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An Applicable Family of Data Flow Testing Criteria 
PHYLLIS G. FRANKL A N D  ELAINE J .  WEYUKER 

Abstract-A test data adequacy criterion is a predicate which is used 
to determine whether a program has been tested “enough.” An ade- 
quacy criterion is applicable if for every program there exists a set of 
test data for the program which satisfies the criterion. Most test data 
adequacy criteria based on path selection fail to satisfy the applicabil- 
ity property because, for some programs with unexecutable paths, no 
adequate set of test data exists. 

In this paper, we extend the definitions of the previously introduced 
family of data flow testing criteria to apply to programs written in a 
large subset of Pascal. We then define a new family of adequacy cri- 
teria called feasible data flow testing criteria, which are derived from 
the data flow testing criteria. The feasible data flow testing criteria 
circumvent the problem of nonapplicability of the data flow testing cri- 
teria by requiring the test data to exercise only those definition-use 
associations which are executable. We show that there are significant 
differences between the relationships among the data flow testing cri- 
teria and the relationships among the feasible data flow testing criteria. 

We also discuss a generalized notion of the executability of a path 
through a program unit. A script of a testing session using our data 
flow testing tool, ASSET, is included in the Appendix. 

Index Terms-Data flow analysis, software testing, software valida- 
tion. 

I. INTRODUCTION 
N important problem in software testing is deciding A when to stop. An adequacy criterion is a predicate 

which is used to determine whether a program has been 
tested “enough. ” Several software test data adequacy cri- 
teria are based on the idea that one cannot consider a pro- 
gram to be adequately tested if certain sequences of state- 
ments have never been executed by any test data. These 
methods generally associate a test set T ,  which is a subset 
of the input domain of the specification of a program P ,  
with the set II of paths through P’s flow graph, which are 
executed when the program is run with inputs from T.  The 
test set T ,  or equivalently the set of paths II, is said to 
satisfy criterion C for programs P (  “ T  is C-adequate for 
P”) if and only if each of the sequences required by C is 
a subpath of one of the paths in II. 

The most well known of these criteria are statement 
testing, branch testing, and path testing, which require 
that the test data cause every node, branch, or path, re- 
spectively, in the program’s flow graph to be executed 
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[ 1 1 3 ,  [ 121. Unfortunately, statement and branch testing 
can fail to expose matly common errors, and path testing 
is usually infeasible since programs with loops have infi- 
nitely many paths [7], [lo]. Several criteria which are 
based on analysis of the program’s control flow and which 
are stronger than branch testing but weaker than path test- 
ing have been proposed [ 1 I ] ,  [ 151, [23]. 

Recently, a number of test data adequacy criteria which 
are based on data flow (DF) analysis, some of which 
“bridge the gap” between branch testing and path test- 
ing, have been proposed and studied [ l ] ,  [9], [14], [161, 
[ 181, [ 191. Tools based on some of them have been im- 
plemented [2], [3], [6], 1133. These criteria are based on 
the intuition that one should not feel confident that a vari- 
able has been assigned the correct value at some point in 
the program if no test data cause the execution of a path 
from the assignment to a point where the variable’s value 
is subsequently used. 

All of these criteria suffer from the weakness that for 
programs with unexecutable paths it may be impossible 
for any test set to satisfy the given adequacy criterion. For 
example, consider a program containing the statement 
“for i : = 1 to 5 do S.” For each n 1 0, there is at least 
one path through the program’s flow graph which tra- 
verses the loop n times. However, those paths corre- 
sponding to n # 5 can never be executed. Such a program 
could not be adequately tested using the path testing cri- 
terion, even if it were possible to do exhaustive testing. 
Experience using our tool, ASSET, has shown that, for 
many programs, unexecutable paths make it impossible 
for any test to satisfy a given DF testing criterion [2], [3]. 
This is clearly an undesirable situation. 

An adequacy criterion C satisfies the applicability 
property if and only if for every program P there exists 
some test set which is C-adequate for P [22]. One would 
expect a “good” adequacy criterion C to satisfy the ap- 
plicability property. However, the statement testing, 
branch testing, path testing, and DF testing criteria all fail 
to satisfy the applicability property. Furthermore, for each 
of them it is undecidable whether a test set exists which 
adequately tests a given program. 

One way to enforce the applicability of a criterion C is 
to restrict the class of programs considered to A,, the set 
of programs for which there exists a C-adequate test set. 
Unfortunately, for each DF testing criterion C (as well as 
the other criteria mentioned above), A ,  excludes many 
“typical” programs. Furthermore, it is undecidable 
whether a given program belongs to A,. These drawbacks 
lead us to reject this approach. Instead, we define a new 
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family of adequacy criteria by modifying the old criteria 
so as to ensure applicability. 

In this paper, we define a new family of adequacy cri- 
teria, which are derived from the DF testing criteria pro- 
posed in [18], [I91 and which satisfy the applicability 
property. Roughly speaking, for each of these new crite- 
ria, a test is adequate if and only if it comes “as close as 
possible” to satisfying the corresponding DF testing cri- 
terion. These criteria will be defined precisely, and the 
relationships between them will be explored in Section 
111. In Section 11, we summarize the theory of DF testing, 
extending it to apply to programs written in Pascal. In 
Section IV,  we define and discuss a generalization of the 
new family of criteria which takes into account informa- 
tion about the context in which the subprogram being 
tested is called. 

11. DEFINITIONS OF THE DF TESTING CRITERIA 
A family of test data adequacy criteria, based on anal- 

ysis of the DF characteristics of the program being tested, 
was defined in [18]. These criteria, which we call datu 
flow testing criteria, or DF testing for short, were origi- 
nally defined for a very simple universal programming 
language consisting of assignment statements, conditional 
and unconditional transfer statements, and I/O state- 
ments. They require that the test data exercise certain 
paths from a point in a program where a variable is de- 
fined to points where the variable is subsequently used. A 
tool, ASSET, which performs DF testing on programs 
written in such a language, is described in [2]. 

In order to make DF testing more practical, we have 
extended it to apply to a large subset of Pascal and have 
enhanced ASSET accordingly. The basic ideas behind DF 
testing apply to testing programs written in other imper- 
ative languages, but for precision it is necessary to specify 
a particular syntax. We now summarize the extended the- 
ory of DF testing. 

We apply DF testing to an individual subprogram, i.e., 
a main program, a procedure, or a function. To execute a 
procedure or function P ,  we must call it from a driver 
program. Thus, to test a procedure or function P ,  we need 
a test-set/driver-progrum pair ( T ,  D )  where D is a pro- 
gram which might call P and T is a subset of the input 
domain of the specification for D. Obviously, the path (or 
paths) through P which is executed when a particular test 
case is input to D will depend on D ,  as well as on the test 
case. We will often omit reference to the driver program 
when it is obvious which driver program is calling the 
subprogram. Similarly, we may omit reference to the 
driver program if it simply reads in the arguments to the 
subprogram in order and then calls the subprogram once. 

As a technical convenience, we assume that the subpro- 
gram being tested has no goto statements, no with state- 
ments, no variant records, no functions having var pa- 
rameters, no procedural or functional parameters, and no 
conformant arrays. It would not be difficult to relax these 
assumptions. We also assume that in every conditional 
statement the Boolean expression which determines the 

flow of control has at least one occurrence of a variable 
or a call to the function eofor to the function eoln. 

