Chapter 6

Dependence and Data
Flow Models

The control flow graph and state machine models introduced in the previous chapter
capture one aspect of the dependencies among parts of a program. They explicitly
represent control flow but deemphasize transmission of information through program
variables. Data flow models provide a complementary view, emphasizing and making
explicit relations mvolving transmission of information.

Models of data flow and dependence in software were originally developed in the
field of compiler construction, where they were (and still are) used to detect opportuni-
ties for optimization. They also have many applications in software engineering, from
testing to refactoring to reverse engineering. In test and analysis, applications range
from selecting test cases based on dependence information (as described in Chap-
ter 13) to detecting anomalous patterns that indicate probable programming errors,
such as uses of potentially uninitialized values. Moreover, the basic algorithms used
to construct data flow models have even wider application and are of particular interest
because they can often be quite efficient in time and space.

6.1 Definition-Use Pairs

The most fundamental class of data flow model associates the point in a program where
a value is produced (called a “definition”) with the points at which the value may be
accessed (called a “‘use™). Associations of definitions and uses fundamentally capture
the flow of information through a program, from input to output.

Definitions occur where variables are declared or initialized, assigned values, or
received as parameters, and in general at all statements that change the value of one or
more variables. Uses occur in expressions, conditional statements, parameter passing,
return statements, and in general in all statements whose execution extracts a value
from a variable. For example, in the standard greatest common divisor (GCD) algo-
rithm of Figure 6.1, line 1 contains a definition of parameters x and y, line 3 contains
a use of variable y, line 6 contains a use of variable tmp and a definition of variable y,

77

"
.

e 2t g

78 Dependence and Data Flow Models

A Kill

A definition-clear
path

A direct data
dependence

1 public int ged(int x, inty) { /M Ardefxy

2 int tmp; /" deftmp Y/

3 while (y 1= 0) { /*B:usey Y/

4 tmp=x%Yy,; /" C: use x,y, def\tmp */
5 X=Y; /" D:usey, defx 7/

6 y = tmp; /* E:usetmp, defy */
7 }

8 return x; /* F:use x ¥/

9 }

Figure 6.1: Java implementation of Euclid’s algorithm for calculating the greatest
common denominator of two positive integers. The labels A—F dre provided to relate
statements in the source code to graph nodes in subsequent figures.

and the return in line 8 is a use of variable x.

Each definition-use pair associates a definition of a variable ‘(e.g., the assignment
to y in line 6) with a use of the same variable (e.g., the expression y != 0 in line 3). A
single definition can be paired with more than one use, and vice versa. For example,
the definition of variable y in line 6 is paired with a use in line 3 (in the loop test), as
well as additional uses in lines 4 and 5. The definition of x in line 5 is associated with
uses in lines 4 and 8.

A definition-use pair is formed only if there is a program path on which the value
assigned in the definition can reach the point of use without being overwritten by an-
other value. If there is another assignment to the same value on the path, we say that
the first definition is killed by the second. For example, the declaration of tmp in line 2
is not paired with the use of tmp in line 6 because the definition af line 2 is killed by the
definition at line 4. A definition-clear path is a path from definition to use on which the
definition 1s not killed by another definition of the same variable. For example, with
reference to the node labels in Figure 6.2, path E,B,C,Dis a definition-clear path from
the definition of y in line 6 (node E of the control flow graph) to the use of y in line 5
(node D). Path A,B,C,D,E is not a definition-clear path with respect to tmp because
of the intervening definition at node C.

Definition-use pairs record a kind of program dependence, sometimes called direct
data dependence. These dependencies can be represented in the form of a graph, with
a directed edge for each definition-use pair. The data dependence graph representation
of the GCD method is illustrated in Figure 6.3 with nodes that are program statements.
Different levels of granularity are possible. For use in testing, nodes are typically basic
blocks. Compilers often use a finer-grained data dependence representation, at the
level of individual expressions and operations, to detect opportunities for performance-
improving transformations.

