Proceedings of the 7th European Software Engineering Conference
and 7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, September 1999, ACM Copyright

Efficient Points-To Analysis For Whole-Program
Analysis

Donglin Liang and Mary Jean Harrold

The Ohio State University, Columbus, OH 43210, USA
{dliang,harrold}@cis.ohio-state.edu

Abstract. To function on programs written in languages such as C that
make extensive use of pointers, automated software engineering tools re-
quire safe alias information. Existing alias-analysis techniques that are
sufficiently efficient for analysis on large software systems may provide
alias information that is too imprecise for tools that use it: the impreci-
sion of the alias information may (1) reduce the precision of the infor-
mation provided by the tools and (2) increase the cost of the tools. This
paper presents a flow-insensitive, context-sensitive points-to analysis al-
gorithm that computes alias information that is almost as precise as that
computed by Andersen’s algorithm — the most precise flow- and context-
insensitive algorithm — and almost as efficient as Steensgaard’s algorithm
— the most efficient flow- and context-insensitive algorithm. Our empiri-
cal studies show that our algorithm scales to large programs better than
Andersen’s algorithm and show that flow-insensitive alias analysis algo-
rithms, such as our algorithm and Andersen’s algorithm, can compute
alias information that is close in precision to that computed by the more
expensive flow- and context-sensitive alias analysis algorithms.

Keywords: Aliasing analysis, points-to graph, pointer analysis.

1 Introduction

Many automated tools have been proposed for use in software engineering. To
function on programs written in languages such as C that make extensive use of
pointers, these tools require alias information that determines the sets of memory
locations accessed by dereferences of pointer variables. Atkinson and Griswold
[2] discuss issues that must be considered when integrating alias information
into whole-program analysis tools. They argue that, to effectively apply the
tools to large programs, the alias-analysis algorithms must be fast. Thus, they
propose an approach that uses Steensgaard’s algorithm [16], a flow- and context-
insensitive alias-analysis algorithm! that runs in near-linear time, to provide

L' A flow-sensitive algorithm considers the order of statements in a program; a flow-
insensitive algorithm does not. A contert-sensitive algorithm considers the legal
call/return sequences of procedures in a program; a contert-insensitive algorithm
does not.

alias information for such tools. However, experiments show that, in many cases,
Steensgaard’s algorithm computes very imprecise alias information [13,18]. This
imprecision can adversely impact the performance of whole-program analysis.

Whole-program analysis can be affected by imprecise alias information in
two ways. First, imprecise alias information can decrease the precision of the
information provided by the whole-program analysis. Our preliminary experi-
ments show that the sizes of slices computed using alias information provided by
Steensgaard’s algorithm can be almost ten percent larger than the sizes of slices
computed using more precise alias information provided by Landi and Ryder’s
algorithm [11], a flow-sensitive, context-sensitive alias-analysis algorithm. Sec-
ond, imprecise alias information can greatly increase the cost of whole-program
analysis. Our empirical studies show that it can take a slicer five times longer
to compute a slice using alias information provided by Steensgaard’s algorithm
than to compute the slice using alias information provided by Landi and Ryder’s
algorithm; similar results are reported in [13]. These results indicate that the ex-
tra time required to perform whole-program analysis with the less precise alias
information might exceed the time saved in alias analysis with Steensgaard’s
algorithm.

One way to improve the efficiency of whole-program analysis tools is to use
more precise alias information. The most precise alias information is provided
by flow-sensitive, context-sensitive algorithms (e.g., [5,11,17]). The potentially
large number of iterations required by these algorithms, however, makes them
costly in both time and space. Thus, they are too expensive to be applicable
to large programs. Andersen’s algorithm [1], another flow-insensitive, context-
insensitive alias-analysis algorithm, provides more precise alias information than
Steensgaard’s algorithm with less cost than flow-sensitive, context-sensitive al-
gorithms. This algorithm, however, may require iteration among pointer-related
assignments? (O(n®) time where n is the program size), and requires that the
entire program be in memory during analysis. Thus, this algorithm may still be
too expensive in time and space to be applicable to large programs.

Our approach to providing alias information that is sufficiently precise for
use in whole-program analysis, while maintaining efficiency, is to incorporate
calling-context into a flow-insensitive alias-analysis algorithm to compute, for
each procedure, the alias information that holds at all statements in that proce-
dure. Our algorithm has three phases. In the first phase, the algorithm uses an
approach similar to Steensgaard’s, to process pointer-related assignments and
to compute alias information for each procedure in a program. In the second
phase, the algorithm uses a bottom-up approach to propagate alias information
from the called procedures (callees) to the calling procedures (callers). Finally,
in the third phase, the algorithm uses a top-down approach to propagate alias
information from callers to callees.?

2 A pointer-related assignment is a statement that can change the value of a pointer
variable.

3 Future work includes extending our algorithm to handle function pointers using an
approach similar to that discussed in Reference [2].

2

This paper presents our alias-analysis algorithm. The main benefit of our
algorithm is that it efficiently computes an alias solution with high precision.
Like Steensgaard’s algorithm, our algorithm efficiently provides safe alias infor-
mation by processing each pointer-related assignment only once. However, our
algorithm computes a separate points-to graph for each procedure. Because a
single procedure typically contains only a few pointer-related variables and as-
signments, our algorithm computes alias sets that are much smaller than those
computed by Steensgaard’s algorithm, and provides alias information that is al-
most as precise as that computed by Andersen’s algorithm. Another benefit of
our algorithm is that it is modular. Because procedures in a strongly-connected
component of the call graph are in memory only thrice — once for each phase
— our algorithm is more suitable than Andersen’s for analyzing large programs.

This paper also presents a set of empirical studies in which we investigate (a)
the efficiency and precision of three flow-insensitive algorithms — our algorithm,
Steensgaard’s algorithm, Andersen’s algorithm — and Landi and Ryder’s flow-
sensitive algorithm [11], and (b) the impact of the alias information provided by
these four algorithms on whole-program analysis. These studies show a number
of interesting results:

— For the programs we studied, our algorithm and Andersen’s algorithm can
compute a solution that is close in precision to that computed by a flow- and
context-sensitive algorithm.