A subprogram can be uniquely decomposed into a set 
of disjoint blocks of statements. A block is a maximal 
sequence of simple statements having the properties that 
it can only be entered through the first statement and that, 
whenever the first statement is executed, the remaining 
statements are executed in the given order. The subpro- 
gram to be tested is represented by aflow graph in which 
the nodes correspond to the blocks of the subprogram and 
edges indicate possible flow of control between blocks. 
As a technical convenience, some nodes which corre- 
spond to empty sequences of statements may also be added 
to the flow graph. Fig. 1 shows the subgraphs correspond- 
ing to statements in the language. The subprogram’s flow 
graph is obtained by merging the exit node of each state- 
ment with the entry node of the following statement. An 
entry node preceding the first statement of the procedure 
and an exit node succeeding the last statement are added. 

DF analysis was originally used for compiler optimi- 
zation [8], [20]. It generally classifies each variable oc- 
currence as being a definition, in which a value is stored 
in a memory location, a use, in which a value is fetched 
from a memory location, or an undefinition, in which the 
value and the location become unbound. For our pur- 
poses, we will also distinguish between two different types 
of use. The first type directly affects the computation being 
performed or outputs the result of some earlier definition. 
We call such a use a computation use, or a c-use. Of 
course, a c-use may indirectly affect the flow of control 
through the subprogram. In contrast, the second type of 
use directly affects the flow of control through the sub- 
program, and thereby may indirectly affect the computa- 
tions performed. We call such a use a predicate use or p -  
use. 

We will associate a sequence of definitions and c-uses 
with each node in the flow graph and will associate a set 
of p-uses with each edge in the flow graph. Fig. 1 shows 
the classification of variable occurrences in the language’s 
statements. In addition, the entry node is considered to 
have a definition of each parameter, each nonlocal vari- 
able which occurs in the subprogram, and the input buffer 
inputt, which may implicitly occur in calls to the standard 
procedures/functions read, readln, eoln, and eof. The exit 
node has an undefintion of each local variable, a c-use of 
each variable parameter, a c-use of each nonlocal vari- 
able, and a c-use of the input buffer inputt. 

We now discuss how DF analysis is handled for struc- 
tured variables. Since it is not possible, in general, to de- 
termine the particular array element which is being de- 
fined or used in an occurrence of an array variable, any 
definition of the variable a [ e ]  will consist of a c-use of 
each variable occurring in the expression e ,  followed by 
a definition of a.  Any use of a [ e ]  will consist of uses of 
all of the variables occurring in e ,  followed by a use of a. 

Similarly, we will treat pointers purely syntactically, 
making no attempt to perform DF analysis on derefer- 
enced pointers. If p is a pointer variable, a definition of 
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I read(v1,. . . .vn); 
1 readln(v1. .... vn); 
I read(f,vl,. ..,vn) ; 
; readln(f,vl, ..., vn); 

I - - - -  

Node i has definitions of v l ,  ..., vn. 
If the file variable f ia present then node i 
also has a c-use followed by a definition of fl .  

write(e1,. . . ,en) ; 
writeln(e1, .... en); 
write(f,el, ..., en); 
writeln(f ,el  ,. . . .en); 

__.___._..._._..__..~...~~~.~--.-~ 

1 -  - ' 
~ ' 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ Procednre call: P(e1, ..., en); 

I 

I t 

Node i has c-uses of each variable occurring in el, ..., en. I I 
If the file variable f is present then node i 
also bas a definition followed by a c-use of ft. 

I parameter which corresponds to avar formal parameter. 

Node j has c-uses of each variable occuring in 
the expressions el, ..., en. 
Tbese are followed by definitions of each actual 

1 I Nodes i and k are included to assure that 
the procedure call has it8 own node. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

for ertmtcmen1: 
for v:=el to e2 do S; 
for v:= el downto e2 do S; 
Let tmp be a new variable. 

and exit nodes, resputivcly, 
Let f and g be the entry 

each vuiable in el, 
followed by a definition of v and I 
c-uses of each vui ib le  in e2 I 

followed by i definition of mp. 1 
Edges (i,f) and (i,j) have I 

p-uses of v and tmp. Node g h u  ; 

Of S. NO& h h u  C-UKS Of 

a E-IJSC followed by a def of V. I 
- . - - - - - -___-__- - . -______r_______________. . .~~  

r e p u t  ertattment: 
rcpcdt SI; ... ;Sa until B; 

Edges (k,j) and (k,i) have ; 
S1, and let k be the exit 
node of Sn. 

p-useer of each variable in , 
the boolean expression B. ; 

I 

Let j be the entry node of 

CONDITIONAL STATEMENTS 
............................................... 

I if-then-else statement 

if if B B then then S1; S1 else SZ; 6 ;  
Let k and j be the entry nodes of j db 
S1 and SZ, respectively. 
Edger (i,j) and (i,k) have 
p-uses of each variable in the 
boolean expression B. 
if there is no "else" part then 
subgraph S2 has a single node 
corresponding to an empty block. 

~ 

I 

I 

case e l  of 
label-list1 : S1; 

label-listn : Sn 
end; 

Let j l ,  . . . , j  n be the entry nodes of 
S1, ..., Sn, respectively. 
Edges (i.jl) ,..., (i,jn) 
have p-uses of each variable 
in the expression e l .  

; 

I 
.............................................. 

Fig. 1. Control flow and DF for statement in the language. 
the subgraph corresponding to statement Si. 

SiQdenotes 

pt consists of a c-use of p followed by a definition of pt,  
and a use of p t  consists of a use of p followed by a use 
of pt .  Since it is not possible to determine statically the 
memory location to which a pointer points, we will ignore 
the definitions and uses of p t .  

Each field of a record is treated as an individual vari- 
able. Any unqualified occurrence of a record is treated as 
an occurrence of each field of the record. Occurrences of 
file variables in I/O statements are handled by considering 
the effect of the statement on the file buffer. 

Note that our model of data flow may not reflect the 

actual DF in the subprogram being tested completely ac- 
curately. For example, we have made no attempt to per- 
form any interprocedural data flow analysis, have ignored 
dereferenced pointers, have made no attempt to disam- 
biguate array references, and have ignored potential 
aliasing and side effects. In an optimizing compiler, it is 
imperative that conservative assumptions be made about 
the flow of data, lest a code transformation which changes 
the semantics of the program be performed. In the context 
of DF testing, however, such caution is not strictly nec- 
essary. On the other hand, it seems reasonable to expect 
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that more accurate DF analysis will force the selection of 
better test data. In [ 3 ] ,  we compare the test data needed 
to test programs adequately when each array is treated as 
a single entity to the test data required to test transformed 
programs adequately in  which array references are dis- 
ambiguated and each element of the array is treated as an 
individual entity. More exploration of the tradeoff be- 
tween the difficulty of performing accurate DF analysis 
and the quality of the resulting test data is needed. 

We are interested in tracing the flow of data between 
nodes, and thus define a c-use of a variable x in node i to 
be a global c-use if the value of x has been assigned in 
some block other than block i. Let x be a variable occur- 

0, containing no definitions or undefinitions of x in nodes 
n l ,  - - . , n ,,, is called a dejinition clearpath with respect 
to x (def-clear path wrt x )  from node i to node j and from 
node i to edge (n,,,, j ). A node i has a global definition 
of a variable x if it has a definition of x and there is a def- 
clear path wrt x from node i to some node containing a 
global c-use or edge containing a p-use of x .  Since every 
p-use is associated with a potential transfer of control from 
one node to another, there is no need to distinguish be- 
tween p-uses and global p-uses. 

We restrict the class of subprograms to which DF test- 
ing applies to those subprograms P satisfying the follow- 
ing two properties. 

