control flow graph (FCFG) of the Jalapeño dynamic

optimizing compiler for Java does not add these edges phys-

ically in the control flow graphs, but still allows for correctly

identifying the potential control flows due to exceptions [9].

We, however, use a simpler strategy for doing data flow

analysis in the presence of exceptions. Recall that we “kill”

only local reference variables of a method. Therefore, we

only need to worry about them. Amongst those local vari-

ables within a try block, we kill only those that are declared

within the block. Local reference variables declared outside

the try block should not be killed, as they can be live at the

termination of the block if an exception is thrown. We will use

the following example to elaborate on this point. In the exam-

ple, x is local to the method, but non-local to the try-catch

statement.

m0( T1 f1, T2 f2) {
T1 x;

S1: try {
S2: x = new T1(); // creates object O1
S3: x.b = f2;

// sets up a path from x to f2.
S4: ... // an exception is thrown here.
S5: x = new T1(); // creates object O2

} catch (Exception e) {
S6: System.out.println("Don’t worry");

}
S7: f1.a = x;
}

Assume that an exception is thrown at
���

. After thecatch

block, when
���

is executed, f2 will become reachable from

f1. If we were to kill the points-to edge from x to object node

O1 at
���

, then we would lose the path information from f1

to f2, and hence, would have an incorrect connection graph.

Recall that our strategy is not to kill information for variables

in a try block that are not local to the block. Hence, in this

example, we will not delete the previous edge from x to O1

(whose field node b has an edge to f2) while analyzing
���

.

Hence, at
���

, after putting an edge from f1 to x, we would

correctly have a connection graph path from f1 to f2.

A method (transitively) invoked within a try-catch block

can be handled in the same manner as a regular statement

block in its place: we can kill any locals declared within the

nested block, be it a regular statement block or a method block.

An important implication of this approach is that we can ig-

nore potential run-time exceptions within methods that do not

have any try-catch blocks in them. Many methods in Java

correspond to this case.

� � ��� � � ��� ����������� �

Before the storage for an object is reclaimed by the garbage

collector, the Java Virtual Machine invokes a special method,

the finalizer, of that object [17]. The classObject, which is a

12



superclass of every other class, provides a default definition of

the finalize method, which takes no action. If a class over-

rides the finalize method such that its this parameter is

referenced, it means that an object of that class is reachable

(due to the invocation of the finalizer) even after there are no

more references to it from any live thread. We deal with this

problem by marking each object of the class overriding the

finalizer as GlobalEscape ( + ).

	 � 	 � � � � � 	 � ����� � � � � ��� � � 
 � � � � � � ��� � 	 �

We have implemented two optimizations based on escape anal-

ysis in the IBM High Performance (static) Compiler for Java

(HPCJ) for the PowerPC/AIX architecture platform [11]: (1)

allocation of objects on the stack, and (2) elimination of un-

necessary synchronization operations. In this section, we de-

scribe the transformations applied to the user code (based on

the analysis described in previous sections) and the run-time

support to implement these optimizations.

	�� � � 	 � � � � � 	�� ����� � �

Once the analysis converges during the iteration over the call

graph (i.e., when there are no further changes being made

to any connection graph in terms of edges or the EscapeS-

tate of nodes), we mark each new site in the program as fol-

lows, based on the following information: (i) if the EscapeS-

tate of the corresponding object node is NoEscape, the new

site is marked stack-allocatable, and (ii) if the EscapeState of

the corresponding object node is NoEscape or ArgEscape, the

new site is marked as allocating thread-local data. Since we

use a 1-limited scheme for naming objects, a new statement

(a compile-time object name) is marked stack-allocatable or

thread-local only if all objects allocated during run time at this

new site are stack-allocatable or thread-local, respectively.

	�� � � � � 
 � � � � � � ��� � 	 �

We allocate objects on the stack by calling the native alloca

routine in HPCJ’s AIX backend. Each invocation of alloca

essentially grows the current stack frame at run time by some

amount. In our current implementation, we do not reuse the

space allocated by alloca, even if that space is no longer

Program Description

vtrans High Performance Java Translator (IBM)
jgl Java Generic Library 1.0 (ObjectSpace)
jacorb Java Object Request Broker 0.5 (U. Freie)
jolt Java to C translator (KB Sriram)
jobe Java Obfuscator 1.0 (E. Jokipii)
javacup Java Constructor of Parsers (S. Hudson)
hashjava Java Obfuscator (KB Sriram)
toba Java to C translator (U. Arizona)
wingdis Java decompiler, demo version (WingSoft)
pbob portable Business Object Benchmark (IBM)

Table 1: Benchmarks used in our experiments.

live. � �
A secondary benefit of stack allocation is the elimination

of occasional synchronization for allocation of objects from

the thread-common heap. In order to avoid synchronization

on each heap allocation, the run-time system in HPCJ uses

the following scheme. Each thread usually allocates objects

from its thread-local heap space. For allocating a large object

or when the local heap space is exhausted, the thread needs

to allocate from thread-common heap space, which requires a

relatively heavy-weight synchronization. Stack-allocated ob-

jects reduce the requirement for allocations from the thread-

common heap space.