— For programs where Andersen’s algorithm requires a large amount of time,
our algorithm can compute the alias information in time close to Steens-
gaard’s algorithm; thus, it may scale up to large programs better than An-
dersen’s algorithm.

— The alias information provided by our algorithm, Andersen’s algorithm, and
Landi and Ryder’s algorithm can greatly reduce the cost of constructing
system-dependence graphs and of performing data-flow based slicing.

— Our algorithm is almost as effective as Andersen’s algorithm and Landi and
Ryder’s algorithm in improving the performance of constructing system-
dependence graphs and of performing data-flow based slicing.

These results indicate that our algorithm can provide sufficiently precise alias
information for whole-program analysis in an efficient way. Thus, it may be the
most effective algorithm, among the four, for supporting whole-program analysis
on large programs.

2 Flow-Insensitive and Context-Insensitive Alias-Analysis
Algorithms

Flow-insensitive, context-insensitive alias-analysis algorithms compute alias in-
formation that holds at every program point. These algorithms process pointer-
related assignments in a program in an arbitrary order and replace a call state-
ment with a set of assignments that represent the bindings of actual parameters
and formal parameters. The algorithms compute safe alias information (points-
to relations): for any pointer-related assignment, the set of locations pointed

3

1 int *bufl, *buf2; 10 | p=incr_ptr(p); ptr = p; p=incr_ptr; | 16 voidinit() {

2 main() { 11 g Eincr pt(a); Bt = o NG i 17 bufl:(int:)malloc(ZO);
3 intinput[10]; 12} 18 buf2 = (int *)malloc(20);
4 inti, *p, *q *r: 13 q=huf2; 19}
5 init(); 14 1 = incr_ptr(q); 20 int *incr_ptr(int *ptr) {
6 p=input; 15} 21 ¢ retlim pir;
7 q=bufl; iy
8 for(i=0;i<10;i++) { 2}
9 *q:‘kp; :
@
incr_ptr ptr p input buf2bufl q r incr_ptr buf2 p input ptr bufl q - r

O OO0 0O O 00 © 0 Q9O 0 00
o [LLITILL e

O 00.0 00 Q0 in%ut[]

input(]

incr_ptr ptr p input buf2 bufl g incr_ptr buf2 p input ptr bufl q r
o O O O @)

b2 N | e AV

O O
input[] input[] h 17

incr_ptr ptr p input buf2bufl q r
O O O OO0

incr_ptr buf2 p input ptr bufl q r
@) @ _

(b.3)

input[], h_17, h_18

(b)

Fig. 1. Example program (a), points-to graph using Steensgaard’s algorithm (b),
points-to graph using Andersen’s algorithm (c).

to by the left-hand side is a superset of the set of locations pointed to by the
right-hand side.

We can view both Steensgaard’s algorithm and Andersen’s algorithm as
building points-to graphs [14].* Vertices in a points-to graph represent equiv-
alence classes of memory locations (i.e., variables and heap-allocated objects),
and edges represent, points-to relations among the locations.

Steensgaard’s algorithm forces all locations pointed to by a pointer to be in
the same equivalence class, and, when it processes a pointer-related assignment,
it forces the left-hand and right-hand sides of the assignment to point to the same
equivalence class. Using this method, when new pointer-related assignments are
processed, the points-to graph remains safe at a previously-processed pointer-
related assignment. This method lets Steensgaard’s algorithm safely estimate
the alias information by processing each pointer-related assignment only once.

Figure 1(b) shows various stages in the construction of the points-to graph
for the example program of Figure 1(a) using Steensgaard’s algorithm. The top
graph (labeled (b.1))) shows the points-to graph in its initial stage, where all
pointers, except input, point to empty equivalence classes. When Steensgaard’s

* A points to graph is similar to an alias graph [3].

4

algorithm processes statement 6, it merges the equivalence class pointed to by
input with the equivalence class pointed to by p; the merged equivalence class
is illustrated by the dotted box. Steensgaard’s algorithm processes statement
7 similarly; the merged equivalence class is illustrated by the dashed box. The
algorithm processes statements 10, 11, and 14 by simulating the bindings of
parameters and return values with the assignments shown in the solid boxes
in Figure 1. The middle graph (labeled (b.2)) shows the points-to graph after
Steensgaard’s algorithm has processed main().

To represent the objects returned by malloc(), when Steensgaard’s algo-
rithm processes statements 17 and 18, it uses h_(statement_number). The bot-
tom graph (labeled (b.3)) shows the points-to graph after Steensgaard’s algo-
rithm processes the entire program. This graph illustrates that Steensgaard’s
algorithm can introduce many spurious points-to relations.

Andersen’s algorithm uses a vertex to represent one memory location. This
algorithm processes a pointer-related assignment by adding edges to force the
left-hand side to point to the locations in the points-to set of the right-hand
side. For example, when the algorithm processes statement 6, it adds an edge
to force p to point to input[]. Adding edges in this way, however, may cause
the alias information at a previously-processed pointer-related assignment S to
be unsafe — that is, the points-to set of S’s left-hand side is not a superset of
the points-to set of S’s right-hand side. To provide a safe solution, Andersen’s
algorithm iterates over previously processed pointer-related assignments until
the points-to graph provides a safe alias solution.

Figure 1(c) shows various stages in the construction of the points-to graph
using Andersen’s algorithm for the example program. The top graph (labeled
(c.1)) shows the points-to graph constructed by Andersen’s algorithm after it
processes main(). When the algorithm processes statements 10, 11, and 14,
it simulates the bindings of the parameters using the assignments shown in
the solid boxes. The middle graph (labeled (c.2)) shows the points-to graph
after Andersen’s algorithm processes statement 17. The algorithm forces h_17
to point to buf1, which causes the alias information to be unsafe at statement
7. To provide a safe solution, Andersen’s algorithm processes statement 7 again,
which subsequently requires statements 11 and 14 to be reprocessed. The bottom
graph (labeled (c.3)) shows the complete solution. This graph illustrates that
Andersen’s algorithm can compute smaller points-to sets than Steensgaard’s
algorithm for some pointer variables. However, Andersen’s algorithm requires
more steps than Steensgaard’s algorithm.