1 )  No-Syntactic-Undejined-P-use Property (NSUP): 
For every p-use of a variable x on an edge ( i ,  j ) in P ,  
there is some path from the start node to edge ( i ,  j ) which 
contains a global definition of x .  

2) Non-Straight-Line Property (NSL): P has at least 
one conditional or repetitive statement. 

Note that the NSL property guarantees that at least one 
node in P ’ s  flow graph has more than one successor and 
that at least one variable has a p-use in P. 

The subprogram’s def-use graph is obtained from the 
flow graph by associating with each node i the sets 
c-use ( i )  = {variables which have global c-uses in block 
i } and d e f ( i )  = { variables which have global definitions 
in block i } and associating with each edge ( i ,  j ) the set 
p-use ( i ,  j )  = {variables which have p-uses on edge ( i ,  
j ) }. We also define sets of nodes dcu(x,  i )  = { nodes j 
such that x E c-use ( j ) and there is a def-clear path with 
respect to x from i to j } and dpu ( x ,  i )  = { edges ( j ,  k )  
such that x E p-use ( j ,  k )  and there is a def-clear path with 
respect to x from i to ( j ,  k )  } . These definitions are sum- 
marized in Fig. 2 .  

Thus, if x E d e f ( i )  a n d j  E dcu(x, i ) ,  then x has a 
global definition in node i and a c-use in nodej, and there 
is a definition clear path with respect to x from node i to 
node j .  Therefore, it may be possible for control to reach 
node j with the variable x having the value which was 
assigned to it in node i .  

A dejinition-c-use association is a triple ( i ,  j ,  x )  where 
i is a node containing a global definition of x and j E 
dcu(x, i ) .  A definition-p-use association is a triple ( i ,  
( j ,  k ) ,  x )  where i is a node containing a global definition 

ring in a subprogram. A path ( i ,  n l ,  - * * , nnj, j ), m 2 

= the set of variables 
= the set of nodes 

= (x  E V I x has a global definition in block i )  

= (x E V I x has a global c-use in block i )  
= ( x e  VI x h a s a p u s e i n e d g e ( i j ) )  

= [j E N I x E c-use(i) and thcrc is a def-clear path wrt x from i to j)  
= (U&) E E I x E p-use(i&) and therc is a def-cleax path wrt x from i to (j,k) ) 

= thc set of edges 

Fig. 2. Definitions. 

of x and ( j ,  k )  E dpu(x, i ). A simple path is one in which 
all nodes, except possibly the first and last, are distinct. 
A loop-free path is one in which all nodes are distinct. A 
path ( n l ,  * * , n,, nk) is a du-path with respect to a vari- 
able x if n1 has a global definition of x and either 

1) n k  has a global c-use of x and ( n l ,  * * . , nj, n k )  is a 
def-clear simple path with respect to x, or 

2 )  ( nj ,  nk) has a p-use of x and ( n l ,  . * , n j )  is a def- 
clear loop-free path with respect to x .  
An association is a definition-c-use association, a defi- 
nition-p-use association, or a du-path. 

A complete path is a path from the entry node to the 
exit node of the flow graph. A complete path a covers a 
definition-c-use association ( i ,  j ,  x )  [respectively, a def- 
inition-p-use association ( i ,  ( j ,  k ) ,  x ) ]  if it has a defi- 
nition clear subpath with respect to x from i to j [ respec- 
tively, from i to ( j ,  k ) ] .  a covers a du-path a‘ if a’ is a 
subpath of a. A set II of paths covers an association if 
some element of the set does. A test-set/driver-program 
pair ( D ,  T ) covers an association if, when input to D, the 
elements of T cause the execution of the set of paths II, 
and II covers the association. 

Roughly speaking, the family of DF testing criteria is 
based on requiring that the test data execute definition 
clear paths from each node containing a global definition 
of a variable to specified nodes containing global c-uses 
and edges containing p-uses of that variable. For each 

variable definition, we can demand that rS:ie 1 definition 

clear paths with respect to that variable from the node 

containing the definition to [ szie I of the [E:::s] 

reachable by some such paths be executed. The criteria 
are defined precisely in Fig. 3 .  

If variable x has a global definition in node i ,  the all- 
defs criterion requires the test data to exercise some path 
which goes from node i to some node or edge at which 
the value assigned to x in node i is used. The all-uses 
criterion requires the test data to exercise at least one path 
to each such node and to each such edge. The all-du-paths 
criterion requires that all of the du-paths from i to each 
such node and each such edge be exercised. The criteria 
all-p-uses, all-c-uses, all-p-usedsome-c-uses, and all-c- 
uses/some-p-uses place emphasis on either c-uses or p- 
uses. Note that any subprogram has only finitely many 
definition-use associations, so none of the DF criteria re- 
quires an infinite amount of test data. Upper bounds on 

p-uses 
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some (i.(j,k).x) s.t. 

AU-c-uses AU (i j.x) s.t. je dcu(x.i). 
All-puses All (i,(i,k),x) s.t. (j,k)e dpu(x,i). 
AU-p-uses/mnc-c-uses All (i,(j,k),x) s.t. (j,k)~dpu(x,i). 

In addition, if dpu(x,i)=$ then 
some (ij,x) s.t. jadcu(x,i). 
Note that since i has a global 
delinition of x. dpu(x.i)* 

- (j,k)e dpu(x.1). 

1487 

All-c-uscs/some-p-uscs 

THE DATA FLOW TESTING CRITERIA 

A wt-sctldrivcr-program-program pair (T,D) satisfies criterion C for subprogram P if and only if 
for each node i in P's flow graph and each x E def(i) the set ll of paths executed by T 
m v m  the following associations: 

All (ij,x) s.t. jedcu(x,i). In 
addition. if dcu(x.ihb then 

ALL-PATHS 

All-uses 

All-du-paths 

CRlTERlON I ASSOCIAnONS REQUIRED 
Alldefs Some (ij,x) s.t jsdcu(x,i) or 

. . ,  . 
some (i,(j,k),x) s.t. 
(j,k)e dcu(x,i). Note that since 
i has a global definition of x, 
dcu(x,i)=$ + dpu(x,i)#$. 
All (ij,x) s.t. j E dcu(x.i) and 
all (i,(i,k),x) s.t. (j,k)edpu(x,i). 
AU du-paths from i to j with 
respect to x for each jcdcu(x,i) 
and all du-paths from i to (j,k) 
with respect to x for each 
(j,k)k)~ dpu(x,i). 

the amount of test data required by the DF criteria are 
established in [2 11. 

Criterion C, includes criterion C, if and only if, for 
every subprogram, any test-set/driver-program pair which 
satisfies C, also satisfies C,. Criterion C, strictly includes 
criterion C,, denoted CI * C2, if and only if C, includes 
C2 and for some subprogram P there is a test-set/driver- 
program pair which satisfies C2 but does not satisfy C , .  
The notion of subsumption in [ l ]  is similar to our notion 
of inclusion. 

Rapps and Weyuker proved that for the simple language 
for which DF testing was originally defined, the relation- 
ship among the criteria is as shown in Fig. 4 [ 191. Clarke 
et al. [l] have shown the relationship of the criteria de- 
fined by Laski and Korel [14] and Ntafos 1161 to the DF 
criteria. 

In extending the theory of DF testing to apply to pro- 
grams written in Pascal, we have preserved the inclusion 
relations among the DF criteria. Doing so required the 
inclusion of definitions of all nonlocal variables in the en- 
try node of the procedure and careful treatment of implicit 
uses of the variable inputt. For symmetry, we have also 
added the all-c-uses criterion, which was not defined in 
1191. For more details of the proof that the relationship 
among the criteria is as shown in Fig. 4 ,  see [ 5 ] .  