The data dependence graph in Figure 6.3 captures only dependence through flow
of data. Dependence of the body of the loop on the predicate gaverning the loop is not
represented by data dependence alone. Control dependence can also be represented
with a graph, as in Figure 6.5, which shows the control dependencies for the GCD

Definition-Use Pairs

79

:—v~{ public int gcd]_-ﬁ

RSN N V. S SN

i (a) “
‘ | public int ged(int X, int y) { ‘
| | inttmp; def = {x, y, tmp }
\ L . juse={}
' |
e - W - .

|

|

!

— i

{ Elvh“e (y = 0) @,w_, ,
¢ |

\‘ —— e e S 0 W
‘ 1 use = {y} ‘
~———Falsg———]

|/ True |
| |
. A e e ‘
o ®
tmp=x%y, N
| ~— _ldef={tmp} 1 i
‘ | |use={x,y} |
e . _ort¥e N |
| ‘/ D \
X=y; 7\/
‘ N ldef={x} f
' use = {y}
3 |
w Pee = s |
‘ E (]
L y=tmp; U o
’ } N~ def={y) [
! || use = {tmp}
[W asea ___J '
I P |
I | /) Iz E A
L. 2 return x; A ,
‘ }
; v . _ [aef=9¢ '
‘ use = {x} \

Figure 6.2: Control flow graph of GCD method in Figure 6.1.

80 Dependence and Data Flow Models

A dominator

A immediate
dominator

[publi;int ged(int %, int y) { A
int tmp;
L el S
saa¥eolal gl ! IS eafors ! 47 3 U S| T
I/ (;y \\ \
| h 4 | !
o (mp=x%y; G, SN |
! | i \I) :
| ~tmp __y P v
| ¥: |1 I W
A \ S : g 1
1 = 5 =\ ¥)
| lg=ime; I - N :
| ’ N [|
[[|
I ;4 |
B i A s, SIS,
while (y I=0) B X=Y; D,:
\\{ N e *l > 8
S = R B ____X__‘ 1
\ 1
| |
. /3| R—
return x; F)

J

Figure 6.3: Data dependence graph of GCD method in Figure 6.1, with nodes for
statements corresponding to the control flow graph in Figure 6.2. Each directed edge
represents a direct data dependence, and the edge label indicates the variable that
transmits a value from the definition at the head of the edge to the use at the tail of the
edge.

method. The control dependence graph shows direct control dependencies, that is,
where execution of one statement controls whether another is executed. For example,
execution of the body of a loop or if statement depends on the result of a predicate.

Control dependence differs from the sequencing information captured in the control
flow graph. The control flow graph imposes a definite order on execution even when
two statements are logically independent and could be executed in either order with the
same results. If a statement is control- or data-dependent on another, then their order
of execution is not arbitrary. Program dependence representations typically include
both data dependence and control dependence information in a single graph with the
two kinds of information appearing as different kinds of edges among the same set of
nodes.

A node in the control flow graph that is reached on every execution path from entry
point to exit is control dependent only on the entry point. For any other node N, reached
on some but not all execution paths, there is some branch that controls execution of NV in
the sense that, depending on which way execution proceeds from the branch, execution
of NV either does or does not become inevitable. It is this notion of control that control
dependence captures.

The notion of dominators in a rooted, directed graph can be used to make this
intuitive notion of “controlling decision” precise. Node M dominates node NV if every
path from the root of the graph to N passes through M. A node will typically have
many dominators, but except for the root, there is a unique immediate dominator of
node N, which is closest to N on any path from the root and which is in turn dominated

Def&itign-Use Pair_s 81

— public int ged- : i —

| ‘_|L] ’
{

(puslic it godint) {— TA)
| nttmp: |
; |
|
i AT Ie. CONNEEUNIN S,
Lo S |
i SN2 |
l ¥ 1 v [
| @Q =X % y;,_ - \’\C/ ' '
| | Sl Vil | |
| .fx_é Y, /9) [‘
| [' ‘ i |
I —
1 |
T R

Figure 6.4: Calculating control dependence for node E in the control flow graph of
the GCD method. Nodes C, D, and E in the gray region are post-dominated by E;
that is, execution of E is inevitable in that region. Node B has successors both within
and outside the gray region, so it controls whether E is executed, thus E is control-
dependent on B.

by all the other dominators of V. Because each node (except the root) has a unique
immediate dominator, the immediate dominator relation forms a tree.