3 A Flow-Insensitive, Context-Sensitive Points-To
Analysis Algorithm

Our flow-insensitive, context-sensitive points-to analysis algorithm (FICS) com-
putes separate alias information for each procedure in a program. In this section,
we first present some definitions that we use to discuss our algorithm. We next
give an overview of the algorithm and then discuss the details of the algorithm.

Jinput P g buflbuf2 r S bufl™ buf2 Jptr inch)tr

— D 1T

O - O O
input[] h 17 h_18
O man) ity incr_ptr()
Giput p g buitbufz r o ¢ bUfLBURZY ptr iner ptr Cbuflbuf2
After Phase2 V Q\\& ‘ T T D %\f : K\/D
e O . O0_ O 0O 1 o
: input[] : : h_l7 h_18 : : h 17,h 183
"""" man) Cint) inorpr) globd
input p g builbuz r b< }f? :‘ %\ ;éum o t%\/bgf?‘
After Phase 3 T/Q Q\\& ‘ 3 : ; O :
w0 niTss nimae honsma) 6
main() init() incr_ptr() global

Fig. 2. Points-to graphs constructed by FICS algorithm.
3.1 Definitions

We refer to a memory location in a program by an object name [11], which
consists of a variable and a possibly empty sequence of dereferences and field
accesses. We say that an object name NV, is extended from another object name
N> if N7 can be constructed by applying a possibly empty sequence of deref-
erences and field accesses w to No; in this case, we denote Ny as E,(N2). If N
is a formal parameter and a is the object name of the actual parameter that is
bound to N at call site ¢, we define a function A.(&,(N)) that returns object
name &, (a). If N is a global, A.(€,(N)) returns £,(N).

For example, suppose that p is a pointer that points to a struct with field a
(in the C language). Then E.(p) is *p, E«(*p) is * * p, and &, .o (p) is (xp).a. For
another example, if p is a formal parameter to function F', and *q is an actual
parameter bound to p at call site ¢ to F, then A.((*p).a) returns (x x q).a.

We extend points-to graphs to represent structure variables. A field access
edge, labeled with a field name, connects a vertex representing a structure to a
vertex representing a field of the structure. A points-to edge, labeled with “*”,
represents a points-to relation. In such a points-to graph, labels are unique among
the edges leaving a vertex. Given an object name N, FICS can find an access
path P{N,G) in a points-to graph G: first, FICS locates or creates vertex ng in
G to which N’s variable corresponds; then, FICS locates or creates a sequence of
vertices n; and edges e;, 1 <= i <=k, so that P(N, G) = ng, e1,na, ..., e, ng is a
path in G and labels of the edges in p match the sequence of dereferences and field
accesses in N. We refer to ng, the end vertex of P{N,G), as the associated vertex
of N in G, and denote ny as V(N,G). Note that the set of memory locations
associated with V{NV, G) is the set of memory locations that are aliased to N.

6

3.2 Overview

FICS computes separate alias information for each procedure using points-to
graphs. FICS first computes a points-to graph Gp for a procedure P by process-
ing each pointer-related assignment in P using an approach similar to Steens-
gaard’s algorithm. If none of the pointer variables that appears in P is a global
variable or a formal parameter, and none of the pointer variables is used as an
actual parameter, then Gp safely estimates the alias information for P. How-
ever, if some pointer variables that appear in P are global variables or formal
parameters, or if some pointer variables are used as actual parameters, then the
pointer-related assignments in other procedures can also introduce aliases related
to these variables; Gp must be further processed to capture these aliases.

There are three cases in which pointer-related assignments in other proce-
dures can introduce aliases related to a pointer variable that appear in P. In
the first case, a pointer-related assignment in another procedure forces &,{g),
where g is a global variable that appears in P, to be aliased to a memory lo-
cation. Because FICS does not consider the order of the statements, it must
assume that such an alias pair holds throughout the program. Thus, FICS must
consider such an alias pair in P. For example, in Figure 1(a), statement 17
forces *buf1 to be aliased to h-17; this alias pair must be propagated to main()
because main() uses bufl. FICS captures this type of alias pair in Gp in two
steps: (1) it computes a global points-to graph, Ggies, to estimate the memory
locations that are aliased to each possible global object name in the program;
(2) it updates G p using the alias information represented by G giop-

In the second case, an assignment in a procedure called by P forces &,1(f1)
to be aliased to &,2(f2), where f; is a formal parameter and fo is either a
formal parameter or a global variable (the return value of a function is viewed
as a formal parameter). Alias pair (€,1(f1),€w2(f2)) can be propagated from the
called procedure to P and can force A.(E,1(f1)) to be aliased to A.(Eu2(f2))
at call site c¢. For example, in Figure 1(a), statement 21 in function incr_ptr()
forces xincr_ptr to be aliased to xptr. When this alias pair is propagated back
to main(), it forces *r to be aliased to xg. FICS maps the alias pairs related to
the formal parameters to the alias pairs related to the actual parameters and
updates Gp with the alias pairs of the actual parameters.

In the third case, an assignment in a procedure that calls P forces a location
[to be aliased to £,{a), where a is an actual parameter bound to f at a call site
¢ to P. Alias pair (£, (a), I) is propagated into P and forces &, (f) to be aliased
to I. For example, statement 6 forces (xp, input[]) to be an alias pair in main()
of Figure 1(a); (xp,input[]) is propagated into incr_ptr() at statement 10, and
forces (xptr,input[]) to be an alias pair. FICS propagates this type of alias pairs
from the calling procedure to P and updates Gp.