111. THE FEASIBLE DF TESTING CRITERIA 
Given a subprogram P and a DF criterion C, it may be 

the case that no test-set/driver-program pair for P satisfies 
C. This occurs when none of the paths which cover a par- 
ticular association required by C is executable. In such a 
case, P cannot be adequately tested according to C. In this 
section, we introduce a new family of criteria, derived 
from the DF criteria, which circumvent this problem, and 

ALL-DU-PATHS 

\/ I1 
,y\ 

ALL-C-USESISOME-P-USES ALL-P-USESISOME-C-USES 

,/ \J ,/ \J 

ALL-DEFS ALL-P-USES ALL-C-USES 

\/ 1 1  
ALL-EDGES 

V II 
ALL-NODES 

Fig. 4. The relationship among the DF testing criteria. 

investigate some of its properties. We assume that all 
aliasing and side effects are known. We also assume that 
no element of the test set causes the program to crash; 
thus, if a test case causes the execution of the entry node 
of some subprogram, it will cause the execution of a path 
from the entry to the exit of that subprogram. 

Recall that a complete path is a path from the entry 
node to the exit node of a subprogram's flow graph. We 
say that a complete path is executable or feasible if there 
exists some assignment of values to input variables, non- 
local variables, and parameters which causes the path to 
be executed. We say that a path is executable if it is a 
subpath of an executable complete path. Similarly, a node 
or edge is executable if it lies on some executable com- 
plete path. According to this definition, the question of 
whether or not a given path through a subprogram is ex- 
ecutable is independent of the context in which that sub- 
program is called. However, it may depend on the effects 
of any procedures or functions which are called along the 
path. In Section IV, we will discuss the consequences of 
modifying this notion of executability to take into account 
information about the context in which the subprogram is 
called. Note that whether or not a particular path is exe- 
cutable depends on the actual subprogram, not just on its 
def-use graph. 

We say that an association is executable if there is some 
executable complete path which covers it; otherwise, it is 
unexecutable. We define subsets fdcu(x, i ) C dcu(x, i ) 
and fdpu (x, i ) G dpu (x,  i ), whose elements correspond 
to those associations which are executable as follows: 
fdcu (x, i ) = { nodes j such that x E c-use ( j ) and there 
is an executable definition clear path with respect to x from 
i t o j  }. fdpu (x, i )  = {edges ( j ,  k) such thatx Ep-use( j ,  
k) and there is an executable definition clear path with 
respect to x from i to ( j ,  k)}. Equivalently, fdcu ( x ,  i ) 
= { j E dcu (x,  i ) I the association ( i, j ,  x )  is executable } 
and fdpu(x, i )  = { ( j ,  k) E dpu(x, i )  1 the association 
( i ,  ( j ,  k), x )  is executable}. For each DF criterion C, 
we define a new criterion C* by selecting the required 
associations from fdcu (x, i ) and fdpu (x,  i ) instead of 
from dcu (x,  i ) and dpu (x, i ). Precise definitions of these 
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(allc-uses)' 
(all-p-uses)' 
(all-p-useslsom-c-uses)' 

(allc-usedsome-p-uses)' 

(all-uses)' 
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some ( i j i )  s.t jafdcu(x,i) or 
some (!,(j,k),x) s.t. 

all (ij,x) s.t. +fdcu(xi). 
all (i,(i,k),x) s.t. o,k)Efdpu(x.i). 
all (i,(j,k),x) s.t. (j,k)cfdpu(x,i). 
In addition. if fdpu(x,i) = @ and 
fdcu(x,i) f @ then some (ij.x) 
s.t. jc fdcu(x,i). 
all (ij,x) s.t. jc fdcu(x,i). In 
addition, if fdcu(x,i) = and 
fdpu(x,i) f @ then some 
(i,(j,k),x) s.t. (i.k)cfdpu(x,i). 
all (ij,x) s.t. j E fdcu(x,i) and 
all (i,kk),x) S.L (i,k) E 

. (i,k)a fdpu(x.1). 

THE FEASIBLE DATA FLOW TESTING CRITERIA 

fdcu(x.i) = (jc dcu(x,i)l the association ( i j s )  is executable) 
fdpu(x,i) = ((j,k)~ dpu(x.i)l the association (iJj,k),x) is executable) 

(ALL-PATHS). 

A test-sct/drivcr-pgram pair (T.D) satisfies criterion C for subprogram P if and only if 
for each node i in P's flow graph and each x E def(i) the set n of paths executed by T 
covm the following associations: 

CRITERION I R E Q W D  ASSOCIATIONS 
(alldefs)' if  fdcu(x.i) U fdpu(x,i) f @then 

I fdpu(x,ij. 
(all-du-paths)' all executable du-paths with 

respect to x h m - i  to j s.t. 
jEdcu(x.i) and all executable 
du-paths with respect to x from 
i to (j,k) for each (j,k) c 
dpu(x,i). 

For comparison we also define the criteria (all-nodes)' [(all-edges)'. (all-paths)', respec- 
tively] which qu ire  that IT cover each executable node [each executable edge, each exe- 
cutable path. respectively.] 

Fig. 5 .  Definitions of the feasible DF testing criteria 

criteria are given in Fig. 5 .  We refer to the criteria {(all- 
du paths)*, (all-uses)*, (all-p-uses/some-c-uses)* , (all-c- 
usedsome-p-uses)*, (all-p-uses)", (all-c-uses)*, and (all- 
defs)*} as feasible DF testing criteria, or FDF criteria for 
short. 

The FDF criteria satisfy the applicability property: for 
any subprogram P and any FDF criterion C * ,  there is 
some test set T which satisfies C * .  However, the question 
of whether a particular T satisfies C* for subprogram P is 
undecidable. In going from the family DF to the family 
FDF, we have traded the undecidability of the existence 
question "Is there any test set which is C-adequate for 
P?" for the undecidability of the recognition problem "Is 
a given test set C*-adequate for P?" 

Observe that for any DF criterion C ,  C C * .  We now 
investigate the inclusion relations along the FDF criteria. 

7heorem I :  The family of FDF criteria is partially or- 
dered by strict inclusion, as shown in Fig. 6 .  Further- 
more, FDF criterion Cf includes FDF criterion CJ* if and 
only if the inclusion is explicitly shown in the figure or 
follows from the transitivity of the relations. 

Pro08 
A )  Strictness ofthe Inclusions: We first observe that if 

subprogram P has no unexecutable paths, then a test set 
is C-adequate for P if and only if it is C*-adequate for P .  
This observation, along with the proofs of strictness of 
the inclusions in Theorem 1 of [19], none of which in- 
volves subprograms with unexecutable paths, shows that 
all of the inclusions in Fig. 6 are strict. It thus suffices to 
show that the inclusions in Fig. 6 hold. 

(all-uses)": Suppose that this does 
not hold. Then there are a subprogram P and a set T of 

B I )  (all-paths)* 

(ALL-DU-PATHS)' I I (ALL-EDGES)' 

(ALL-USES)' (ALL-NODES)' 

(ALL-C-USEs/SOME-P-USES)* (ALL-P-USEs/SOME-C-USES)' 

(ALL-C-USES). (ALL-DEFS) (ALL-P-USES)' 

Fig. 6. Relationship among the FDF testing criteria 

test data which are (all-paths)*-adequate for P ,  but not 
(all-uses)*-adequate. Let II be the set of paths through P 
which T executes. There exist a node i in P with a global 
definition of some variable x ,  a node j with a global c-use 
of x or edge ( j ,  k)  with a p-use of x ,  and an executable 
definition clear path with respect to x from i to j [ respec- 
tively, from i to ( j ,  k ) ]  which is not covered by II. This 
contradicts the fact that II covers every executable path. 