The point at which execution of a node becomes inevitable is related to paths from
a node to the end of execution — that is, to dominators that are calculated in the re-
verse of the control flow graph, using a special “exit” node as the root. Dominators
in this direction are called post-dominators, and dominators in the normal direction of
execution can be called pre-dominators for clarity.

We can use post-dominators to give a more precise definition of control depen-
dence. Consider again a node N that is reached on some but not all execution paths.
There must be some node C with the following property: C has at least two succes-
sors in the control flow graph (i.e., it represents a control flow decision); C is not
post-dominated by N (N is not already inevitable when C is reached); and there is a
successor of C in the control flow graph that is post-dominated by N. When these con-
ditions are true, we say node N is control-dependent on node C. Figure 6.4 illustrates
the control dependence calculation for one node in the GCD example, and Figure 6.5
shows the control dependence relation for the method as a whole.

A post-dominator

A pre-dominator

82 Dependence and Data Flow Models

/;Jutglic in{ g_cd(in{x, inty){ 5«3

\int tmp;
A
‘ D

(WHii'e (y1=0) B (return x; \F'

‘ A I S |

{ D!

(tmp=x%y; ~ (c (y = tmp; E)

A reaching definition

Figure 6.5: Control dependence tree of the GCD method. The loop test and the return
statement are reached on every possible execution path, so they are control-dependent
only on the entry point. The statements within the loop are contrbl-dependent on the
loop test.

6.2 Data Flow Analysis

Definition-use pairs can be defined in terms of paths in the program control flow graph.
As we have seen in the former section, there is an association (d, i) between a definition
of variable v at d and a use of variable v at « if and only if there i at least one control
flow path from d to « with no intervening definition of v. We also say that definition
v reaches u, and that vy is a reaching definition at u. If, on the ather hand, a control
flow path passes through another definition e of the same variable v, we say that v, kills
v4 at that point. ‘

It would be possible to compute definition-use pairs by searching the control flow
graph for individual paths of the form described above. However, even if we consider
only loop-free paths, the number of paths in a graph can be exponentially larger than
the number of nodes and edges. Practical algorithms therefore cannot search every
individual path. Instead, they summarize the reaching definitions at a node over all the
paths reaching that node. ‘

An efficient algorithm for computing reaching definitions (and several other prop-
erties, as we will see below) is based on the way reaching definitions at one node are
related to reaching definitions at an adjacent node. Suppose we are calculating the
reaching definitions of node n, and there is an edge (p,n) from an immediate predeces-
sor node p. We observe:

e If the predecessor node p can assign a value to variable v, then the definition v,
reaches n. We say the definition v, is generated at p.

e If a definition vy of variable v reaches a predecessor node p, and if v is not
redefined at that node (in which case we say the v, is killed at that point), then
the definition is propagated on from p to n.

Data Flow Analysis

These observations can be stated in the form of an equation describing sets of reach-
ing definitions. For example, reaching definitions at node £ in Figure 6.2 are those at
node D, except that D adds a definition of y and replaces (kills) an earlier definition of
y:

Reach(E) = (Reach(D)\ {xa}) U {xp}

This rule can be broken down into two parts to make it a little more intuitive and
more efficient to implement. The first part describes how node E receives values from
its predecessor D, and the second describes how it modifies those values for its succes-
sors:

II

Reach(FE)
ReachOut(D)

ReachOut(D)
(Reach(D)\ {xa})U{xp}

In this form, we can easily express what should happen at the head of the while
loop (node B in Figure 6.2), where values may be transmitted both from the beginning
of the procedure (node A) and through the end of the body of the loop (node E). The
beginning of the procedure (node A) is treated as an initial definition of parameters
and local variables. (If a local variable is declared but not initialized, it is treated as a
definition to the special value “uninitialized.”)