FICS has three phases: Phase 1 processes the pointer-related assignments
in each procedure and initially builds the points-to graph for the procedure;
Phase 2 and Phase 3 handle the three cases discussed above. Phase 2 propagates
alias information from the called procedures to the calling procedures, and also
builds the points-to graph for the global variables using the alias information

7

available so far for a procedure. Phase 2 processes the procedures in a reverse
topological (bottom-up) order on the strongly-connected components of the call
graph. Within a strongly-connected component, Phase 2 iterates over the proce-
dures until the points-to graphs for the procedures stabilize. Phase 3 propagates
alias information from the points-to graph for global variables to each proce-
dure. Phase 3 also propagates alias information from the calling procedures to
the called procedures. Phase 3 processes the procedures in a topological (top-
down) order on the strongly-connected components of the call graph. Phase 3
iterates over procedures in a component until the points-to graphs for the pro-
cedures stabilize. Because FICS propagates information from called procedures
to calling procedures (Phase 2) before it propagates information from calling
procedures to called procedures (Phase 3), it will never propagate information
through invalid call/return sequences. Therefore, FICS is context-sensitive.

The bottom graphs in Figure 2 depict the points-to graphs computed by FICS
for the example program of Figure 1. The graphs show that, using FICS, variables
can be divided into equivalence classes differently in the points-to graphs of
different procedures. For example, in incr_ptr(), h_17, h_18, and input[] are in
one equivalence class. However, in main(), input[] is in a different equivalence
class than h_17 and h_18. Because FICS creates separate points-to graphs for
main(), init(), and incr_ptr(), it computes a more precise alias solution than
Steensgaard’s algorithm for the example program. The graphs also show that
FICS computes a smaller points-to set for p and ¢ than Andersen’s algorithm
because it considers calling-context. In the solution computed by Andersen’s
algorithm, p must point to the locations pointed to by incr_ptr under any calling-
context; in the solution computed by FICS, p points only to the locations pointed
to by incr_ptr when incr_ptr() is invoked at statement 10. Under such a calling
context, incr_ptr points only to input|].

3.3 Algorithm Description

Figure 3 shows FICS, which inputs P, the program to be analyzed, and outputs
L, a list of points-to graphs, one for each procedure and one for the global
variables.

Phase 1: Create Points-To Graphs for Individual Procedures. In the
first phase (lines 1-7), FICS processes the pointer-related assignments in each
procedure P; in P to compute the points-to graph Gp,. FICS first finds or creates
v1=V(Ei(lhs),Gp,) and vo=V(E.{rhs), G p,) for each pointer-related assignment
lhs = rhs. Then, the algorithm uses Merge (), a variant of the “join” operation
in Steensgaard’s algorithm, to merge v; and vy into one vertex. Merge() also
merges the successors of v1 and vs properly so that the labels are unique among
the edges leaving the new vertex. In this phase, FICS ignores all call sites except
those call sites to memory-allocation functions; for such call sites, the algorithm
uses h_(statement_number) to represent the objects returned by these functions.
Finally, FICS adds P; to W; and to W2, and adds Gp, to L.

8

algorithm FICS
input P: program to be analyzed
output L: a list of points-to graphs, one for each procedure, one for global variables
declare P;, P;, Py, P;: procedures in P
G p; : points-to graphs for P;
Wi : a list of procedures, sorted reverse-topologically on the strongly-connected
components of the call graph
Wo : a list of procedures, sorted topologically on the strongly-connected components
of the call graph

begin FICS
1. foreach procedure P; in P do /*phase 1 */
2 foreach pointer-related assignment lhs = rhs do
3 find or create v1 for lhs, v2 for rhs in Gp,;
4. Merge(Gpi,’Ul,’Uz)
5. endfor
6 Add P; to Wy; Add P; to Wa; Add Gpi to L
7 endfor
8. while W; # ¢ do /*phase 2 */
9 P; = remove procedure from head of W

10. foreach call site ¢ to P; in P; do

11. Bind(actualse.,Gp;, formalsp; ,Gp;)

12. endfor

13. BindGlobal(globals(Gpi),Gglob,Gpi)

14. BindLoc(globals(Gp;), Ggiob, globals(Gp;), Gp;)
15. if Gp,; is updated then

16. foreach P;’s caller P, do

17. if P, not in W7 then Add Py to Wi endif
18. endfor

19. endif

20. endwhile

21. while W2 # ¢ do /*phase 3 */

22. P; = remove procedure from head of Wa

23. BindLoc(globals(Gr;), Gp;, globals(Gp;), Ggiob)
24. foreach call site ¢ from P; to P; do

25. BindLoc(formalst,G’pj, actualsc,Gpi)

26. endfor

27. if Gpj is updated then

28. foreach P;’s callee P, do
29. if P, not in Wa then Add P; to W2 endif
30. endfor
31. endif
32. endwhile
end FICS

Fig. 3. FICS: Flow-Insensitive, Context-Sensitive alias-analysis algorithm.

The points-to graphs on the top of Figure 2 are constructed by FICS, in
the first phase, for main() (left), init() (middle), and iner_ptr()(right) of the
example program. Note that the points-to relations introduced by init(), such as
the points-to relation between buf1 and h_17, are not yet represented in main()’s
points-to graph. In the following two phases, FICS gathers alias information from
both callees and callers of P; to further build Gp,.

