94 Dependence and Data Flow Models

The standard data flow analyses for reaching definitions, livee variables, and avail-
able expressions can all be justified in terms of powerset lattices. In the case of availzble
expressions, though, and also in the case of other all-paths analyses such as the one we
have called “inevitability,” the lattice must be flipped over, with the empty set at the top
and the set of all variables or propositions at the bottom. (This is why we used the set
of all tokens, rather than the empty set, to initialize the Avail sets in Figure 6.7.)

6.5 Data Flow Analysis with Arrays and Pointers

The models and flow analyses described in the preceding section have been limited
to simple scalar vaniables in individual procedures. Arrays and pointers (including
object references and procedure arguments) introduce additionil issues, because it is
not possible in general to determine whether two accesses refer 1o the same storage
location. For example, consider the following code fragment: |

1 a[|] = 13;

2 k= afil;

Are these two lines a definition-use pair? They are if the values of i and | are equal,
which might be true on some executions and not on others. A static analysis cannot. in
general, determine whether they are always, sometimes, or nevér equal, so a source of
imprecision is necessarily introduced into data flow analysis.

Pointers and object references introduce the same issue, ofteh in less obvious ways.
Consider the following snippet:
aj2] = 42;
i=b{2);

[

It scems that there cannot possibly be a definition-use pair involving these two
lines, since they involve none of the same variables. However, arrays in Java are dy-
namically allocated objects accessed through pointers. Pointers of any kind introduce
the possibility of aliasing, that is, of two different names refejring to the same stor-
age location, For example, the two lines above might have becn part of the following
program fragment:
int[]a=new int[2];

1
2 int[]o=a;
3 al2] = 42;
4 i=bf2];
A alias Here a and b are aliases, two different names for the same dynamically allocated
array object, and an assignment to part of a is also an assignment to part of b.
The same phenomenon, and worse, appears in languages with lower-level pointer
manipulation. Perhaps the most egregious example is pointer asithmetic in C:
1 p = &b;
2 P+ 1) =k;

It 15 impossible to know which variable is defined by the second line. Even if
we know the value of i, the result is dependent on how a particular compiler arranges
variables in memory.

Dynamic references and the potential for aliasing introduce uncertainty into data
flow analysis. In place of a definition or use of a single variable, we may have a
potential definition or use of a whole set of variables or locations that could be aliases
of each other. The proper treatment of this uncertainty depends on the use to which
the analysis will be put. For example, if we seek strong assurance that v is always
initialized before it is used. we may not wish to treat an assignment to a potential alias
of v as initialization, but we may wish to treat a use of a potential alias of v as a use of
V.

A useful mental trick for thinking about treatment of aliases is to translate the un-
certainty introduced by aliasing into uncertainty introduced by control flow. After all.
data flow analysis already copes with uncertainty about which potential execution paths
will actually be taken; an infeasible path in the control flow graph may add elements
to an any-paths analysis or remove results from an all-paths analysis. It is usuvally ap-
propriate to treat uncertainty about aliasing consistently with uncertainty about control
flow. For example. considering again the first example of an ambiguous reference:

1 afi] = 13;

2 k = al];

We can imagine replacing this by the equivalent code:
afi] = 13;
if (i==j) {
k = afi];
} else {
k=alll;
}

oo s W =

In the (imaginary) transformed code, we could treat all array references as distinet,
because the possibility of aliasing is fully expressed in control flow. Now, if we are
using an any-path analysis like reaching definitions, the potential aliasing will result
in creating a definition-use pair. On the other hand, an assignment to afj] would not
kill a previous assignment to ali]. This suggests that, for an any-path analysis, gen sets
should include everything that might be referenced, but kill sets should include only
what is definitely referenced.

If we were using an all-paths analysis, like available expressions, we would obtain
a different result. Because the sets of available expressions are intersected where con-
trol low merges, a definition of a[i] would make only that expression, and none of its
potential aliases, available. On the other hand, an assignment to alj] would kill a[i]. This
suggests that, for an all-paths analysis, gen sets should include only what is definitely
referenced, but kill sets should include all the possible aliases.

Even in analysis of a single procedure, the effect of other procedures must be con-
sidered at least with respect to potential aliases. Consider, for example, this fragment
of a Java method:

Data Flow Analysis with Arrays and Pointers |

|93

96 Dependence and Data Flow Models

context-sensitive
analysis

public void transfer (Custinfo fromCust, Custinfo toCust) {

1

2

3 PhoneNum fromHome = fromCust.gethomePhone(),
4 PhoneMNum fromWork = fromCust.getworkPhone();
5
6
7

PhoneNum toHome = toCust.gethomePhone();
PhoneMum toWork = toCust.getworkPhone();

We cannot determine whether the two arguments fromCust and toCust are refer-
ences to the same object without looking at the context in which this method is called.
Moreover, we cannot determine whether fromHome and fromWork are (or could be)
references to the same object without more information about how Custinfo objects are
treated elsewhere in the program.