Reach(B) = ReachOut(A)UReachOut(E)
ReachOut(A) = gen(A) = {xa,ya,tmpu}
ReachOut(E) = (Reachin(E)\ {ya})J{yve}

In general, for any node n with predecessors pred(n),

Reach(n) = |J ReachOut(m)
mé&pred(n)
ReachOut(n) = (Reachln(n)\ kill(n))Ugen(n)

Remarkably, the reaching definitions can be calculated simply and efficiently, first
initializing the reaching definitions at each node in the control flow graph to the empty
set, and then applying these equations repeatedly until the results stabilize. The algo-
rithm is given as pseudocode in Figure 6.6.

84

Dependence and Data Flow Models

Algorithm Reaching definitions

Input: A control flow graph G = (nodes, edges)

pred(n) = {m € nodes | (m,n) € edges}
succ(= {n € nodes | (m,n) € edges}
gen(n) = {v,} if variable v is defined at n, otherwise {}

kill(n) = all other definitions of v if v is defined at n, otherwise {}

Output: Reach(n) = the reaching definitions at node n

for n € nodes loop
ReachOut(n) = {} ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList\ {n} ;

oldVal = ReachOut(n) ;

// Apply flow equations, propagating values from predecessars
Reach(n) = Unepred(ny REAChOUt(m);
ReachOut(n) = (Reach(n) \ kill(n)) U gen(n) ;
it (ReachOut(n) # oldVval) then
// Propagate changed value to successor nodes
workList = workListU succ(n)
end if;
end loop;

Figure 6.6: An iterative work-list algorithm to compute reachino definitions by apply-
ing each flow equation until the solution stabilizes.

6.3 Classic Analyses: Live and Avalil

Reaching definition is a classic data flow analysis adapted from compiler construction
to applications in software testing and analysis. Other classical data flow analyses
from compiler construction can likewise be adapted. Moreover, they follow a common
pattern that can be used to devise a wide variety of additional analyses.

Available expressions is another classical data flow analysis, used in compiler con-
struction to determine when the value of a subexpression can be saved and reused rather
than recomputed. This is permissible when the value of the subexpression remains un-
changed regardless of the execution path from the first computation to the second.

Available expressions can be defined in terms of paths in the control flow graph. An
expression is available at a point if, for all paths through the control flow graph from
procedure entry to that point, the expression has been computed and not subsequently
modified. We say an expression is generated (becomes available) where it is computed
and is killed (ceases to be available) when the value of any part of it changes (e.g.,
when a new value is assigned to a variable in the expression).

As with reaching definitions, we can obtain an efficient analysis by describing the
relation between the available expressions that reach a node in the control flow graph
and those at adjacent nodes. The expressions that become available at each node (the
gen set) and the expressions that change and cease to be available (the kill set) can be
computed simply, without consideration of control flow. Their propagation to a node
from its predecessors is described by a pair of set equations:

Avail(n) = (| AvailOut(m)
méepred(n)
AvailOut(n) = (Avail(n)\ kill(n)) U Gen(n)

The similarity to the set equations for reaching definitions is striking. Both propa-
gate sets of values along the control flow graph in the direction of program execution
(they are forward analyses), and both combine sets propagated along different control
flow paths. However, reaching definitions combines propagated sets using set union,
since a definition can reach a use along any execution path. Available expressions com-
bines propagated sets using set intersection, since an expression is considered available
at a node only if it reaches that node along all possible execution paths. Thus we say
that, while reaching definitions is a forward, any-path analysis, available expressions
is a forward, all-paths analysis. A work-list algorithm to implement available expres-
sions analysis is nearly identical to that for reaching definitions, except for initialization
and the flow equations, as shown in Figure 6.7.

Applications of a forward, all-paths analysis extend beyond the common subexpres-
sion detection for which the Avail algorithm was originally developed. We can think
of available expressions as tokens that are propagated from where they are generated
through the control flow graph to points where they might be used. We obtain different
analyses by choosing tokens that represent some other property that becomes true (is
generated) at some points, may become false (be killed) at some other points. and 1s

forward anaysis
any-path analysis

all-paths analysis

Classic Analyses: Live and Avail 85

86 Dependence and Data Flow Models

Algorithm Available expressions

Input: A control flow graph G = (nodes, edges), with a distingui‘.?hed root node start.
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = all expressions e computed at node n
kill(n) = expressions e computed anywhere, whose value is changed at n;
kil (start) is the set of all e.