Phase 2: Compute Aliases Introduced at Callsites and Create Global
Points-to Graph. In the second phase (lines 8-20), for each procedure P;, FICS
computes the aliases introduced at P;’s call sites. For each call site ¢ to procedure
P; in P;, FICS calls Bind () to find alias pairs of (€,1{f1),Eu2(f2)), where f; and
f2 are P;’s formal pointer parameters, using a depth-first search on G'p,. The
search begins at the vertices associated with P;’s formal parameters of pointer
type, looking for possible pairs of P(£,1(f1),Gp,;) and P(E.2(f2),Gp;) that end

9

at the same vertex. This implies that £,1(f1) is aliased to £,2(f2). Bind () maps
this type of alias pair back to P; and captures the alias pairs in Gp, by merging
the end vertices of P{A.(E,1(f1)),Gp,) and P{A.(E,2(f2)),Gp,) in Gp,. For
example, FICS calls Bind() to process the call site at statement 14 in Figure
1. Bind() finds alias pair (xptr, *incr_ptr) in Giper_ptr- Then, it substitutes
ptr with ¢ and incr_ptr with r, and creates an alias pair (xq, *r), and merges
V(*q, Gmain) and V(*’f‘, Gmain)-

Bind () also searches for P(£,1(f),Gp;) and P(E.2(g),Gp;), where f is a
formal pointer parameter and g is a global variable, that end at the same
vertex. Similarly, Bind() merges the end vertices of P{A.(E,1(f)),Gp;) and
P<€w2<g>7 GPI) in GP:"

In this phase, FICS also calls BindGlobal() to compute the global points-
to graph G g0p with the alias information of ;. BindGlobal () finds alias pairs
(Ew1{g1), Eua{g2)), where g; and go are global variables, using a depth-first search
in Gp,. The search begins at the associated vertices of global variables in Gp,
and looks for pairs of access paths P(£,1(g1), Gp,) and P(€,2(g2), Gp,) that end
at one vertex. BindGlobal() then merges the end vertices of P(€,1(g1), Ggios)
and P{E,2(92), Ggiop) in G gi0p. For example, when FICS processes main() in this
phase, it calls BindGlobal () to search Gy,q4in and finds that P(xbuf1l, Grrain)
and P(xbuf2, Gpaein) end at the same vertex. Thus, FICS merges V{(xbu f1, Ggiop)
and V(*bufZ, Gglob)-

FICS also computes the memory locations that are aliased to &£,(g), where g
is a global. If a location [is in the equivalence class represented by V(&,{(g), Gp,),
then (£,(g),!) is an alias pair. FICS calls BindLoc() to look for V{(£,{g},Gp,)
using a depth-first search. For each location [associated with V{&,{g),Gp,),
BindLoc() merges V(l,Ggiop) with V(E.(g),Ggiob) to capture the alias pair
(€w(g),l) in Ggrop- For example, when FICS processes init() in this phase,
it merges V(h_17,G o) with V(xbuf1,Gg0p) because h_17 is associated with
V(xbufl,Ginit). After this phase, Ggi0p is complete.

Phase 3: Compute Aliases Introduced by the Calling Environment. In
the third phase (lines 21-32), FICS computes the sets of locations represented by
the vertices in G'p; and completes the computation of G p,. FICS first computes
the locations for vertices in Gp; from Ggp- Let g be a global variable that
appears in G p;. FICS calls BindLoc () to look for V(£,(g),Gp;) using a depth-
first search. BindLoc() then copies the memory locations from V(&,(9), Ggiob)
to V(€.(g),Gp,). For example, when FICS processes main() in the example of
Figure 1, it copies h_17 and h_18 from V{(xbuf1,Ggiop) to V{(xbuf1l,Gmain)-

FICS also computes the locations for vertices in G'p; from Gp,, given that P;
calls P; at a call site C. Suppose a is bound to formal parameter f at C. FICS
calls BindLoc() to copy the locations from V(€,(a),Gp,) to V(E.(f),Gp;) to
capture the fact that the aliased locations of £, (a) are also aliased to &, (f). For
example, FICS copies input[] from V(*p, Gmain) t0 V{*ptr, Gincr_ptr) because p
is bound to ptr at statement 11. After this phase, the set of memory locations
represented by each vertex is complete.

10

Complexity of the FICS Algorithm.? Theoretically, it is possible to con-
struct a program P that has O(2") distinguishable locations [15], where n is
the size of P. This makes any alias-analysis algorithm discussed in this paper
exponential in time and space to the size of P. In practice, however, the total
distinguishable locations in P is O(n) and a structure in P typically has a limited
number of fields.

Let p be the number of procedures in P and S be the worst-case actual
size of the points-to graph computed for a procedure. The space complexity
of FICS is O(p * S + n). In the absence of recursion, each procedure P is
processed once at each phase. Thus, Bind(), BindGlobal(), and BindLoc()
are invoked O(NumOfCall + p) times. In the presence of recursion, a sin-
gle change in Gp might require one propagation to each of P’s callers and
one propagation to each of P’s callees. Gp changes O(S) times, thus, Bind (),
BindGlobal() and BindLoc() are invoked O((NumO fCall+p)*S) times. When
the points-to graph is implemented with fast find/union structure, each invoca-
tion of Bind (), BindGlobal(), and BindLoc() requires O(S) “find” operations
on a fast find/union structure with size O(p x S). Let N be NumO fCall + p
in the absence of recursion and N be (NumO fCall + p) * S in the presence of
recursion. The time complexity of FICS is O((N S +p*S)a(N xS, px.S)), where
« is the inverse Ackermann function. In practice, we can expect NumQO fCall xS
to be O(n). Thus, we can expect to run FICS in time almost linear in the size
of the program in practice.

4 Empirical Studies

To investigate the efficiency and precision of FICS and the impact on whole-
program analysis of alias information of various precision levels, we performed
several studies in which we compared the algorithm with Steensgaard’s algo-
rithm (ST) [16], Andersen’s algorithm (AND) [1], and Landi and Ryder’s algo-
rithm (LR) [11]. We used the PROLANGS Analysis Framework (PAF) [6] to
implement, with points-to graphs, FICS, Steensgaard’s algorithm, and Ander-
sen’s algorithm. We used the implementation of Landi and Ryder’s algorithm
provided by PAF. None of these implementations handles function pointers or
setjump-longjump constructs.

The left-hand side of Table 1 gives information about a subset of the subject
programs used in the studies.® To allow the algorithms to capture the aliases
introduced by calls to library functions, we created a set of stubs that simulate
the effects of these functions on aliases. However, we did not create stubs for the
functions that would not introduce aliases at calls to these functions because,
in preliminary studies, we observed that using stubs forces Steensgaard’s algo-
rithm to introduce many additional points-to relations. For example, for dixie,

® Details of the complexity analysis for FICS can be found in [12].