B2) (all-paths) * * (all-du-paths) *: Suppose that this 
does not hold. Then there are a subprogram P and a set T 
of test data which are (all-paths)*-adequate for P ,  but not 
(all-du-paths)*-adequate. Let II be the set of paths through 
P which T executes. There exists an executable du-path 
which is not covered by II. This contradicts the fact that 
II covers every executable path. 

B3) (all-paths) * (all-edges) *: Suppose that this 
does not hold. Then there are a subprogram P and a set T 
of test data which are (all-paths)*-adequate for P ,  but not 
(all-edges)*-adequate. Let II be the set of paths through 
P which T executes. There exists an executable edge ( i ,  
j )  which is not covered by II. This contradicts the fact 
that II covers every executable path. 

B4) (all-edges) * * (all-nodes) *: Let T be a test set 
which satisfies (all-edges)* for subprogram P ,  and let II 
be the set of paths executed by T. Let n be any executable 
node in P. If n is the entry node, then n has a unique 
successor m ,  and ( n ,  m )  is executable. So II covers ( n ,  
m )  and hence covers n. If n is not the entry node, then 
since n is executable, some branch ( i ,  n )  is executable. 
So II covers (i, n )  and hence covers n. 
B5) (all-uses) * 3 (all-p-uses/some-c-uses) *, (all-p- 

uses/some-c-uses) * j (all-p-uses) *, (all-p-uses/some-c- 
uses) * (all-defs) *, (all-uses) * * (all-c-uses/some-p- 
uses) *, (all-c-wedsome-p-uses) * 3 (all-defs)": These 
inclusions follow immediately from the definitions of the 
criteria given in Fig. 5 .  For example, any set II of paths 
which covers all of the associations required by (all-uses)* 
will a fortiori cover all of the associations required by 
(all-p-useslsome-c-uses) * . 

We next show that those relations not in the transitive 
closure of the diagram in Fig. 6 do not hold. 

CI)  (all-du-paths) * + (all-p-uses) *, (all-du-paths) * P 
(all-p-usedsome-c-uses) *, (all-du-paths) * c (all-uses) *, 
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1 yes 
1 no 

. (2.3.4) 
(2.3.5) 

i yes 
1 yes 

(4.3.4) 
(43.5) 
(2.3.5,6,7,9.10) inputf no 
(2,3,5,6,8,9,10) inputf no 
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(all-du-paths) * P (all-c-uses) *, (all-du-paths) * + (all- 
c-useslsome-p-uses) *, (all-du-paths) * .p (all-defs) *, (all- 
du-paths) * #j (all-edges) *, (all-du-paths) * + (all- 
nodes): It suffices to show that (all-du-paths)” + (all-p- 
uses)*, (all-du-paths)” + (all-c-uses)”, (all-du-paths)* P 
(all-defs)*, and (all-du-paths)* + (all-nodes)*. The rest 
follows from the transitivity of 3. Consider the subpro- 
gram shown in Fig. 7(a). Its du-paths are shown in Fig. 
7(b). Of these, only (1, 2) ,  (2, 3 ,  4 ) ,  (4,  3 ,  4 ) ,  and (4,  
3 ,  5 )  are executable. Let T = { ( X ,  Y )  } where X is any 
integer and Y < 0. Since T executes II = { ( 1 ,  2, 3 ,  4,  
3 , 4 ,  3 ,  5 ,  6, 7,  9, I O ) } ,  Tsatisfies (all-du-paths)*. How- 
ever, II does not cover the associations (2 ,  (6,  8 ) ,  y )  (2 ,  
8, x), or node 8, all of which are covered by the execut- 
able path (1 ,  2, 3,  4, 3 ,  4,  3 ,  5,  6, 8 ,  9, I O ) ,  so Tdoes 
not satisfy (all-p-uses)*, (all-c-uses)”, (all-defs)*, or (all- 
nodes). * 

Intuitively, (all-du-paths)* fails to include these criteria 
because it is possible for a subprogram to have certain 
definition-use associations which can be executed only by 
paths which traverse some loop one or more times. 

C2) (all-p-uses) * ib (all-edges) *, (all-p-usedsome-c- 
uses) * + (all-edges) *, (all-uses) * + (all-edges)*, (all-p- 
uses) * P (all-nodes), (all-p-uses/some-c-uses) * P (all- 
nodes), (all-uses)” # (all-nodes) *: Consider the subpro- 
gram in Fig. 8, where y is a local variable (and hence does 
not have a definition in the entry node). Notice that since 
node 3 is unexecutable, y is always uninitialized when 
control reaches node 5 .  In the absence of any information 
about which (if either) edge leaving node 5 will be exe- 
cuted when the program is run on actual test data, we 
make the worst case assumption that edges ( 5 ,  6 )  and ( 5 ,  
7 )  are both executable. This would be the case, for ex- 
ample, in an environment in which uninitialized variables 
receive arbitrary values. Since node 3 is unexecutable, the 
only executable definition-use associations are ( 1, 2 ,  in- 
p u t t ) ,  ( 2 ,  ( 2 ,  4) ,  x ) ,  and ( 2 ,  9, inputt) .  Let T b e  a test 
which executes II = { ( 1 ,  2, 4,  5 ,  6, 8 ,  9 ) }  or II = { ( 1 ,  
2, 4,  5 ,  7,  8,  9)} .  Then Tsatisfies (all-p-uses)*, (all-p- 
uses/some-c-uses)*, and (all-uses)*, but does not satisfy 
(all-edges)* or (all-nodes)*. 

The rest of the noninclusions follow immediately from 
the incomparability and strictness proofs for the DF cri- 

It seems discouraging that (all-p-uses)* fails to include 
(all-edges)*. DF testing was developed in part in order to 
“bridge the gap” between branch testing and path test- 
ing. Since many “real-life” subprograms cannot be ade- 
quately tested using the unstarred versions of the DF cri- 
teria, one would hope that the FDF criteria would “bridge 
the gap” between (all-edges)* and (all-paths)*. We have 
seen that this is not the case. We next show that, for a 
certain class of “well-behaved” subprograms, any test 
which satisfies (all-p-uses)* satisfies (all-edges)*. 

Dejinition: We will say that a subprogram P satisfies 
the No-Feasible-Undefined-P-uses property (NFUP) if 
and only if, for every executable edge ( i ,  j ) in P having 
a p-use of a variable x ,  there is some executable path from 

teria, given in [19] and [5]. 

P 

writcln(’hel1o’); 
i:= i +  1; 

writcln(’hel1o’); 9 
L r n  

i:= i +  1; 

(a) 

Path I With respect to I 
(1.2) inputf Yes 

executable 

Q 

6 
Fig. 8 .  Program demonstrating that (all-p-uses)* fails to include (all- 

edges)*. 

the start node to edge ( i ,  j ) which contains a global def- 
inition of x .  

We note that it is quite reasonable to expect subpro- 
grams to have property NFUP. If ( i ,  j )  is an edge which 
causes NFUP to fail, then any input which causes (i, j )  
to be executed will involve referencing an uninitialized 
variable. 