Elimination of synchronizationoperations requires run-time

support at two places: allocation sites of objects, i.e., new

sites; and use sites of objects as synchronization targets, i.e.,

synchronized methods or statements. In HPCJ, synchro-

nized methods and statements are implemented using moni-

torenter and monitorexit atomic operations. The implemen-

tation of these operations in HPCJ has two parts: (1) atomic

compare and swap operation for ensuring mutual exclu-

sion, and (2) PowerPC sync primitive for flushing the local

cache.

We mark objects at the allocation sites using a single bit

in the object representation, indicating whether the object is

thread-local. At the use sites of objects, we modified the rou-

tine implementing monitorenter on an object to bypass the ex-

pensive atomic operation (compare and swap) if its thread-���
In cases where (i) the object requires a fixed size, and (ii) either just a single

instance of a new statement executes in a given method invocation, or the previ-
ous instance of the object allocated at a new statement is no longer live when the
new statement is executed next, it is possible to allocate a fixed piece of storage
on the stack frame for that new statement. Our current implementation does not
take advantage of this special case.
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local bit is set, and instead use a non-atomic operation. It

is important to note that our scheme has benefits even for the

thin-lock synchronization implementation [2], which still needs

an atomic operation (compare and swap); we completely

eliminate the need for atomic lock operations for thread-local

objects. Note that we still flush the local memory to ensure

that global variables are made visible at synchronization points

to observe Java semantics [17]. Since the only change we

make regarding synchronization is to eliminate the instruc-

tions that ensure mutual exclusion, the semantics of all other

thread-related operations such as wait and notify remain

unchanged as well.

� ��� � � 	 � � � � ����� � � � ��� ���

This section evaluates escape analysis on several Java bench-

mark programs. We experimented with four variants of the

algorithm for the two applications: (1) Flow sensitive (FS)

analysis, (2) Flow sensitive analysis with bounded field nodes

(BFS), (3) Flow insensitive analysis (FI), and Flow insensitive

analysis with bounded field nodes (BFI). The difference be-

tween FS and FI is that FI ignores the control-flow graph and

never kills. Bounded field nodes essentially limit the number

of field nodes that we wish to model for each object. We

use a simple mod operation to keep the number of field nodes

bounded. For instance, the
�

th reference field of an object can

be mapped to � ������� 	 � th field node. In our implementa-

tion, we used 	 ��� . Bounding the number of fields reduces

the space and time requirement for our analysis, but can make

the result less precise.

Our testbed consisted of a 333 MHz uniprocessor Pow-

erPC running AIX 4.1.5, with 1 MB L2 Cache and 512 MB

memory. We selected a set of 10 medium-sized to large-sized

benchmarks described in Table 1 to run our experiments. Ta-

ble 2 gives the relevant characteristics for the benchmark pro-

grams. Columns 2 and 3 give the number of classes and the

size of the classes in bytes for the set of programs. Columns

4 and 5 present the total number of objects dynamically allo-

cated in the user code and overall (including both the user code

and the library code). Columns 6 and 7 show the cumulative

space in bytes occupied by the objects during program execu-

tion. Finally, columns 8 and 9 show the total number of lock

operations dynamically encountered during execution.

In the rest of this section, we present our results for the

above variants of our analysis. All of the remaining measure-

ments that we present refer to objects created in the user code

alone. Modifying any operations related to object creation in

the library code would require recompilation of the library

code (not done in our current implementation). Section 7.1

discusses results for stack allocation of objects. Section 7.2

discusses results for synchronization elimination. Section 7.3

discusses the actual execution time improvements due to these

two optimizations.

� � � ������
	
 ��� � ��
�������� �

Figure 8 shows the percentage of user objects that we allocate

on the stack, and Figure 9 gives the percentage in terms of

space (bytes) that is stack-allocatable.

A substantial number of objects are stack-allocatable for

jacorb, jolt, wingdis, and toba (if one does not bound

the number of fields nodes). We did not see much difference

between FS and FI (i.e. flow-sensitive and flow-insensitive

without bounding the number of fields distinguished). And in

most cases, bounding the number of field did not make much

difference in the percentage values (for example, see trans,

jgl, jolt, jobe, javacup, hashjava, and wingdis).