8 T-W-MC and moria are not used in Studies 2 and 3 because the slicer requires more
than 10 hours, the time limit we set for slicing, to collect the data.

11

Table 1. Subject programs and Time in seconds to compute alias solutions.

Lines of | Number of | Number of | Number of Time(seconds)
Program Code| CFG Nodes| Procedures PRAs ST | FICS] AND LR
loader 1132 819 32 42 0.05| 0.14 0.16| 1.45
ansitape 1596 1087 37 59 0.06| 0.16 0.19| 0.54
dixie 2100 1357 52 149 0.1 0.22 0.3] 0.92
learn 1600 1596 50 129 0.08 0.2 0.35 1.47
unzip 4075 1892 42 144 0.06 0.16 0.19(1.75
smail 3212 2430 59 378 0.48| 0.74 2.8 -
simulator 3558 2992 114 83 0.11 0.38 0.34| 1.43
flex 6902 3762 93 231 0.14 0.42 0.53|410.28
space 11474 5601 137 732 0.62 1.77 4.64(113.39
bison 7893 6533 134 1170 0.33| 0.78 1.27 -
larn 9966 11796 295 642 0.37 1.2 1.2
mpeg_play 17263 11864 135 1782 0.92| 3.18 4.92 -
espresso 12864 15351 306 2706 4.21| 10.69| 957.16 -
moria 25002 20316 482 785 2.34| 3.68| 521.82 -
T-W-MC 23922 22167 247 2228 0.83| 4.41| 73.31 —

using stubs for the functions that would not introduce aliases at calls, FICS com-
putes, on average, ThruDeref Mod [18] of 29.45, whereas not using such stubs,
it computes, on average, ThruDeref Mod of 22.10 (see Study 1).

Study 1. In study 1, we compare the performance and precision of Steensgaard’s
algorithm, FICS, Andersen’s algorithm, and Landi and Ryder’s algorithm. For
each subject program, we recorded the time required to compute the alias infor-
mation (Time) and the average number of locations modified through dereference
(ThruDeref Mod) [18].

The right-hand side of Table 1 shows the running time of the algorithms
on the subject programs.” We collected these data by running our system on a
Sun Ultra 1 workstation with 128MB of physical memory and 256 MB virtual
memory. The table shows that, for our subject programs, the flow-insensitive
algorithms run significantly faster than Landi and Ryder’s algorithm. The table
also shows that, for small programs, both FICS and Andersen’s algorithm have
running time close to Steensgaard’s algorithm. However, for the large programs
where Andersen’s algorithm takes a large amount of time, FICS still runs in time
close to Steensgaard’s algorithm. This result suggests that, for large programs,
FICS is more efficient in time than Andersen’s algorithm.

Figure 4 shows the average number of ThruDeref Mod for the four algorithms.
The graph shows that, for many programs, Steensgaard’s algorithm computes
very imprecise alias information, which might limit its applicability to other
data-flow analyses. The graph also shows that, for our subject programs, FICS
computes alias solutions of ThruDeref Mod that are close to that computed by
Andersen’s algorithm. For smail and espresso, FICS computes smaller ThruD-
eref Mod than Andersen’s algorithm because these two programs have functions
similar to incr_ptr() in Figure 1, on which Andersen’s algorithm loses precision
because it does not consider calling context. The graph further shows that the

" Data on Landi and Ryder’s algorithm are not available for seven programs because
the analysis required more than 10 hours, the limit we set for the analysis.

12

EST OFICS OAND BALR

Fig. 4. ThruDeref Mod for the subject programs.

Table 2. Average number of summary edges () per call and average time (T) in seconds
to compute the summary edges for a call in a system dependence graph.

Raw Data % of Steensgaard

program ST FICS AND LR FICS AND LR

S T] S| T S| T S| T S| T S| T| S| T
loader 465| 2.3| 195| 1.1| 195(1.1| 199(1.1||41.9({47.4(41.9|47.8(42.8|50.0
ansitape 880| 2.6 533| 1.7| 431| 1.2| 400|1.2||60.6(66.7|49.0|48.5(45.5(45.8
dixie 821 2.5| 314| 1.5 227(1.1| 206|1.0(|38.3|58.4|27.7|42.5|25.2|40.0
learn 1578 7.6] 209| 1.3 173| 1.1| 159(1.0{(13.3|17.1|11.0|14.1|10.1|12.9
unzip 1979| 9.4| 738| 4.0| 687| 3.4| 402|2.1||37.3|42.9|34.7|36.4|20.3|22.1
smail 3518| 15.8|2703(11.3| 2260| 8.7 —| —||76.8|71.4|64.2(54.9 - -
simulator 979 2.0| 736| 1.2| 736| 1.2| 535|1.0||75.1(62.4|75.1|62.6(54.6(50.3
flex 1156| 12.1| 620 8.0 579| 7.5| 550|7.4(|53.6|66.1|50.1|61.9|47.6(61.3
space 7562| 19.4|5639|10.4| 5525|10.2|3839(7.5|(74.6|53.4|73.1|52.7|50.8|38.5
bison 679 2.6| 653| 1.6| 520| 1.1 —| —[|96.2|62.4|76.6(43.4 - -
larn 36726|182.9|9582(38.2| 8087(30.9 —-| —1/26.1|20.9|22.0(16.9 - -
mpeg-play|| 1306| 32.2| 946|23.9| 940|21.8 —| —||72.4|74.2|72.0|67.7 - -
espresso 13964|121.5|8540(60.5(10518|82.9 —| —|(61.2|49.8|75.3(68.3 — -

solutions computed by FICS and Andersen’s algorithm are very close to that
computed by Landi and Ryder’s algorithm. This result suggests that, for many
data-flow problems, aliases obtained using FICS or Andersen’s algorithm might
provide sufficient precision. Note that, because Landi and Ryder’s algorithm uses
a k-limiting technique, which collapses the fields of a structure, to handle recur-
sive data structures [11], the points-to set for a pointer p computed by Landi and
Ryder’s algorithm may contain locations that are not in the points-to set for p
computed by the three flow-insensitive algorithms. Thus, Andersen’s algorithm
provides a smaller alias solution than Landi and Ryder’s algorithm for loader
and space.