Theorem 2: For the class of subprograms which satisfy 
NFUP, (all-p-uses)* - (all-edges)*. 

Proof: Let P be a subprogram satisfying NFUP, let 
T be a test set which satisfies (all-p-uses)” for P,  let Il be 
the set of paths executed by T, and let ( i ,  j )  be an exe- 
cutable edge in P. Suppose ( i ,  j ) has a p-use of a variable 
x .  By hypothesis, there is an executable path T from the 
start node to ( i ,  j )  which includes a global definition of 
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x .  Let n be the last node in R having a global definition 
of x .  Then (n, ( i ,  j ), x )  is an executable definition-p-use 
association, so it is covered by II. Hence, ( i ,  j ) is cov- 
ered by n. 

If ( i ,  j )  has no p-uses, then the result follows by a 
straightforward modification of the corresponding part of 

In [19], the class of subprograms to which DF testing 
applies was restricted to those subprograms satisfying the 
NSUP property, defined in Section I1 above. This restric- 
tion was necessary in order to ensure that all-p-uses * 
all-edges. NFUP is a strengthening of NSUP. It takes into 
account the fact that even in subprograms satisfying 
NSUP, it may be the case that no executable path R from 
the entry node to some p-use of x has a definition of x .  

It is tempting to restrict the class of programs to which 
the FDF criteria apply to those satisfying NFUP. It is our 
feeling, however, that while one can live with the unde- 
cidability of the adequate test recognition problem and 
perhaps (albeit very uncomfortably) with the undecida- 
bility of the adequate test existence problem, one should 
at least be able to decide algorithmically whether a given 
testing strategy applies to a given subprogram. Since it is 
undecidable whether a given subprogram satisfies NFUP, 
we refrain from requiring that this property hold for sub- 
programs to be tested. 

Another possible way to force (all-p-uses)* to include 
(all-edges)* would be to require subprograms to satisfy 
the No-Anomalies property (NA), which is as follows. 
Every path from the start node to a use of a variable x 
must contain a definition of x .  Osterweil and Fosdick [ 171 
consider any subprogram not satisfying this property to 
have a DF anomaly indicative of possible subprogram er- 
ror. Since NA is a purely syntactic property and NA im- 
plies NFUP, we could restrict FDF testing to subpro- 
grams satisfying this property. We feel that this is overly 
restrictive since many perfectly good subprograms fail to 
satisfy NA. 

One way to force NA to be satisfied is to give the entry 
node a definition of each variable. This would potentially 
increase the number of def-use associations and thus make 
the criteria more demanding. However, it would also 
make the model of the subprogram’s DF reflect the actual 
DF less accurately. 

Another approach is to perform FDF testing in con- 
junction with a check for DF anomalies. For any subpro- 
gram which satisfies NA and any test set T which satisfies 
(all-p-uses)”, the tester will be assured that T satisfies (all- 
edges)*. In case NA does not hold, the tester should ex- 
plicitly check whether (all-edges)* is satisfied and, if nec- 
essary, add more test data or inspect the subprogram for 
references of uninitialized variables. 

the proof of (all-p-uses) =) (all-edges) [5]. 

IV. A GENERALIZED NOTION OF EXECUTABILITY 
The definition of executability given in Section I11 fails 

to take into account any information about the context in 
which a subprogram is called. It may be the case that there 
are no input data to the program as a whole which cause 

the execution of a particular executable path through a 
subprogram. In order to test such a subprogram ade- 
quately with respect to a given FDF criterion, it may be 
necessary to write a driver program which assigns partic- 
ular values to global variables and parameters and then 
calls the subprogram. Whether this extra effort is “worth- 
while” depends on whether it is likely that the subpro- 
gram will ever be called in a context other than the one 
in which it currently appears in  the program. In this sec- 
tion, we define a more general notion of executability 
which takes into account information about the context in 
which a subprogram is called. We then explore the effects 
of this generalization on the FDF criteria. 

Consider the program 

program main(input,output); 
type Charstring = array[ 1.. 101 of char; 
var string1 : Charstring; 

length : integer; 

procedure WriteString(str: Charstring; n: integer); 
{Writes the first n characters of str to standard output.} 
var i : integer; 
begin 

end; 

begin (statement part of main program} 

for i := 1 to n do write(str[i]) 

if length > 0 then WriteString(string1 ,length) 
else ... 

end. (main } 

Suppose that at every point in the program at which 
WriteString is called, the value of n is guaranteed to be 
strictly greater than zero. Then no input to the program 
can cause the execution of the path through the procedure 
which traverses the loop zero times. 

In order to test WriteString adequately with respect to 
the criterion (all-uses)*, it is necessary to include test data 
which cause the for loop to be traversed zero times. To 
do this, one must write a driver program which calls 
WriteString with the second parameter having a value less 
than or equal to zero. If we think that we might actually 
want to use the procedure WrireString in a less restricted 
context (for example, because of modifications of the 
calling program or reusing the procedure in a different 
program), then this is a reasonable thing to do. On the 
other hand, if we are fairly certain that the procedure will 
never be called in a context where n is less than or equal 
to zero, then writing a driver program could be construed 
as being a wasted effort. What is needed is a notion of test 
data adequacy which takes into account information about 
the context in which the subprogram being tested can be 
called. 

We can achieve this by relativizing the definition of ex- 
ecutability as follows. We associate with the subprogram 
to be tested a predicate IC( VI , V , )  called the input 
constraint where V I ,  . , V, represent the subprogram’s 
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parameters and nonlocal variables. A path through the 
subprogram is then executable relative to IC if there exists 
some assignment of values to input variables, parameters, 
and nonlocal variables which satisfies IC and which causes 
the path to executed. A path is executable as defined in 
Section I11 if and only if it is executable relative to the 
input constraint IC = TRUE. The notion of executability 
of an association and the definitions of the FDF criteria 
can be relativized in a straightforward manner. 

The relationship among the relativized FDF criteria is 
essentially the same as that among the nonrelativized cri- 
teria. The definitions must be modified to reflect the fact 
that the objects being tested now consist of pairs ( P ,  IC ) 
where P is a subprogram and IC is an input constraint. 
We say that the relativized criteria C, includes the relativ- 
ized criterion C2 if for every subprogram/input-constraint 
pair ( P ,  IC ) every test which satisfies CI for that pair also 
satisfies C2. CI strictly includes C2 if CI includes C2 and 
for some pair ( P ,  IC ) there is a test which satisfies C2 but 
does not satisfy C , .  It is easy to show that the relationship 
among the relativized criteria is as shown in Fig. 6. 

One reasonable choice for the input constraint is the 
predicate ICspec obtained by taking the constraints on the 
input to the program as a whole (drawn from the pro- 
gram’s specification), conjoining them, and ‘‘pushing 
them through” the program to all points at which the sub- 
program being tested is called. In practice, one might want 
to use a weaker predicate than ICspec, which can be built 
up during the testing process as follows. At some point in 
the testing process, the tester notices that a particular ex- 
ecutable association has still not been exercised. Upon 
examining the program to see what values of input data, 
nonlocal variables, and parameters would cause the exe- 
cution of that association, the tester sees that the needed 
values of nonlocal variables and parameters cannot arise 
in the context of the program as a whole. One can then 
formulate a constraint which reflects this fact and can con- 
join it to the previous constraint. 

If the calling program is modified some time after the 
subprogram has been certified to be adequately tested, the 
predicate IC will provide useful documentation which will 
help in selecting additional test data for the subprogram. 
If IC is still satisfied whenever the subprogram is called, 
then no further testing of the subprogram will be needed. 
If IC no longer holds at the points of call, however, it will 
be necessary to update IC, determine which def-use as- 
sociations become executable relative to the new con- 
straint, and add test data to exercise those associations. 