Interestingly, toba and jolt (both of which are Java to C

translators) have similar characteristics in terms of stack al-

locatability of objects. Both of these benchmarks have a sub-

stantial number of objects that are stack-allocatable. But in the

case of toba, limiting the number of fields drastically reduces

the number of objects that are stack-allocatable.

� � �	� ��
 
 � � � � � � � ����� �

For lock elimination, we collected two sets of data (again for

different variants of the analysis). First we measured the num-

ber of dynamic objects that are thread-local and then we mea-

sured how many lock operations are executed over these ob-

jects. Figure 10 shows the percentage of user objects that are

local to a thread, and Figure 11 shows the percentage of lock

operations that are removed for these thread-local objects dur-

ing execution. It can be seen that our most precise analysis ver-
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Program Number size Number of objects Size of objects in bytes Total number of
of of allocated allocated locks

classes classes user user + library user user + library user user + library
trans 142 503K 263K 727K 7656K 31333K 868K 885K
jgl 135 217K 3808K 4157K 124409K 139027K 10391K 10434K
jacorb 436 308K 103K 48036K 2815K 3423323K 546K 672K
jolt 46 90K 94K 593K 3006K 17511K 1030K 1348K
jobe 46 60K 204K 339K 7957K 13331K 77K 106K
javacup 59 101K 67K 330K 1672K 8454K 191K 287K
hashjava 98 183K 173K 248K 4671K 827K 158K 165K
toba 19 86K 154K 2201K 5878K 59356K 1060K 1246K
wingdis 48 178K 840K 2561K 25902K 92238K 2105K 2299K
pbob 65 333K 19787K 48206K 639980K 2749520K 35691K 171189K

Table 2: Benchmarks characteristics

sion finds a lot of opportunities to eliminate synchronization,

removing more than 50% of the synchronization operations

in half of the programs. One can deduce certain interesting

characteristics by comparing the two graphs. For pbob, one

can see that the percentage of thread-local objects ( �
�����

) is

higher than the percentage of locks removed ( �
� ���

). Our

observation is that relatively few thread-local objects are actu-

ally involved in synchronization.

For wingdis, we have found a large percentage of ob-

jects that are thread-local ( �
� ���

), and were able to remove
��� � � of them. Notice that jobe has very few thread-local

objects. (The percentages range between 0.3% and 0.8%, too

small to have any significance.) However, the versions of our

analysis using unbounded number of field nodes are able to

remove a much higher percentage of synchronization opera-

tions than the bounded version. We conjecture that this dif-

ference comes from the fact that in the bounded cases, some

GlobalEscape fields and NoEscape fields can be mapped onto

the same node, resulting in loss of precision. Another inter-

esting characteristic we observed is that for most cases, all

four variants of the analysis performed equally well (except for

jacorb, hashjava, toba, and pbob). For toba, bound-

ing the number of fields, again, significantly reduced the per-

centage values of both the number of thread-local objects and

the number of synchronization operations that could be elimi-

nated.

� �#" ���	� 
 ������� � � � � � � � ��	 � � � � � � ���

Table 3 summarizes our results for execution time improve-

ments. The second column shows the execution time (in sec-

onds) prior to applying optimizations due to escape analysis.

The third column shows the percentage reduction in execu-

tion time due to stack allocation of objects and synchroniza-

tion elimination with our flow-sensitive analysis version. The

time for pbob is not shown, because it runs for a predeter-

mined length of time; its improvement is given as an increase

in the number of transactions in that time period. pbob was

run on a 4-way PowerPC SMP machine.

Table 3 shows an appreciable performance improvement

(greater than 15% reduction in execution time) in three pro-

grams and relatively modest improvements in other programs.

	 � � � ��� � ��
 � 	 


Lifetime analysis of dynamically allocated objects has been

traditionally used for compile time storage management [24,

22, 3]. Park and Goldberg introduced the term escape analy-

sis [22] for statically determining which parts of a list passed

to a function do not escape the function call (and hence can be

stack allocated). Others have improved and extended Park and

Goldberg’s work [12, 4]. Birkedal et al. [3] propose a region

allocation model, where regions are managed during compila-

tion. A type system is used to translate a functional program to

another functional program annotated with regions where val-

ues could be stored. Hanan [18] uses a type system to translate

a strongly typed functional program to an annotated functional

program, where the annotation is used for for stack allocation

rather than for region allocation.