Sometimes it is sufficient to treat all nonlocal information as tnknown. For ex-
ample, we could treat the two Custinfo objects as potential aliases bf each other, and
similarly treat the four PhoneNum objects as potential aliases. Sometimes, though,
large sets of aliases will result in analysis results that are so imprécise as to be use-
less. Therefore data flow analysis is often preceded by an interprogedural analysis to
calculate sets of aliases or the locations that each pointer or referende can refer to.

6.6 Interprocedural Analysis

Most important program properties involve more than one procedure, and as mentioned
earlier, some interprocedural analysis (e.g.. to detect potential aliases) is often required
as a prelude even to intraprocedural analysis. One might expect the interprocedural
analysis and models to be a natural extension of the intraprocedural analysis, following
procedure calls and returns like intraprocedural control flow. Uifortunately, this is
seldom a practical option.

If we were to extend data flow models by following control flow paths through
procedure calls and retumns, using the control flow graph model and the call graph
model together in the obvious way, we would observe many spurious paths. Figure 6.13
illustrates the problem: Procedure foo and procedure bar each make a call on procedure
sub. When procedure call and return are treated as if they were normal control flow, in
addition to the execution sequences (A,X.Y,B) and (C.X,Y,D), the combined graph
contains the impossible paths (A, X,Y,D) and (C,X,Y,B).

It is possible to represent procedure calls and returns precisely. for example by
making a copy of the called procedure for each point at which it i3 called. This would
result in a context-sensitive analysis. The shortcoming of context sensitive analysis
was already mentioned in the previous chapter: The number of different contexts in
which a procedure must be considered could be exponentially larger than the number
of procedures. In practice, a context-sensitive analysis can be practical for a small
group of closely related procedures (e.g., a single Java class), but is almost never a
practical option for a whole program.

Some interprocedural properties are quite independent of context and lend them-
selves naturally to analysis in a hierarchical, piecemneal fashion. Such a hierarchical

-~ [Fool] B
= o s .
A J C |
— Sub -
S - T | r————
lﬂb{"') return/ X) _return sub(“'}.'
7 =
—Y T ¥
B (Y D

Figure 6.13: Spurious execution paths result when procedure calls and returns are
treated as normal edges in the control flow graph. The path (A.X.Y,D) appears in the
combined graph, but it does not correspond to an actual execution order.

analysis can be both precise and efficient. The analyses that are provided as part of
normal compilation are often of this sort. The unhandled exception analysis of Java is
a good example: Each procedure (method) is required to declare the exceptions that it
may throw without handling. If method M calls method N in the same or another class,
and if N can throw some exception, then M must either handle that exception or de-
clare that it, too, can throw the exception. This analysis is simple and efficient because,
when analyzing method M, the internal structure of N is irrelevant; only the results of
the analysis at N (which. in Java, is also part of the signature of N) are needed.

Two conditions are necessary to obtain an efficient, hierarchical analysis like the ex-
ception analysis routinely carried out by Java compilers. First, the information needed
to analyze a calling procedure must be small: It must not be proportional either to the
size of the called procedure, or to the number of procedures that are directly or in-
directly called. Second, it is essential that information about the called procedure be
independent of the caller; that is, it must be context-independent. When these two con-
ditions are true, it is straightforward to develop an efficient analysis that works upward
from leaves of the call graph. (When there are cycles in the call graph from recursive
or mutually recursive procedures, an iterative approach similar to data flow analysis
algorithms can usually be devised.)

Unfortunately, not all important properties are amenable to hierarchical analysis.
Potential aliasing information, which is essential to data flow analysis even within in-
dividual procedures. is one of those that are not. We have seen that potential aliasing
can depend in part on the arguments passed to a procedure, so it does not have the
context-independence property required for an efficient hierarchical analysis. For such
an analysis, additional sacrifices of precision must be made for the sake of efficiency.

Even when a property is context-dependent, an analysis for that property may be
context-insensitive. although the context-insensitive analysis will necessarily be less
precise as a consequence of discarding context information. At the extreme. a linear
time analysis can be obtained by discarding both context and control flow information.