V .  CONCLUSIONS 
We have introduced a new family of path selection cri- 

teria derived from the DF testing criteria and explored the 
relationships among them. These criteria, the feasible data 
flow (FDF) testing criteria, are obtained from the corre- 
sponding DF testing criteria by eliminating unexecutable 
associations from consideration. 

For a large class of “well-behaved programs, the FDF 
criteria (all-p-uses)*, (all-p-uses/some-c-uses)*, and (all- 

uses)* “bridge the gap” between (all-edges)* and (all- 
paths)* in the same way that the corresponding DF cri- 
teria do. For certain programs with anomalies, however, 
there are tests which satisfy (all-p-uses)” without satis- 
fying (all-edges)*. Furthermore, although (all-du-paths) 
* (all-uses), (all-du-paths)” does nc t even include (all- 
nodes)*. 

The advantage of the FDF criteria over the DF criteria 
is that they satisfy the applicability property: for every 
subprogram P and every FDF criterion C, there is some 
set of paths which is C-adequate for P. The DF criteria 
do not satisfy this property. The disadvantage of the FDF 
criteria is that it is undecidable whether a particular set of 
paths is C-adequate for P. Thus, in deciding whether to 
use the DF criteria or the FDF criteria, one is faced with 
a tradeoff between applicability and automatability . 

Although it is in general undecidable whether a given 
association is executable, it is often easy for a person 
looking at a subprogram to determine whether or not a 
particular association is executable. Sometimes this re- 
quires very little semantic information. For example, any 
program with a for loop in which the upper bound is al- 
ways greater than or equal to the lower bound has an 
unexecutable definition-p-use association. In other cases, 
determining whether a given association is executable 
seems to require a “high-level” understanding of how the 
subprogram and other subprograms which it calls operate. 

We have developed a heuristic method which uses a 
combination of symbolic evaluation and DF analysis to 
attempt to identify unexecutable definition-use associa- 
tions [5]. When the heuristic cannot determine whether or 
not a particular association is executable, the person using 
the tool will have to intervene. We hope that this approach 
will prove to be a practical way to preserve the applica- 
bility property enjoyed by the FDF criteria, while sacri- 
ficing automatability to only a small extent. 

APPEND I x 
EXAMPLE OF A N  ASSET SESSION 

In this Appendix, we present an annotated example of 
an ASSET session. To distinguish between text written 
by the system and that written by the user, we display text 
entered by the user in boldface type. Comments are writ- 
ten in italics. For further information, see the ASSET 
USER MANUAL [4]. 

Example I :  This example shows an ASSET session in 
which a brute-force string matching procedure is ana- 
lyzed. The program reads a string and a pattern. It is sup- 
posed to print the position in the string at which the pat- 
tern first appears and print 0 if the pattern never appears 
in the string. The current working directory has a subdi- 
rectory called “StrMtch.” The file “StrMtch/subject,p” 
contains the following program: 

program TestSringMatch (input,output); 
const MAX = 80; 

LENGTH = 10; 
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type Source = array[ 1 .  .MAX] of char; 

var Pat : String; 
Txt : Source; 
i,result,TxtLen : integer; 

function StringMatch(Pattern:String; 

String = array[l. .LENGTH] of char; 

SorText: Source; 
PatLen, SorLen : integer): integer; 

match} 
{Brute force pattern-mathcer. Returns 0 for no 

var PatPos, SorPos : integer; 
begin 

PatPos : = 1; 
SorPos : = 1; 
repeat 

if Pattern[PatPos] = SorText[SorPos] then 
begin 

SorPos : = SorPos + 1; 
PatPos := PatPos + 1 

end {then} 
else 
begin 

SorPos := (SorPos - PatPos) + 2; 
PatPos := 1 

end; {else} 
until (PatPos > PatLen) or (SorPos > SorLen); 
if PatPos > PatLen 
then StringMatch := SorPos - PatLen 
else StringMatch : = 0 

end; { StringMatch} 

begin {main program} 
{Read Input} 
writeln(’ENTER THE TEXT’); 
i : =  1; 
while (not(eo1n) and (i < = MAX)) do 
begin 

read( Txt [ i 1) ; 
i : = i +  1 

end; 
TxtLen := i - 1; 
readln; 
writeln(’ENTER THE PATTERN’); 

while (not(eo1n) and (i < = LENGTH)) do 
begin 

j := 1 .  

Read( Pat [i 1) ; 
i .- .- i + 1 

end; 
readln; 
result : = StringMatch(Pat,Txt,i - 1, TxtLen); 
writeln(’The pattern first appears at position ’ , 

result:3, ’ in the text.’); 

Welcome to ASSET. For help type “help.” 

Enter relative pathname of initial default director. 

>>: StrMtch 

>>> : begin 

Enter name of subject procedure file. 

>> : subject.p 

Separate Compilation? (Y/N) [NI 
The “N” in square brackets indicates that the default an- 
swer is ‘‘no. ” 
>>: n 
Enter the name of the procedure to be instrumented. 
If you would like to be prompted with the names of 
the procedures in the subject program, just hit carriage 
return. 
>> : 
= = > Should TestStnngMatch 
be instrumented for testing? (Y/N) 
>>: n 

= = > Should StringMatch 
be instrumented for testing? (Y/N) 
>>: y 

>>>: select 

SELECT A CRITERION 

A. All-defs 
B. All-c-uses 
C.  All-p-uses 
D.  All-c-usedsome-p-uses 
E. All-p-uses/some-c-uses 
F. All-uses 
G. All-du-paths 

Enter letter representing the selected criterion 
> > : a  
Criterion is All-defs. 

>>>: find 

We next check whether the criterion has been satisijied 
with no test data. This is not necessary, but by doing this, 
we get a list of all of the def-c-use and def-p-use asso- 
ciations in the program. 
>>> : check 

ALL-DEFS: 

Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

end. Pattern 1 ( 3, 5 )  

Pattern 1 ( 3, 4) 
Script started on Sun May 31 13:09:59 1987 
csd27< asset AND 
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Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

SorText 1 ( 3 ,  5 )  

SorText 1 ( 3 ,  4) 

AND 

Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

PatLen 1 8 

PatLen 1 ( 6, 3 )  

PatLen 1 ( 6, 7) 

PatLen 1 ( 7, 9) 

PatLen 1 ( 7 ,  8) 

AND 

Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

SorLen 1 ( 6 7  3 )  

SorLen 1 ( 6, 7) 

AND 

Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

PatPos 2 4 

PostPos 2 . 5  

PatPos 2 ( 3 ,  5 )  

PatPos 2 ( 3 ,  4) 

AND 

Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

SorPos 2 4 

SorPos 2 5 

SorPos 2 ( 3 ,  5 )  

SorPos 2 ( 3 ,  4) 

AND 

Still must exercise at least one of the following def-clear 

1493 

with respect to from to 

PatPos 2 4 

PatPos 4 5 

PatPos 4 ( 3 ,  5 )  

PatPos 4 ( 3 ,  4) 

PatPos 4 ( 6, 3 )  

PatPos 4 ( 6, 7) 

PatPos 4 ( 7 7  9) 

PatPos 4 ( 7, 8) 

AND 

Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

SorPos 4 4 

SorPos 4 5 

SorPos 4 8 

SorPos 4 ( 3 ,  5 )  

SorPos 4 ( 3 ,  4) 

SorPos 4 ( 6, 3 )  

SorPos 4 ( 6 ,  7) 

AND 

Still must exercise at least one of the following def-clear 
paths: 

with respect to from to 

PatPos 5 4 

PatPos 5 5 

PatPos 5 ( 3 ,  5 )  

PatPos 5 ( 3 ,  4) 

PatPos 5 ( 6, 3 )  

PatPos 5 ( 6, 7) 

PatPos 5 ( 7 ,  9) 

PatPos 5 ( 7 ,  8) 

AND 

Still must exercise at least one of the following def-clear 
paths: 
with respect to from to 

SorPos 5 4 

SorPos 5 5 

paths: SorPos 5 8 
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SorPos 5 ( 3 ,  5 )  >>>: check 

SorPos 5 ( 3, 4) 

SorPos 5 ( 6, 3)  

ALL-DEFS: 

CRlTERlON SATISFIED 

To look at these again use the command ’view results’ 
SorPos 5 ( 6 ,  7) 

To look at these again use the command ’view results’. 