Study 2. In study 2, we investigate the impact of the alias information pro-
vided by the four algorithms on the size and the cost of the construction of one

13

program representation — the system-dependence graph [10].8 We study the
average number of summary edges per call and the cost to compute these sum-
mary edges in a system dependence graph. The summary edges are computed by
slicing through each procedure with respect to each memory location that can
be modified by the procedure using Harrold and Ci’s slicer [7]. Thus, the time
required to compute the summary edges might differ from the time required to
compute the summary edges using other methods (e.g. [10]). Nevertheless, this
approach provides a fair way to compare the costs of computing summary edges
using alias information of different precision levels.

Table 2 shows the results of this study. We obtained these results on a Sun
Ultra 30 workstation with 640MB physical memory and 1GB virtual memory.
The table shows that using more precise alias information provided by FICS,
Andersen’s algorithm, and Landi and Ryder’s algorithm can effectively reduce
both the average number of summary edges per call and the time to compute the
summary edges in the construction of a system-dependence graph.? The table
further shows that, for our subject programs, using alias information provided
by FICS is almost as effective as using alias information provided by Andersen’s
algorithm. Our algorithm is even more effective than Andersen’s algorithm on
espresso because our algorithm computes a smaller points-to set for the pointer
variables. These results suggest that FICS is preferable to Andersen’s algorithm
in building system-dependence graphs for large programs because FICS can run
significantly faster than Andersen’s algorithm on large programs.

Study 3. In study 3, we investigate the impact of the alias information provided
by the four alias-analysis algorithms on the sizes of the slices and the cost of
computing the slices. We obtained the slices by running Harrold and Ci’s slicer
[7] on each slicing criterion of interest, without stored reuse information.

Table 3 shows the results of this study. We obtained these results on a Sun Ul-
tra 30 workstation with 640MB physical memory and 1GB virtual memory. The
table shows that, for all the subject programs, using more precise alias informa-
tion than that computed by Steensgaard’s algorithm can significantly reduce the
time to compute a slice. The table also shows that, for four programs, using more
precise alias information can significantly (> 10%) reduce the sizes of the slices.
These four programs illustrate exceptions to the conclusion drawn by Shapiro
and Horwitz [13] that the sizes of slices are hardly affected by the precision of the
alias information. Note that for five of the programs, the slicer computes larger
slices using alias information provided by Landi and Ryder’s algorithm than
using that provided by FICS and Andersen’s algorithm because the points-to
set computed by Landi and Ryder’s algorithm for a pointer p contains memory
locations that are not in the points-to set computed by Steensgaard’s, FICS, or
Andersen’s algorithms for p. The table further shows that using alias information

8 A system-dependence graph can be used to slice a program.; computing summary
edges is the most expensive part of constructing such a graph.

® Similar results of time were reported in [13] where Steensgaard’s, Shapiro’s and
Andersen’s algorithms were compared.

14

Table 3. Average size of a slice (5) and average time (7)) in seconds to compute a slice.

Raw Data % of Steensgaard

program ST FICS AND LR FICS AND LR

S T S T S T S T S| T| S| T S| T
loadert 207 5.3| 192 3.4 192 3.3] 194 3.5|| 93.0(64.1|93.0(63.4| 93.8(66.5
ansitapet 290| 16.6| 284 9.6 277 5.3| 300 4.9|| 98.1|58.1|95.7(32.2(103.5(29.7
dixiet 705| 25.5| 704 8.3| 704 5.9 699 5.5|| 99.9(32.7|99.9(23.1| 99.2(21.7
learnt 442| 25.4| 442| 17.6(442| 11.4| 440| 16.8/{100.0{69.0(99.9(44.9| 99.5(66.0
unzipt 808 37.5| 807| 13.1| 807| 10.8| 805| 9.3|[99.9|35.0(99.8(28.9| 99.6|24.9
smailt 738| 176.5| 637 96.1| 635 75.4 - —|| 86.3(54.5|86.1|42.7 - -
simulatort ||1258| 54.8|1087(22.5(1087| 22.7|1151| 24.2|| 86.4|41.1|86.4|41.3| 91.5|44.2
flex} 2025| 220.2(2019| 167.3(2019| 153.8|2002(159.8(| 99.7|76.0(99.7(69.9| 98.9|72.6
space} 2234(1373.9(1936| 573.5|1936| 569.8(2086|467.3|| 86.7|41.7|86.7(41.5| 93.4|34.0
bison} 2394 94.9(2394| 84.1|2338| 41.0 - —||100.0|88.6|97.7|43.2 - -
larn} 6626(3477.3(6602|1075.6(6592| 902.4 - —|| 99.6/30.9]/99.5|26.0 - -
mpeg_play}||5708| 325.5(3935| 134.6(3935| 139.5 - —|| 68.9(41.3|68.9|42.9 - -
espresso} 6297(8332.1(6291|3776.5|6264|5367.1 — —|| 99.9/45.3|99.5|64.4 - —

t Data are collected from all the slices of the program. } Data are collected from one slice.

provided by FICS is almost as effective as using alias information provided by
Andersen’s algorithm in computing slices. This further supports our conclusion
that FICS is preferable to Andersen’s algorithm in whole-program analysis.

5 Related Work

Many data-flow analysis algorithms (e.g., [9,10]), including FICS, use a two-
phase interprocedural analysis framework: in the first phase, information is prop-
agated from the called procedures to the calling procedures, and when a call
statement is encountered, summaries about the called procedure are used to
avoid propagating information into the called procedure; in the second phase,
information is propagated from the calling procedures to the called procedures.
Recently, Chatterjee et al. [4] use unknown initial values for parameters and
global variables so that the summaries about a procedure can be computed
for flow-sensitive alias analysis.'® Then, they use the two-phase interprocedu-
ral analysis framework to compute flow- and context-sensitive alias information.
Although their algorithm can improve the worst case complexity over Landi
and Ryder’s algorithm [11] while computing alias information with the same
precision, it is still too costly in practice. Furthermore, because no comparison
between these two algorithms is reported, it is not known how much Chatterjee
et al.’s algorithm outperforms Landi and Ryder’s algorithm.