Context- and flow-insensitive algorithms for pointer analysis typically treat each

Interprocedural Analysis

flow-insensitive

197

98

Dg@:nd@(:e and Data Flow Models

statement of a program as a constraint. For example, on encountering an assignment

i xX=Y,
where y is a pointer, such an algorithm simply notes that x may refer to any of the
same objects that y may refer to, References(x) 2 References(y) is a constraint that is
completely independent of the order in which statements are extcuted. A procedure
call, in such an analysis, is just an assignment of values to arguments. Using efficient
data structures for merging sets, some analyzers can process hundreds of thousands of
lines of source code in a few seconds. The results are imprecise, but stll much better
than the worst-case assumption that any two compatible pointers might refer to the
same object.

The best approach to interprocedural pointer analysis will offen lie somewhere be-
tween the astronomical expense of a precise, context- and flow-fensitive pointer anal-
ysis and the imprecision of the fastest context- and flow-insensitive analyses. Unfor-
tunately, there is not one best algorithm or tool for all uses. In adldition to context and
flow sensitivity, important design trade-offs include the granulanty of modeling refer-
ences (e.g., whether individual fields of an object are disunguished) and the granulanty
of modeling the program heap (that is, which allocated objects lire distinguished from
each other).

Summary

Data flow models are used widely in testing and analysis, and the data flow analysis
algorithms used for deriving data flow information can be adapted to additional uses.
The most fundamental model, complementary to models of control flow, represents the
ways values can flow from the points where they are defined (computed and stored) to
points where they are used.

Data flow analysis algorithms efficiently detect the presence of certain patterns in
the control flow graph. Each pattern involves some nodes that initiate the pattern and
some that conclude it, and some nodes that may interrupt it., The name “data flow
analysis” reflects the historical development of analyses for ¢ompilers, but patterns
may be used to detect other control flow patterns.

An any-path analysis determines whether there is any control flow path from the
initiation to the conclusion of a pattern without passing through an interruption. An all-
paths analysis determines whether every path from the initiation necessarily reaches a
concluding node without first passing through an interruption. Forward analyses check
for paths in the direction of execution, and backward analyses check for paths in the
opposite direction. The classic data flow algorithms can all be implemented using
simple work-list algorithms.

A limitation of data flow analysis, whether for the conventibnal purpose or to check
other properties, is that it cannot distinguish between a path that can actually be exs-
cuted and a path in the control low graph that cannot be followed in any execution. A
related limitation is that it cannot always determine whether tywo names or expressions
refer to the same object.

Fully detailed data flow analysis is usually limited to individual procedures or a few
closely related procedures (e.g., a single class in an object-ori¢nted program). Analyses

that span whole programs must resort to techniques that discard or summarize some
information about calling context, control flow, or both. If a property is independent
of calling context, a hierarchical analysis can be both precise and efficient. Potential
aliasing is a property for which calling context is significant. There is therefore a trade-
off between very fast but imprecise alias analysis techniques and more precise but much
more expensive techniques.

Further Reading

Data flow analysis techniques were originally developed for compilers, as a systematic
way to detect opportunities for code-improving transformations and to ensure that those
ransformations would not introduce errors into programs (an all-too-common experi-
ence with early optimizing compilers). The compiler construction literature remains
an important source of reference information for data flow analysis, and the classic
“Dragon Book™ text [ASUR6] is a good starting point.

Fosdick and Osterweil recognized the potential of data flow analysis to detect pro-
gram errors and anomalies that suggested the presence of errors more than two decades
ago [FO76]. While the classes of data flow anomaly detected by Fosdick and Oster-
weil’s systemn has largely been obviated by modemn strongly typed programming lan-
guages, they are still quite common in modern scripting and prototyping languages.
Olender and Osterweil later recognized that the power of data flow analysis algo-
rithms for recognizing execution patterns is not limited to properties of data flow,
and developed a system for specifying and checking general sequencing properties
(0090, 0092).

Interprocedural pointer analyses — either directly determining potential aliasing re-
lations, or deriving a “‘points-to” relation from which aliasing relations can be derived
— remains an area of active research. At one extreme of the cost-versus-precision
spectrum of analyses are completely context- and flow-insensitive analyses like those
described by Steensgaard [Ste96). Many researchers have proposed refinements that
obtain significant gains in precision at small costs in efficiency. An important direc-
tion for future work is obtaining acceptably precise analyses of a portion of a large
program, either because a whole program analysis cannot obtain sufficient precision at
acceptable cost or because modern software development practices (e.g., incorporating
externally developed components) mean that the whole program is never available in
any case. Rountev et al. present initial steps toward such analyses [RRL99]. A very
readable overview of the state of the art and current research directions (circa 2001) is
provided by Hind [Hin01].

Interprocedural Analysis

B4