Next we will compile the program and Start running it on 
some test data. As the initial test data set, we select one 
element in which the pattern appears in the string and one 
element in which the pattern does not appear in the string. 
>>>: compile 

Compilation begins . . . 
Done, and successful. B. All-c-uses 

C.  All-p-uses >>>: run 
D. All-c-uses/some-p-uses 

File ’traversed’ already exists. 
E. All-p-usedsome-c-uses 

Do you want to append to it? (Y/N) [Y] 
F. All-uses >>: n 
G. All-du-paths 

Do you want to save old ’traversed’? (Y/N) [NI 

>>: n Enter letter representing the selected criterion 

The test set satisjies the all-defs criterion. We next check 
whether the same test set satisjies a stronger criterion, 
all-uses. 
>>> : select 

SELECT A CRITERION 

A. All-defs 

Command line arguments? (Y/N) [Y] 

>>: n 

Executing modified subject program . . . 
ENTER THE TEXT 

The quick brown fox 

ENTER THE PATTERN 

quick 

>>: f 
Criterion is All-uses. 

>>>: check 

ALL-USES 

Still need to exercise all of the following def-clear paths: 

with respect to from to 

The pattern first appears at position 5 in the text. PatPos 2 4 
Do you want to run the subject program on some addi- 

SorPos 2 4 tional test data? (Y/N) [NI 
>>: y SorPos 5 8 

Command line arguments? (Y/N) [Y] 

>>: n 

Executing modified subject program . 
ENTER THE TEXT 

PatPos 

SorPos 

PatPos 4 ( 7 ,  9) 

PatPos 5 ( 5 ,  8) 

The quick brown fox 
To look at these again use the command ’view results’. 

ENTERTHEPATTERN 
To aid in the selection of the test data which cover the 
remaining def-use associations, the user can draw the quack 

The pattern first appears at position 0 in the text. flow graph (see Fig. 9) and use “copy.p” to aid in la- 
Do you want to run the subject program beling each node with the corresponding code. Notice that 
on some additional test data? (Y/N) [NI for each i ,  block i begins with the statement 
>>: n “write(traversed,i:FW); ”. 
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>>> : view c0py.p begin 

program TestStringMatch(traversed, input, output); 

var 

SorPos := SorPos - PatPos + 2; 

PatPos := 1 

traversed: text; end 

const end; 

MAX = 80; 

LENGTH = 10; 

write(traversed, 6 :  FW); 

if not ((PatPos > PatLen) or (SorPos > SorLen)) 

tY Pe 
Source = array [ 1..  MAX] of char; 

String = array [ 1. .LENGTH] of char; 

var 

Pat: String; 

Txt: Source; 

then 

got0 10; 

write(traversed, 7: FW); 

if PatPos > PatLen then begin 

write(traversed, 8: FW); 

StringMatch := SorPos - PatLen 

i ,  result, TxtLen: integer; 

function StringMatch(Pattern: String; SorText: Source; 

end else begin 

write(travsered, 9: FW); 

PatLen, SorLen: integer): inter; 

label 

10; 

const 

FW = 4; 

var 

PatPos, SorPos: integer; 

StringMatch := 0 

end; 

write(traversed, 10: FW); 

write(traversed, 11 : FW) 

end; { StringMatch } 

begin 

rewrite( traversed) ; 

begin writeln(’ENTER THE TEXT’); 

write(traversed, 1 : FW); 

write(traversed, 2: FW); 

PatPos : = 1; 

SorPos : = 1; 

10: 

write(traversed, 3: FW); 

if Pattern[PatPos] = SorText[SorPos] then begin 

write(traversed, 4: FW); 

begin 

SorPos : = SorPos + 1; 

PatPos := PatPos + 1 

end 

end else begin 

write(traversed, 5:  FW); 

i : =  1; 

while not eoln and ( i  < = MAX) do begin 

read(Txt[i]); 

i : = i +  1 

end 

TxtLen := i - 1; 

readln; 

writeln(’ENTER THE PATTERN’); 

i : =  1 ;  

while not eoln and (i < = LENGTH) do begin 

read(Pat [ i  1) ; 

i : = i +  1 

end; 

readln; 
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result : = StringMatch(Pat, Txt, i - 1, TxtLen); 

writeln(’The pattern first appears at position’, result: 3, 

’in the text.’) 

end. { TestStringMatch } 

Examining the annotatedjow graph, we see that in order 
to execute a path from 2 to 4 which is definition clear with 
respect to PatPos, a test case in which the first character 
of the string matches the first character of the pattern is 
needed. We run the program on such a test case, adding 
its trace to those produced by the test cases run previ- 
ously. 

>>>: run 

File ’traversed’ already exists. 
Do you want to append to it? (Y/N) [Y] 
>>: y 

Command line arguments? (Y/N) [Y] 
>>: n 

Executing modified subject program . . . 
ENTER THE TEXT 

The quick brown fox 

ENTER THE PATTERN 

The 

The pattern first appears at position 1 in the text 
Do you want to run the subject program 
on some additional test data? (Y/N) [NI 
>>: n 

>>>: check 

Still need to exercise all of the following of def-clear 
paths: 

with respect to from to 

SorPos 5 8 

PatPos 4 ( 7 ,  9) 

PatPos 5 ( 7 ,  8) 

To look at these again use the command ’view results’. 

Examining the annotatedjow graph, we see that in order 
to execute a path from 5 to 8 which is definition clear with 
respect to SorPos, a test case in which the pattern is the 
null string is needed. We run the program on such a test 
case, adding its trace to those produced by the test cases 
run previously. 

>>>: run 

File ’traversed’ already exists. 

Do you want to append to it? (Y/N) [Y] 

>>: y 

Command line arguments? (Y/N) [Y] 

>>: n 

Executing modified subject program . . . 

ENTER THE TEXT 

The quick brown fox 

ENTER THE PATTERN 

The pattern first appears at position 2 in the text. 

Examining the program’s output, we see that the program 
has reported that the null string first appears in position 
2 of the string. This is an error! The reader should note 
that this bug is guaranteed to be detected by any test set 
which is adequate according to the all-uses criterion. 
Having discovered a bug, we save the ASSET session and 
prepare to report the error. 

Do you want to run the subject program 
on some additional test data? (Y/N) [NI 
>>: n 

>>>: save 

Note that to cover the one remaining association 
(4,(7,9),PatPos) we would have to include a test case in 
which the first k characters of the pattern matched the last 
k characters of the text, for  some k such that 0 < k < 

length of the pattern. 
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