Prior work on synchronization optimization has addressed

the problem of reducing the amount of synchronization [13,

20, 21]. These approaches assume that the mutual exclusion
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Figure 8: Percentage of user local objects allocated on the stack.
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ordering implied by the original synchronization is needed,

and so only attempt to reduce the number of such operations

without violating the original ordering. In contrast, our ap-

proach finds unnecessarymutual exclusion lock operations and

eliminates them.

There have been a number of parallel efforts on escape

analysis for Java [15, 23, 6, 1, 25, 5]. Bogda and Hölzle use set

constraints for computing thread-local objects [6]. Their sys-

tem is a bytecode translater, and uses replication of execution

paths as the means for eliminating unnecessary synchroniza-

tion. After replication, they convert synchronizedmethods that

access only thread-local objects into non-synchronized meth-

ods. This conversion, in general, breaks Java semantics—

since at the beginning and the end of a synchronized method

or a statement, the local memory has to be synchronized with

the main memory (see Section 6). Replication, however, offers

an opportunity for specializing an allocation site that generates

both thread-local and thread-global objects along different call

chains. They also summarize the effect of native methods (al-

though manually). Using the summary information, they im-

prove the precision of their analysis. Our approach can be

extended to include specialization and native method analysis.

Aldrich et al. describe a set of analyses for eliminating

unnecessary synchronization on multiple re-entries of a mon-

itor by the same thread, nested monitors, and thread-local ob-

jects [1]. They also remove synchronization operations, which

can break Java semantics. They claim that their approach,

however, should be safe for most well-written multithreaded

programs in Java, which assume a “looser synchronization”

model than what Java provides.

Program Execution percentage
time (sec) reduction

trans 5.2 7 %
jgl 18.8 23 %
jacorb 2.5 6 %
jolt 6.8 4 %
jobe 9.4 2 %
javacup 1.4 6 %
hashjava 6.4 5 %
toba 4.0 16 %
wingdis 18.0 15 %
pbob N/A 6 %

Table 3: Improvements in execution time

Blanchet uses type heights (which are integer values) to

encode how an object of one type can have references to other

objects or is a subtype of another object [5]. The escaping part

of an object is represented by the height of its type. He pro-

poses a two-phase (a backward phase and a forward phase)

flow-insensitive analysis for computing escape information.

He uses escape analysis, like our work, for both stack allo-

cation and synchronization elimination. For synchronization

elimination, before acquiring a lock on an object " , his al-

gorithm tests at runtime whether " is on the stack – if it is,

the synchronization is skipped. Our algorithm uses a separate

thread-local bit within each object, and can skip the synchro-

nization even for objects that are not stack allocatable (but are

thread local).

To reduce the size of finite-state models of concurrent Java

programs, Corbett uses a technique called virtual coarsening [10].

In virtual coarsening, invisible actions (e.g., updates to vari-

ables that are local or protected by a lock) are collapsed into

adjacent visible actions. Corbett uses a simple intraprocedural

pointer analysis (after method inlining) to identify the heap ob-

jects that are local to a thread, and also to identify the variables

that are guarded by various locks. Dolby’s analysis technique

for inlining of objects in C++ can also be extended to eliminate

synchronization in Java programs [14].

�UT � � 
 ��������� � �

In this paper, we have presented a new interprocedural algo-

rithm for escape analysis. Apart from using escape analysis for

stack allocation of objects, we have demonstrated an important

new application of escape analysis – eliminating unnecessary

synchronization in Java programs. Our approach uses a data

flow analysis framework and maps escape analysis to a sim-

ple reachability problem over a connection graph abstraction.

With a preliminary implementation of this algorithm, our static

Java compiler is able to detect a significant percentage of dy-

namically created objects as stack-allocatable, as high as 70%

in some cases. It is able to eliminate 11% to 92% of lock oper-

ations in our benchmarks (eliminating more than 50% of lock

operations in half of them). We observe overall performance

improvements ranging from 2% to 23% on our benchmarks,
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and find that most of these improvements come from savings

on lock operations on the thread-local objects, as these pro-

grams do not seem to incur a significant garbage collection

overhead due to relatively low memory usage. We expect to

improve these results with a more aggressive implementation

of our algorithm that treats native methods less conservatively,

and by applying our optimizations to the Java standard class

library routines as well. In the future, we also plan to extend

our algorithm to cover the more general problem of region-

based storage allocation, and to eliminate unnecessary sync

operations for flushing of local memory.

Interprocedural analysis in the presence of dynamic load-

ing and reloading of classes, as allowed in Java, is in general a

hard problem. We are currently working on extending our es-

cape analysis to Jalapeño, a dynamic Java compilation system

at IBM Research [8].
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