There have been a number of attempts to design algorithms to compute alias
information with efficiency close to Steensgaard’s algorithm and with precision
close to Andersen’s algorithm. Shapiro and Horwitz [14] propose a method that
divides the program variables into k categories, and allows only variables be-
longing to the same category to be in an equivalence class. Thus, similar to
FICS, this method computes smaller equivalence classes, and provides a smaller
points-to set for each pointer variable, than Steensgaard’s algorithm. FICS dif-
fers from this method, however, in that it uses an independent set of equivalence

0 Harrold and Rothermel used a similar approach in [8].

15

classes for each procedure. Thus, FICS can benefit from the fact that a proce-
dure references only a small set of program variables. FICS also differs from this
method in that FICS is context-sensitive (information is not propagated through
invalid call/return sequences). Finally, FICS differs from Shapiro and Horwitz’s
algorithm in that FICS can handle the fields of structures, whereas in their al-
gorithm, assignments to a field of a structure are treated as assignments to the
entire structure. Because of this last difference, it is difficult to compare our ex-
perimental results with theirs. However, from the experimental results reported
in Reference [14], it appears that, on average, FICS computes alias information
that is closer to Andersen’s in precision than their algorithm.

6 Conclusions

We presented a flow-insensitive, context-sensitive points-to analysis algorithm
and conducted several empirical studies on more than 20 C programs to com-
pare our algorithm with other alias-analysis algorithms. The empirical results
show that, although Steensgaard’s algorithm is fast, the alias information com-
puted by this algorithm is too imprecise to be used in whole-program analysis.
The empirical results further show that using more precise alias information pro-
vided by our algorithm, Andersen’s algorithm, and Landi and Ryder’s algorithm
can effectively improve the precision and reduce the cost of whole-program anal-
ysis. However, the empirical results also show that Andersen’s algorithm and
Landi and Ryder’s algorithm could be too costly for analyzing large programs.
In contrast, the empirical results show that our algorithm can compute alias in-
formation that is almost as precise as that computed by Andersen’s algorithm,
with running time that is within six times that of Steensgaard’s algorithm. Thus,
our algorithm may be more effective than the other algorithms in supporting
whole-program analysis.

Our future work includes performing additional empirical studies, especially
on large subject programs, to further compare our algorithm with other alias-
analysis algorithms. We will also conduct more studies to see how the imprecision
in the alias information computed by our algorithm can affect various whole-
program analyses.

7 Acknowledgements

This work was supported in part by grants from Microsoft, Inc. and by NSF
under NYI Award CCR-9696157 and ESS Award CCR-9707792 to Ohio State
University. We thank the anonymous reviewers who made many helpful sugges-
tions that improved the presentation of the paper.

References

1. L.O. Andersen. Program analysis and specialization for the C programming lan-
guage. Technical Report 94-19, University of Copenhagen, 1994.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Atkinson and W. Griswold. Effective whole-program analysis in the presence of
pointers. In Proceedings of the Sizth ACM SIGSOFT Symposium on the Foundation
of Software Engineering, pages 46-55, November 1998.

M. Burke, P. Carini, J. D. Choi, and M. Hind. Flow-insensitive interprocedrual
alias analysis in the presence of pointers. In Language and Compilers for Parallel
Computing: Proceedings of the Tth International Workshop, pages 234-250, 1994.

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant con-
text inference. In Proceedings of 26th ACM SIGACT/SIGPLAN Symposium on
Principles of Programming Languages, January 1999.

M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proceedings of SIGPLAN 9
Conference on Programming Language Design and Implementation, pages 242-256,
June 1994.

Programming Languages Research Group. PROLANGS Analysis Framework.
http://www.prolangs.rutgers.edu/, Rutgers University, 1998.

M. J. Harrold and N. Ci. Reuse-driven interprocedural slicing. In The 20th Inter-
national Conference on Software Engineering, pages 74-83, April 1998.

M. J. Harrold and G Rothermel. Separate computation of alias information for
reuse. IEEE Transactions on Software Engineering, 22(7):107-120, June 1996.

M. J. Harrold and M. L. Soffa. Efficient computation of interprocedural
definition-use chains. ACM Transactions on Programming Languages and Systems,
16(2):175-204, March 1994.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26-60,
January 1990.

W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural
pointer aliasing. In Proceedings of 1992 ACM Symposium on Programming Lan-
guage Design and Implementation, pages 235—248, June 1992.

D. Liang and M. J. Harrold. Context-sensitive, procedure-specific points-to analy-
sis. Technical Report OSU-CISRC-3/99-TR05, The Ohio State University, March
1999.

M. Shapiro and S. Horwitz. The effects of the precision of pointer analysis. In
Static Analysis 4th International Symposium, SAS ’97, Lecture Notes in Computer
Science Vol 1302, pages 16-34, September 1997.

M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis.
In Conference Record of the 24th ACM Symposium on Principles of Programming
Languages, pages 1-14, 1997.

B. Steensgaard. Points-to analysis by type inference of programs with structures
and unions. In Proc. of the Int. Conf. on Compiler Construction, pages 136-150,
1996.

B. Steensgaard. Points-to analysis in almost linear time. In Conference Record of
the 28rd ACM Symposium on Principles of Programming Languages, pages 32—41,
1996.

R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C
programs. In Proceedings of SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 1-12, 1995.

S. Zhang, B. G. Ryder, and W. Landi. Program decomposition for pointer analysis:
A step toward practical analyses. In Proceedings of the Fourth ACM SIGSOFT
Symposium on the Foundation of Software Engineering, pages 81-92, November
1996.

17