Qutput: Avail(n) = the available expressions at node n

for n € nodes loop
AvailOut(n) = set of all ¢ defined anywhere ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList\ {n} ;
oldVal = AvailOut(n) ;
// Apply flow equations, propagating values from predecessors
Avail(n) = (\neprea(nyAvailOut(m);
AvailOut(n) = (Avail(n) \ kill(n)) U gen(n) ;
if (AvailOut(n) # oldVal) then
// Propagate changes to successors
workList = workList Usucc(n)
end if;
end loop;

Figure 6.7: An iterative work-list algorithm for computing available expressions.

Classic Analyses: Live and Avail

&7

1 /** A trivial method with a potentially uninitialized variable.
2 * Java compilers reject the program. The compiler uses
3 * data flow analysis to determine that there is a potential
4 * (syntactic) execution path on which k is used before it
5 * has been assigned an initial value.
6 Y/
7 static void questionable() {
8 intk;
9 for (int i=0; i < 10; ++i) {
10 if (someCondition(i)) {
11 k=0;
12 } else {
13 K+=1i;
14 }
15 }
16 System.out.printin(k);
17 }
18}

Figure 6.8: Function questionable (repeated from Chapter 3) has a potentially unini-
tialized variable, which the Java compiler can detect using data flow analysis.

evaluated (used) at certain points in the graph. By associating appropriate sets of tokens
in gen and kill sets for a node, we can evaluate other properties that fit the pattern

“G occurs on all execution paths leading to U, and there is no intervening
occurrence of K between the last occurrence of G and U.”

G, K, and U can be any events we care to check, so long as we can mark their occur-
rences in a control flow graph.

An example problem of this kind is variable initialization. We noted in Chapter 3
that Java requires a variable to be initialized before use on all execution paths. The
analysis that enforces this rule is an instance of Avail. The tokens propagated through
the control flow graph record which variables have been assigned initial values. Since
there is no way to “uninitialize” a variable in Java, the kill sets are empty. Figure 6.8
repeats the source code of an example program from Chapter 3. The corresponding
control flow graph is shown with definitions and uses in Figure 6.9 and annotated with
gen and kill sets for the initialized variable check in Figure 6.10.

Reaching definitions and available expressions are forward analyses; that is, they
propagate values in the direction of program execution. Given a control flow graph
model, it is just as easy to propagate values in the opposite direction, backward from
nodes that represent the next steps in computation. Backward analyses are useful for
determining what happens after an event of interest. Live variables is a backward
analysis that determines whether the value held in a variable may be subsequently

backward
analysis

88 Dependence and Data Flow Models

r ————————{ static void questionable() { - —
! ‘ |

’ ——————— ——
int k; (A
| " __ |aet=g
| | |use =
|
| - B | SIS
P—— (B)
for (int i=0; =5
e def = {i}
’ use ={}
| |
e e W
| /_< 10 O o 8.
—— — I ; /:‘_ —_— S
. . [def=p)|
| | tuse ={i ‘
J true |
J .
| (s e D) | |
‘ f | if (someCondition(i)) { = ‘ |
| NP -~ |
' ' use = {i} ‘
| = true— o WU G,
e e e oo ‘
false/, 7 ' o ‘(é\l ‘else F)
k=0 = k=10 | = |
[e . def = {k} v fdeff= {k} w
|| o use={} use = {i.k} |
1 Min——— - e
1 N [||
1 SRS S T kIl
‘ | I ++i)} G o B N |10 WSS
| . [def={} |
1 l use = {i} ‘
S 7 7‘_/ System.out.printin(k); 7_\/?-!/
| S N I- = = |
' — — use = {k} I

Figure 6.9: Control flow graph of the source code in Figure 6.8, annotated with vari-
able definitions and uses.

1
]
!
!
|
{

