~ Classic Analyses: Live and Avail

= — e lrs'iaiic_v_oid-qf.lestionable(j{ N T —— —
R =4E] .

— — - ——,
/intk', .J\) |
P TES. STE—
(for (int i=0; &)
- - S— L - E——— |
cen e o ey (e)— —
true
2 i, e
(if(someCondition(D{ (PB)
- true g -false \ |
@ (= Ol
falsel{k_o'} {k += i} g |
i = {fger=g] = ——{gen=fg _}
e W
s r |G =
AL [gen=7 -~/ |
[System.out printin(k); () '

Figure 6.10: Conrrol flow graph of the source code in Figure 6.8, annotated with gen
and kill sets for checking variable initialization using a forward, all-paths Avail anal-
vsis. (Empry gen and kill sets are omitted.) The Avail set flowing from node G ro node
C will be {i,k}, but the Avail ser flowing from node B to node C is {i}. The all-paths
analysis intersects these values, so the resulting Avail(C) is {i}. This value propagates
through nodes C and D to node F, which has a use of k as well as a definition. Since
k & Avail(F), a possible use of an uninitialized variable is detected.

90 Dependence and Data Flow Models

used. Because a variable is considered live if there is any possible execution path on
which it is used, a backward, any-path analysis is used.

A variable is live at a point in the control flow graph if, on some execution path, its
current value may be used before it is changed. Live variables analysis can be expressed
as set equations as before. Where Reach and Avail propagate valles to a node from its
predecessors, Live propagates values from the successors of a node. The gen sets are
variables used at a node, and the kill sets are variables whose values are replaced. Set
union is used to combine values from adjacent nodes, since a variable is live at a node
if it is live at any of the succeeding nodes.

Live(n) = U LiveQut(m) !
mEsuccn) i
LiveOut(n) = (Live(n)\Kill(n))UGen(n) f

These set equations can be implemented using a work-list |algorithm analogous !
to those already shown for reaching definitions and available expressions, except that |
successor edges are followed in place of predecessors and vice versa.

Like available expressions analysis, live variables analysis iy of interest in testing
and analysis primarily as a pattern for recognizing properties of a certain form. A
backward, any-paths analysis allows us to check properties of the following form:

“After D occurs, there is at least one execution path on Which G oceurs
with no intervening occurrence of K.”

Again we choose tokens that represent properties, using gen sety to mark occurrences
of G events (where a property becomes true) and kill sets to mark occurrences of K
events (where a property ceases to be true).

One application of live variables analysis is to recognize useless definitions, that
is, assigning a value that can never be used. A useless definitian is not necessarily a
program ertor, but is often symptomatic of an error. In scripting languages like Perl and
Python, which do not require variables to be declared before use, a useless definition
typically indicates that a variable name has been misspelled, as in the common gateway
interface (CGI) script of Figure 6.11.

We have so far seen a forward, any-path analysis (reaching definitions), a forward,
all-paths analysis (available definitions), and a backward, any-path analysis (live vari-
ables). One might expect, therefore, to round out the repertoire of patterns with a
backward, all-paths analysis, and this is indeed possible. Since there is no classical
name for this combination, we will call it “inevitability” and use it for properties of the
form

“After D occurs, G always occurs with no intervening occurrence of K
or, informally,

“D inevitably leads to G before K™

Examples of inevitability checks might include ensuring that interrupts are reenabled
after executing an interrupt-handling routine in low-level code, files are closed after
opening them, and so on.

92 __ Dependence and Data Flow Models

When Perl is running in taint mode, it tracks the sources from which each variable
value was derived, and distinguishes between safe and tainted data. Tainted data 1s any
input (e.g., from a Web form) and any data derived from tainted data. For example,
if a tainted string is concatenated with a safe string, the result is 4 tainted string. One
exception is that pattern matching always retumns safe strings, even when matching
against tainted data — this reflects the common Perl idiom in which pattern matching
is used to validate user input. Perl’s taint mode will signal a program error if tainted
data is used in a potentially dangerous way (e.g., as a file name ta/be opened).

Perl monitors values dynamically, tagging data values and propagating the tags
through computation. Thus, it is entirely possible that a Perl s¢ript might run with-
out errors in testing, but an unanticipated execution path might trigger a taint mode
program error in production use. Suppose we want to perform a similar analysis, but
instead of checking whether “tainted” data is used unsafely on a particular execution,
we want to ensure that tainted data can never be used unsafely on any execution. We
may also wish to perform the analysis on a language like C, for which run-time tagging
is not provided and would be expensive to add. So, we can consitler deriving a conser-
vative, static analysis that is like Perl’s taint mode except that it considers all possible
execution paths.

A data flow analysis for taint would be a forward, any-path analysis with tokens
representing tainted variables. The gen set at a program point wolild be a set containing
any variable that is assigned a tainted value at that point. Sets of tlinted variables would
be propagated forward to a node from its predecessors. with set union where a node in
the control flow graph has more than one predecessor (e.g., the head of a loop).

There 1s one fundamental difference between such an analysis and the classic data
flow analyses we have seen so far: The gen and kill sets associated with a program
point are not constants. Whether or not the value assigned to a variable is tainted (and
thus whether the variable belongs in the gen set or in the kill set) depends on the set
of tainted variables at that program point, which will vary dufing the course of the
analysis.

There is a kind of circularity here — the gen set and kill set depend on the set of
tainted variables, and the set of tainted variables may in turn depend on the gen and kill
set. Such circularities are common in defining flow analyses, and there is a standard
approach to determining whether they will make the analysis tnsound. To convince
ourselves that the analysis is sound, we must show that the output values computed by
each flow equation are monotonically increasing functions of the input values. We will
say more precisely what “increasing” means below.

The determination of whether a computed value is tainted will be a simple function
of the set of tainted variables at a program point. For most op¢rations of one or more
arguments, the output is tainted if any of the inputs are tainted. As in Perl, we may
designate one or a few operations (operations used to check an input value for validity)
as taint removers. These special operations always return an untainted value regardless
of their inputs.

Suppose we evaluate the taintedness of an expression with the input set of tainted
variables being {a,b}, and again with the input set of tainted variables being {a, b,c}.
Even without knowing what the expression is, we can say wlith certainty that if the
expression is tainted in the first evaluation, it must also be tainted in the second evalu-

From Execution to Conservative Flow Analysis

{a.b} {a.c} {bc}

Figure 6.12: The powerset lattice of set {a,b,c}. The powerset contains all subsets of
the set and is ordered by set inclusion.

ation, in which the set of tainted input variables is larger. This also means that adding
elements to the input tainted set can only add elements to the gen set for that point, or
leave it the same, and conversely the kill set can only grow smaller or stay the same.
We say that the computation of tainted vaniables at a point increases monotonically.

To be more precise, the monotonicity argument is made by arranging the possible
values in a lattice. In the sorts of flow analysis framework considered here, the lattice
is almost always made up of subsets of some set (the set of definitions, or the set of
tainted vanables, etc.); this is called a powerset lattice because the powerset of set A is
the set of all subsets of A. The bottom element of the lattice is the empty set, the top is
the full set, and lattice elements are ordered by inclusion as in Figure 6.12. 1f we can
follow the arrows in a lattice from element x to element y (e.g., from {a)} 10 {a,b,c}),
then we say v > x. A function f is monotonically increasing if

yzx= fly) 2 flx)

Not only are all of the individual flow equations for taintedness monotonic in this
sense, but in addition the function applied to merge values where control flow paths
come together 15 also monotonic:

A2B=AUC2BUC

If we have a set of data flow equations that is monotonic in this sense, and if we
begin by initializing all values to the bottom element of the lattice (the empty set in this
case), then we are assured that an iterative data flow analysis will converge on a unique
minimum solution to the flow equations.

powerset lallice

94 Dependence and Data Flow Models

The standard data flow analyses for reaching definitions, livee variables, and avail-
able expressions can all be justified in terms of powerset lattices. In the case of availzble
expressions, though, and also in the case of other all-paths analyses such as the one we
have called “inevitability,” the lattice must be flipped over, with the empty set at the top
and the set of all variables or propositions at the bottom. (This is why we used the set
of all tokens, rather than the empty set, to initialize the Avail sets in Figure 6.7.)

6.5 Data Flow Analysis with Arrays and Pointers

The models and flow analyses described in the preceding section have been limited
to simple scalar vaniables in individual procedures. Arrays and pointers (including
object references and procedure arguments) introduce additionil issues, because it is
not possible in general to determine whether two accesses refer 1o the same storage
location. For example, consider the following code fragment: |

1 a[|] = 13;

2 k= afil;

Are these two lines a definition-use pair? They are if the values of i and | are equal,
which might be true on some executions and not on others. A static analysis cannot. in
general, determine whether they are always, sometimes, or nevér equal, so a source of
imprecision is necessarily introduced into data flow analysis.

Pointers and object references introduce the same issue, ofteh in less obvious ways.
Consider the following snippet:
aj2] = 42;
i=b{2);

[

It scems that there cannot possibly be a definition-use pair involving these two
lines, since they involve none of the same variables. However, arrays in Java are dy-
namically allocated objects accessed through pointers. Pointers of any kind introduce
the possibility of aliasing, that is, of two different names refejring to the same stor-
age location, For example, the two lines above might have becn part of the following
program fragment:
int[]a=new int[2];

1
2 int[]o=a;
3 al2] = 42;
4 i=bf2];
A alias Here a and b are aliases, two different names for the same dynamically allocated
array object, and an assignment to part of a is also an assignment to part of b.
The same phenomenon, and worse, appears in languages with lower-level pointer
manipulation. Perhaps the most egregious example is pointer asithmetic in C:
1 p = &b;
2 P+ 1) =k;

